Engineered nanoparticle bio-conjugates toxicity screening: The xCELLigence cells viability impact

Yah, Clarence S and Simate, Geoffrey S. (2020) Engineered nanoparticle bio-conjugates toxicity screening: The xCELLigence cells viability impact. BioImpacts, 10 (3). pp. 195-203. ISSN 2228-5660

[thumbnail of bi-10-195.pdf] Text
bi-10-195.pdf - Published Version

Download (1MB)

Abstract

Introduction: The vast diverse products and applications of engineered nanoparticle bio-conjugates (ENPBCs) are increasing, and thus flooding the-markets. However, the data to support risk estimates of ENPBC are limited. While it is important to assess the potential benefits, acceptability and uptake, it is equally important to understand where ENPBCs safety is and how to expand and affirm consumer security concerns.
Methods: Online articles were extracted from 2013 to 2016 that pragmatically used xCELLigence real-time cell analysis (RTCA) technology to describe the in-vitro toxicity of ENPBCs. The xCELLigence is a +noninvasive in vitro toxicity monitoring process that mimics exact continuous cellular bio-responses in real-time settings. On the other hand, articles were also extracted from 2008 to 2016 describing the in vivo animal models toxicity of ENPBCs with regards to safety outcomes.
Results: Out of 32 of the 121 (26.4%) articles identified from the literature, 23 (71.9%) met the in-vitro xCELLigence and 9(28.1%) complied with the in vivo animal model toxicity inclusion criteria. Of the 23 articles, 4 of them (17.4%) had no size estimation of ENPBCs. The xCELLigence technology provided information on cell interactions, viability, and proliferation process. Eighty-three (19/23) of the in vitro xCELLigence technology studies described ENPBCs as nontoxic or partially nontoxic materials. The in vivo animal model provided further toxicity information where 1(1/9) of the in vivo animal model studies indicated potential animal toxicity while the remaining results recommended ENPPCs as potential candidates for drug therapy though with limited information on toxicity.
Conclusion: The results showed that the bioimpacts of ENPBCs either at the in vitro or at in vivo animal model levels are still limited due to insufficient information and data. To keep pace with ENPBCs biomedical products and applications, in vitro, in vivo assays, clinical trials and long-term impacts are needed to validate their usability and uptake. Besides, more real-time ENPBCs-cell impact analyses using xCELLigence are needed to provide significant data and information for further in vivo testing.

Item Type: Article
Subjects: Pustakas > Medical Science
Depositing User: Unnamed user with email support@pustakas.com
Date Deposited: 10 Apr 2023 09:29
Last Modified: 02 Feb 2024 04:35
URI: http://archive.pcbmb.org/id/eprint/354

Actions (login required)

View Item
View Item