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The Bitwise Hashing Trick for Personalized Search
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eBay Inc., Computer Vision Research Team, Los Angeles, USA

ABSTRACT

Many real world problems require fast and efficient lexical
comparison of large numbers of short text strings. Search
personalization is one such domain. We introduce the use of
feature bit vectors using the hashing trick for improving rele-
vance in personalized search and other personalization appli-
cations. We present results of several lexical hashing and
comparison methods. These methods are applied to a user’s
historical behavior and are used to predict future behavior.
Using a single bit per dimension instead of floating point
results in an order of magnitude decrease in data structure
size, while preserving or even improving quality. We use real
data to simulate a search personalization task. A simple
method for combining bit vectors demonstrates an order of
magnitude improvement in compute time on the task with
only a small decrease in accuracy.

Overview
Introduction

In personalization at eBay we take a user’s chat and search history into
account to help find and rank relevant items when the user searches for
products. Search must return results quickly; search personalization must be
fast. eBay has more than 168 million active users; therefore personalization
data must be compact, easy, and quick to access.

Here we investigate the problem of predicting what item an eBay member
will buy based on items this user has viewed in detail in the past. We
construct an experiment using real-world inventory and purchasing data.

Our prediction uses only the text titles of inventory items. The essence of
an item is captured by its title and title similarity can be used to predict
sales.

eBay item titles pose both a challenge and an opportunity because sellers
cram a lot of detail in the title. Titles are frequently not grammatically correct,
and are often incoherent. Titles often contain strange punctuation. Figure 1
has examples of typical eBay item titles, illuminating their peculiarity.
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Example eBay item titles

Sony 1-873-858-11 Video/HDMI Board, Pulled from KDL-52W3000 LCD TV
*EXCELLENT*

GE / Hotpoint / Kenmore Oven - VENT TRIM - White - EUC!

1995-96 SUMMIT WAYNE GRETZKY #2/ * Los Angeles Kings HOF center
0574 Screw-on - Black CZ Tunnels 2 Gauge 2G Plugs 6mm
Adidas Yeezy Boost 350 V2 Black Core White size 9 100% Authentic 480pp

Vans Classic Slip-On Damen US 6.5 Schwarz Slipper Ohne Karton 4054
Authentic Genuine Original Bose IE2 MIE2i iphone remote control mic Earphones

Figure 1. Example eBay item titles.

For title-to-title comparison, we show that a simple character n-gram vector
representation can suffice. We further show that this representation can be
reduced to 1-bit per dimension with almost no degredation. This technique is
simple, small, and fast for short strings. It requires no training.

Personalized search improves user experience (Teevan, Dumais, and Horvitz
2010, 2005). Users’ ability to communicate their “information need” (the pur-
pose of their search) is hampered by the imprecision of language, homonyms,
and the lack of context. It is likely, therefore, that adding a user’s personal data,
such as the text from titles of previous items viewed, could improve search
relevance and search ranking.

Representation Size

A common method for representing and comparing items such as documents or
listing titles is with a vector created by feature hashing aka “the Hashing Trick”
(Attenberg, Weinberger, and Dasgupta et al. 2009; Weinberger et al. 2009). The
vector is initialized to zero. Each feature is hashed to an index number modulo the
vector length. The vector element at the index position is then incremented, or in
some implementations decremented based on a second sign hash. Items are then
compared pairwise using a similarity function such as the cosine between the
vectors.

In our initial approach, we found that adequate performance could be obtained
only with vectors with a minimum length of 8,000 32-bit floating point dimen-
sions. Such vectors are 32 KB - too large for our scale and application. Performance
degraded significantly when dimensionality was reduced. This vector length
problem is common in the literature Bai et al. (2009); a few approaches to over-
coming the problem have made some progress such as Weinberger et al. (2009).

Our contribution is to radically reduce the type of the elements from 32-bit
floats to 1-bit bits. This allows us to reduce the vector storage requirement by
a factor of 32, while preserving the 8,000 element dimensionality, at the expense
of not handling collisions. The new bit arrays are 1 kbyte in size.

Grzegorczyk and Kurdziel obtained competitive results using “Binary
Paragraph Vectors” compared with real valued paragraph vectors in
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(Grzegorczyk and Kurdziel 2017). They obtained binary representations of
paragraphs from a sigmoid neural network layer, an approach that is very
different from our simple, faster hashing approach. Hubara et al (Hubara
et al. 2016) used Binarized Neural Networks with weights and activations
of a single bit of precision and discovered great speed improvements with
only minor performance degradation.

The User Vector

In our model we represent each user using a fixed size “User Vector”, that
has the same dimension as the item vectors. In our task, we need to compare
N viewed items in the user’s history with the M items that are search result
candidates. We commonly call the search result candidates the “recall set”.
We want to score each item in the recall set with the predicted relevance for
the user.

As a baseline, we could use pairwise comparisons of each of N viewed
items with each of M search candidates. This approach would take the
smallest distance score from the N viewed items and assign it to a search
result candidate. We use the cosine similarity to compare the vectors. This
score would be used to re-rank the recall set.

The problem with this approach is that it takes O(M x N) comparison
operations. In our trial, the median value for N is about 44 viewed items, and
the number of items in the recall set (M) is about 100. This approach would
require 4,400 comparisons as well as the retrieval of 44 item vectors from the
user’s history.

It is faster to summarize the user’s view history into a single vector. That
single vector would be some combination of all N viewed items. A single
vector would require only O(M) comparison operations to score the search
recall set of M items.

This single user history summary vector is what we call the “User Vector”.

Method
Character N-Grams

eBay item titles are very dense and rarely grammatically correct language. See
Figure 1 for examples.

Instead of attempting to build a fixed word vocabulary for these noisy titles,
we chose to use character level n-grams. We found that character 5-grams
worked well in performing lexical comparison between eBay titles. We use
5-grams throughout this paper as the features which get hashed into vectors.
We use overlapping n-grams.
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Using overlapping character n-grams has additional advantages when
using The Hashing Trick because it compensates for occasional collisions.
If the 3-gram “hel” from the word “hello” collided with another word’s
3-gram in the array, it is highly unlikely the 3-grams “ell” and “llo” would
also collide. This makes words and phrases represented by character n-grams
somewhat more robust to collisions than tokenized words.

Cosine Similarity for Bit Vectors

Cosine Similarity is popular as a similartiy measure in the vector space model
for text retrieval(Ida 2008). In vector space text retrieval, the discrimination
of syntactic elements of text is commonly used to weight each dimension in
the vector space. Syntactic elements include words, phrases, or overlapping
N-grams. The weights are often the output of a TF-IDF calculation (inverse
document frequency times term frequency).

In these processes floating point vectors are commonly used. However, as
we will see cosine similarity can be computed very efficiently for bit arrays.

Consider two real vectors

A.BcR?

the cosine similarity is defined to be:

) A-B S AiB;
cos = =
|All[B]] \/Z‘i—lAz\/Zd_l B2

Now consider how that equation is greatly simplified when we define
A,Be{0,1}¢

ie, constraining each element to be a single bit which always has the value 1.0
or 0.0. In this case, the dot product between A and B becomes a simple
boolean AND function with summation; and the magnitude of A becomes
the square root of the number of bits set to 1 (population count) in A
(Hubara et al. 2016).

A-B popcnt(A N B)

TATTBI ~ /popent(A)popernt(B)

popcent is the “population count” which is defined to be the number of bits set
to 1 in the array(Hubara et al. 2016). It is implemented as a fast hardware
instruction for most modern CPU’s and GPU’s.

This binary cosine similarity equation is known as the Ochiai Coefficient
(Ida 2008).
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Vector Combination

We use a very simple technique to construct our combined User Vector
from the item title embeddings for items previously viewed. We simply add
the individual title vectors up element-by-element and normalize the result.
This user vector, which is still in the same space as the individual title
vectors, can then be compared to each title vector in the recall set to score
them.

For our bit vectors, we logically OR the individual title vectors into
a combined user vector.

Data

We obtained user activity from clickstream data of one million users over
a two week period. This dataset includes items viewed in detail by the user
(clicked through), and clicks on a button to purchase an item (we do not
know if the checkout was fully completed).

We choose to break the user’s historical activity into “sessions”, which are
lengths of time when the user was active on the eBay site. Among other
events such as log outs, 30 minutes of inactivity closes the current session.

We sampled 14,245 purchases from this dataset with the following
constraints:

e Users were selected at random

e Purchase event was preceded by at least one other Session with at least
one other viewed item

e Only one purchase was sampled per user

e if there were multiple purchases by a user, the last purchase was used

To build our simulated recall sets we leveraged category information for
each item viewed or purchased. Here we benefit from the fact that the seller
is financially motivated to properly categorize the item for sale in one of
eBay’s approximately 20,000 item categories.

Training Free

This technique requires no training. There are no parameters apart from the
chosen vector dimension. It should be insensitive to the hashing function
used as long as it is sufficiently random. It can be used to compare short
strings where there is a lack of historical data.
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Alternative Interpretation of Bit Vectors

A long bit vector formed by the hashing of features modulo the vector length
(“The Hashing Trick”) can be interpreted as the set of n-grams present in the
title. We ignore collisions so duplicate occurances of n-grams are ignored -
an n-gram is either present or absent. Because we use only one bit per
dimension we can have a far sparser vector in the same memory footprint
reducing the chance of feature collisions.

When we OR a set of item titles represented by bit vectors together to
form our combined “User Vector”, we are essentially making a combined set
of features present in the set of titles.

Experiment

For our experiment we make a rough simulation of a search result ranking task,
without using actual search recall sets. We take an item a user has bought, mix it
in a bag with up to 100 other random items in the same eBay item category.
Then, based on viewed items in the user’s prior sessions we try to identify the
item the user actually bought. We score and sort all the items in the bag and
measure the accuracy for getting the bought item within the top-1, top-5, and
top-10 ranked positions.

There are a median of 44 viewed items preceding each purchase for a user
(the dataset only extends back less than two weeks). We are experimenting
with a test set of 14,245 purchases.

The challenge of a User Vector is to collapse the embeddings from those
44 previously viewed items into a single compact vector which can be used to
predict user behavior. Of course viewed items is just the start, we want to
eventually include all user attributes in a vector in future work.

Using an exhaustive item-to-item match the best we have been able to do
on this task is predict with 34% accuracy the bought item as top-1, and 44%
recall within the top-5. We find that somewhat remarkable because users
often don’t buy something related to their activity in the prior session - it is
often just not in the data.

Results

Tables 1 and 2 contain a summary of results from our experiment. The columns
include the dimension of the arrays, the storage size (assuming 32-bit floats), and
the execution time in seconds. Finally, the accuracy of the method in identifying
the purchased item by a sorted ranking of the recall set in the 1st position, top
five positions, or top ten positions.

Our best performing method (pairwise float) could predict the bought
item 33.93% of the time in the top-1 position. “pairwise 1-bit”, despite using
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Table 1. Pair-wise comparison results.

Type dim size(byte) time(sec) 1-top 5-top 10-top
pairwise float 8,000 32,000 4,730s 33.93% 44.24% 50.14%
pairwise float 1,000 4,000 1,343s 32.80% 42.40% 48.82%
pairwise 1-bit 8,000 1,000 1,718s 33.65% 44.20% 50.22%
pairwise 1-bit 1,000 125 1,030s 32.71% 42.54% 48.70%

This table contains results for the task using comparison of each title in the user’s history with each item title
in the recall sets, using the minimum distance as the score.

Table 2. Combined user vector results.

Type dim size(byte) time(sec) 1-top 5-top 10-top
user-vec float 8,000 32,000 3,104s 29.10% 40.99% 47.74%
user-vec float 1,000 4,000 847s 25.50% 36.81% 44.71%
user-vec 1-bit 8,000 1,000 253s 32.83% 43.90% 50.25%
user-vec 1-bit 1,000 125 198s 19.87% 30.49% 38.23%

This table contains results for the task using a combined User Vector compared to each item title in the
recall sets.

NOTE: Python implementation was not optimized for speed. These numbers give an extremely rough
comparison.

a 32 times smaller data structure, trailed by only 0.28%. We believe from
manual inspection that that is about as good as can be achieved with this
dataset. Many bought items are unrelated to items the user viewed in
previous sessions.

As can be seen in the results, the 1-bit vectors dominate in speed, storage, and
accuracy in the “User Vec” experiments. The fact that accuracy is improved over
a much more precise floating point vector of the same dimension is interesting.
It appears that the fact that collisions are ignored and a vector element can never
have a value greater than 1 actually help with this dataset. This makes sense,
since our title are so dense with information that commonly repeated n-grams
which contain little information would detract from the content of the title
during the summation and normalization process.

Challenges, Limitations, and Further Work

eBay titles are relatively short strings of under 80 characters with little repetition.
This keeps the hashed vectors sparse, which is critical when using a simple
binary OR to combine them as we are doing. We are also only attempting to
combine a few score title vectors in this way, which keeps the resulting combined
User Vector sparse. It is likely that this technique would not work on long
documents, or on much larger numbers of documents. On large numbers of
long documents, the binary feature vectors are very likely to saturate and
collisions would increase.

Our sampling of user history is slightly awkward. We followed 1 million
users who made at least one purchase over a two week period in early
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November 2016. Because a purchase may have occurred any time in the two
week window that was sampled, users who bought items early in the window
would have less history than those who bought items later in the window.

There are a number of similarity metrics that could be applied to bit vectors.
We only experimented with the Ochiai Coefficient and the Hamming distance,
but others such as the Jaccard Coefficient may yield valid results (Leskovec,
Rajaraman, and Ullman 2015).

Conclusions

For many applications dimensionality is more important than precision.
When storage space or computation speed is a priority, we found in this
trial that reducing precision to a single bit while maintaining a rich dimen-
sionality, greatly improved speed, storage requirements, and even accuracy.

We also found that for short strings (eBay item titles), a simple OR’ing of
bit vectors was actually more effective for building a composite vector than
attempting to add and normalize floating point vectors.

Using both bit vector title representations and combining title representa-
tions into a “User Vector” improved speed and storage size by an order of
magnitude.
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