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ABSTRACT
Thanks to the recent advances in computer technology, many 
building energy performance simulation tools have been devel-
oped in the current market. Designers and architects are inter-
ested in working on this topic in the early phases of the project. 
However, effective energy solutions are computationally expen-
sive. As a result, having a comprehensive insight into the project 
conditions in the early phases of the work is a vital issue. The 
present study aimed to propose an artificial intelligence (Al) 
model to generate a reasonably accurate estimate in a short 
time. To this end, four machine learning models and one artifi-
cial neural network (ANN) are selected and their results are 
compared to assess their capabilities in energy performance 
estimation. This study investigates the influence of the exterior 
louver design on the interior energy performance of a structure. 
A specific dataset is generated and tested on four powerful 
regression models (i.e., polynomial Linear Regression, Random 
Forests (RF), Decision Tree (DT), and Support Vector Regression 
(SVR)) and one Artificial Neural Network (ANN). Finally, 
a comparative analysis is presented. The findings of this 
research support the use of machine learning tools and ANNs 
as a convenient and accurate strategy for predicting building 
parameters.

Introduction

The energy performance of buildings (EPB) has been the subject of intense 
research because of growing concern about energy dissipation and associated 
perennial negative environmental impact (Kirimtat et al. 2019). According to 
reports, there has been a steady global growth in building energy consumption 
(BEC) over the past decades (da Graça Carvalho 2012). It seems that archi-
tecture is the only solution for minimizing energy consumption in BEC 
(Kirimtat et al. 2016a). Consequently, the construction of a more energy- 
efficient building can be considered a solution to meet the growing demand 
for extra energy (Khoroshiltseva, Slanzi, and Poli 2016).
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One of these architectural solutions is the use of louver in the early design 
phases. Louvers are essential for summer seasons to prevent solar radiation 
while allowing it to enter the building in the cold seasons. Louvers also 
decrease the operating costs, specifically in cooling and heating systems, by 
saving a significant amount of energy without blocking the daylight entirely 
(Kirimtat et al. 2019). According to Figure 1, the multifunctional external 
louvers are mounted on the facade at a certain angle, which changes with the 
motion of the sun during the daytime. Mounting the panels horizontally or 
vertically depends on the climatic conditions. For instance, in hot and dry 
climates, the panels should be mounted horizontally on the southern facade, 
which is the case in this paper (Kirimtat et al. 2019).

Nowadays, building energy-consumption simulation tools are commonly 
used for designing and implementing energy-efficient buildings by assessing 
or predicting energy consumption. In practice, the simulation findings often 
produce accurate results (Wagdy et al. 2017; Yao 2014). Simulation tools are 
commonly used in different areas as they allow visual examination of para-
meters that are very difficult, if not impossible (Katsifaraki, Bueno, and Kuhn 
2017). For more information and comparison of building and daylighting 
simulation tools, see Ayoub (2020) and Davoodi et al. (2019).

This study aimed to analyze the findings statistically to obtain a profound 
insight into the fundamental characteristics of input and output factors for 
an artificial neural network (ANN) to provide a reasonably accurate estimate 
in a short time. In this way, robust classical regression, state-of-the-art 
nonlinear and nonparametric machine learning tools (random forests, 
SVR, and Decision Tree), and ANNs are used to map the input variables 

Figure 1. Schematic drawing of a louver system for building.
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to the output variable illuminance. In the next section, by varying the 
hyperparameters of each method, it is tried to achieve the best accuracy 
and the least Mean Squared Error (MSE) rate to compare all methods with 
an appropriate criterion. Finally, the most optimal methods for predicting 
the objective function (i.e.,illumination) are presented according to their 
success rate (Figure 2).

Background

Daylighting is one of the fundamental ingredients of passive solar building 
design that must be accurately estimated. Shading device and louver are 
among the best-integrated components of the building and facades to protect 
the interior from overheating and providing adequate daylight levels (Kirimtat 
et al. 2016a). The critical question of this study is how the designer should 
decide the formal specifics of the louvers (Choi et al. 2014). Information about 
designing good performing louvers is rather limited (Kirimtat et al. 2019). 
Typically, the most important factor considered when designing the louvers is 
the architect’s intuitive design (Choi et al. 2013).

Numerous studies have analyzed the energy performances of louver systems 
(Khaled et al. 2017; Kirimtat et al. 2016b; Li, Qu, and Peng 2016; Skarning et al. 
2017; Valladares-Rendón, Schmid, and Lo 2017; Yun, Park, and Kim 2017). 
Kirimtat et al. (2019) examined different types of shading devices to find an 
appropriate design according to the climatic characteristics, the type of facade, 
and the position of the building. In another article, Choi et al. (2014) used five 
variables to design different kinds of louver systems.

Figure 2. Procedure of this article.
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In general, modeling a complex architectural system is a difficult task. A key 
requirement to solve this problem is developing a standard assessment model 
to support the decision-making process (Tregenza and Mardaljevic 2018). 
Different methodologies are employed by architects and designers to model 
daylighting and its effect on buildings and to support their decisions during 
different stages of design (Tregenza 2017). Daylight simulations provide 
designers with the ability to compare and optimize design alternatives to 
promote visual and thermal comfort for the occupants (Nasrollahi and 
Shokri 2016) while exploiting energy-efficient techniques (Amasyali and El- 
Gohary 2018). Optimization provides the opportunity to explore a great 
number of design solutions efficiently.

In recent years, the expansion of parametric design, building performance 
simulation, and optimization technologies has allowed transforming the 
building design challenges into the mathematical domain (Fang and Cho 
2019). The process of building performance optimization includes building 
simulation programs and the optimization engine that include various opti-
mization algorithms (Nguyen, Reiter, and Rigo 2014). Usually, two types of 
inputs are needed for an optimization process: variables and objective func-
tions. Variables are the values controlling the building design properties. On 
the other hand, objective functions, which usually are calculated by simulation 
tools, are the building performance metrics (Aldawoud 2013; Machairas, 
Tsangrassoulis, and Axarli 2014; Tzempelikos and Chan 2016; Yao 2014).

During the early stages of building design, accurate prediction of indoor 
illuminance is considered among the most important factors in saving energy 
and costs associated with lighting (Kim and Kim 2019a). Over past decades, 
many attempts have been made to predict daylighting; e.g. diagrams, protrac-
tors, calculations, rules-of-thumb, and scale models under natural or artificial 
skies. The successive developments of computer architectures and specialized 
hardware have prompted the development of more advanced simulation tools 
(Schardl 2016).

The goal of most artificial intelligence approaches is to develop specific 
algorithms to improve the accuracy of results and modeling speed (Chou et al. 
2015). Also, these tools can reduce the processing time by changing some 
building parameters during the design phase if properly trained. In general, 
artificial intelligence methods not only accelerate the optimization process but 
also increase the chance of finding an ideal solution through search space 
reduction (Su and Yan 2015). Therefore, many scientists use machine learning 
tools and rely on appropriate datasets to study the effect of various construc-
tion parameters such as compactness and specific factors such as energy 
consumption (Weerasuriya 2014). It is worth noting that due to a wide 
diversity of artificial intelligence models, benchmarking has rarely been 
applied to architectural design methods and tools (Gill, Summers, and 
Turner 2017).
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Despite individual comparisons in the literature, there is tremendous varia-
bility between different artificial intelligence approaches (Summers, Eckert, 
and Goel 2017). In this regard, Manzan (2014) investigated a genetic optimi-
zation to realize a fixed shading system with an optimal geometry and lower 
energy consumption. Minimizing total energy consumption has been only the 
goal of design optimization. Zani et al. (2017) performed the computational 
analysis of a traditional type of static louver by integrating them into a single 
office facade through performing genetic algorithms in the optimization 
process. In similar projects, artificial intelligence models have been proposed 
for such energy challenges as power-to-heat options (Chou and Bui 2014; 
Lorenz et al. 2018).

In the present study, the louver topic in the field of energy is selected as 
a sample benchmark that can be generalized to other fields of energy. The 
exact formulation of the louver design is a difficult task due to several 
influential variables such as geographical location, weather condition, and 
shape (Choi et al. 2014). The current study is based on Choi and Lee’s work, 
who used those variables such as number, length, and rotation of louvers to 
investigate how they affect cooling and heating load (Choi et al. 2014). The 
dataset of this study consists of 5,812 samples that all share a constant variable 
of geographic location and some independent variables such as a month, day-
, hour, louver design parameters such as rotation, length, distance from the 
window, reflection, and the number of louvers. This study investigates the 
impact of eight input factors to measure the illuminance of the buildings, as 
the output variable. The motivation behind this research is to create a system 
that helps architects to make more accurate design decisions and to know its 
result. This paper specifically focuses on an artificial intelligence model to 
predict the illuminance at a reasonable time and accuracy. To this end, out of 
the great variety of artificial intelligence models, four models (i.e., polynomial 
Linear Regression, supporting vector machines (SVM), decision trees, and 
Random Forest (RF)) and artificial neural networks (ANNs) were selected to 
predict important matters in the EPB context. Moreover, their capabilities and 
the obtained results were compared to examine the capacity and accuracy of 
each in an example energy problem. To obtain this goal, a comparative study is 
carried out to identify the best AI predictive model for this field of research.

Research Approach

In this article, first, a dataset was obtained using simulation software and 
modifying attributes. Before beginning the coding process, the preprocessing 
steps were performed by examining the correlation between each input vari-
able with another input variable, as well as each variable (input or output) with 
the output variable (illuminance). Next, the variables were normalized in the 
range of 1 to −1 such that to predict without prioritizing the variables. 
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Afterward, the dataset is divided into training and testing batches using the 
mentioned values.

In this step, values from the output variable (y^) are obtained for each 
machine learning tool (PLR, RF, SVR, and Decision tree), and artificial neural 
networks (ANNs). In the learning process, the error rates in each method were 
tried to be reduced compared to the real value (Yreal). In the final step, the 
standard techniques were evaluated by comparing their computational accu-
racy and prediction to present the best predictive model for our purpose 
(Figure 3).

Dataset

The following case study has two main aims. The first aim is to help designers 
to explore and discover louver alternatives and enable them to consider the 
numerous alternatives for the best design. The second aim is to use the case 
study to add information on the influence of various types of static and 
dynamic louvers on the internal illuminance of office space. As mentioned 
before, the proposed tool allows defining any type of dynamic measurement 
parameters according to the user’s needs.

In our case, based on the geometry of the louvers, five independent variables 
are specified. The number of independent variables is suitable because the high 
number of independent variables blocks the training process. So, in addition to 
the stochastic approach of the optimization process, the high number of 
variables adds more uncertainty (Kirimtat et al. 2019). As a result, 
a parametric sensitivity test is used to examine these eight strict parameters: 
rotation, length, distance from the window, reflection, number of louvers, 
month, day, and hour. Figure 4 summarizes the researchinput and output 
variables, their mathematical representations, and their possible values.

A simulation is conducted to validate the function of the parametric louver 
design system in the following phases: setting a building analysis; using the 
parametric louver design algorithm to determine the optimal louver shape; 
and predicting building illuminance with distinct louver shapes. In this paper, 

Figure 3. Diagram of the present research structure and its six steps.
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the presented tool for simulation is the Grasshopper platform for Rhino3D 
software and the Diva plugin for Grasshopper. One tool in the Rhino3D 
modeling environment for integrating validated Radiance/Daysim simulations 
is the Diva plugin (Grobman, Capeluto, and Auster 2016). DIVA can be used 
for the rapid visualization of daylight results from an architectural design 
model. This tool also enables us to easily examine different kinds of design 
variants for daylight (Jakubiec and Reinhart 2011).

The characteristics of the studied office space for simulation at Grasshopper 
are as follows: 6 m × 3.5 m space area, 3 m height, and 1.7 × 2.5 window on the 
south side (Figure 5 and Table 1). The window size was estimated based on the 

Figure 4. Impact parameters in the Louver design.

Figure 5. The plan and section of the room are simulated.

APPLIED ARTIFICIAL INTELLIGENCE 379



30% to 40% ratio of the window region to Tehran city’s internal wall. In this 
situation, the window can minimize energy consumption by providing day-
light energy (Mahdavinejad et al. 2012). Eight construction parameters are 
used to describe 5812 simulated structures to comply with conventional 
mathematical notation and facilitate the assessment. Henceforth,these con-
struction parameters are called input variables and denoted by X. We also 
record the amount of light for each building. These parameters will henceforth 
be called the output variable and denoted by y. The simulated results provide 
useful information about the fundamental trend of actual information and 
allow comparing the energy consumption between different structural ele-
ments (Wan et al. 2011). Although the simulation results are at the risk of bias, 
they are very likely to reflect ground truth. Moreover, the methodology used in 
this study did not show any inconsistency betweensimulated and real data.

Table 2 presents an example of a dataset. There are four continuous vari-
ables (X1, X2, X3, and X4) and four discrete variables (X0, X5, X6, and X7) in 
this model. The domain of each variable is presented in Figure 4. The variables 
X5 (Month), X6 (Day), X7 (Hour), range respectively from 1 to 12, 1 to 30, and 
7 to 19.

Methods

This section provides a summary of data-driven statistical ideas and data 
assessment methods:

The first step in the majority of data analysis tools is to investigate the 
statistical characteristics of variables. The Spearman correlation coefficient can 
specify general monotonic relationships. This coefficient lies in the range of −1 
to 1, where negative and positive signs indicate inverse and direct proportional 
relationships, respectively, and the magnitude reveals the strength of the 
relationship (Figure 6). Using the output variable, we illustrate the scatter 
diagram for each input variable (Figure 7). The empirical probability distribu-
tions of all input and output variables are shown in Figure 8. For the sake of 
simplicity, scatter diagrams often use standardized data (i.e., data in the range 
between −1 and 1) to facilitate comparison between measures that possibly 
show differences in the order of magnitude. Since the data used in this study 
are of non-Gaussian type, the Spearman correlation coefficient was used to 
statistically measure the intensity of each input and output variables.

Table 1. Diva material setting.
Building Element Material

Ceiling Plaster-Insulation-Suspended
Floor Concrete Floor-Tiles-Suspended
Wall Concrete Block Plaster
Window Single Glazed-Aluminum Frame
Louver Solid Timber
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Mapping the input variables to the output variable

Given the number of samples (N = 5812) and input variables 

(M = 8), a compact matrix X€RN×M was used that includes the available data:
This matrix typically has a response vector y €R N × 1 and thus we need to 

find the functional relationship between X and y; where y is illuminance and 
we have y = f(X). The function mapping tool is commonly called a learner in 
the machine learning literature. Given that the output variable spanned 
a continuous range of values, it seems necessary to use a regression technique. 
Nevertheless, in practice, it may be better to discretize the output variable to 
several categories and regard it as a classification problem. Recent studies 
demonstrate the potential of this concept, i.e. the discretization of 
a continuous-value output and the use of regression tools to find functional 
relationships. This section provides a brief overview of the AI models applied 
to this research. At the end of each method, the trained regression model is 
evaluated based on the test data and the R2 metrics are computed. The dataset 
is divided into training (80%) and testing (20%) batches and is subjected to 
normalization pre-processing.

Figure 6. Correlation matrix using Spearman rank correlations between the five input variables.
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Polynomial Linear Regression

The polynomial regression is a form of regression analysis that models the 
relationship between the independent variable x and the dependent variable y, 
as an nth-degree polynomial in x (Zhou and Liu 2015). In the presence of 
a comprehensive database, the polynomial linear regression methods can pro-
duce reasonable results concerning the correlation between the model and the 
analyzed information, which applies to our situation. In developing a correlation 
method, it is needed to build a comprehensive dataset by conducting many 
parametric studies and then establish a simple equation using regression analysis. 
Due to the immense diversity of variables and cases, adequate simulations were 
conducted to generate a comprehensive dataset. A total number of 5812 simula-
tions were run to have a high-accuracy model for future energy prediction.

The polynomial degree in polynomial regression is a hyper-parameter fine- 
tuned based on trial and error. For this research, number 5 is the best- 
examined degree (Figure 9). This figure shows the results obtained from the 
polynomial linear regression with a degree of 5.

Figure 7. Scatter plot demonstrating visually the relationship between each standardize input 
variable and standardize output.
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The right-hand image shows the bar chart with a margin error rate for the 
sample test prediction dataset. The left-hand image shows the error rate chart 
for comparison predicted and real values of the sample test dataset. In this 
method, the accuracy was estimated at 89%.

Figure 8. Probability density estimates using histograms of the five input variables, and the output 
variable.

Figure 9. Error rate chart for comparison predicted and real values of sample test dataset (left), Bar chart 
with margin error rate for sample test dataset prediction(right) in polynomial linear regression model.
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Random Forest Regression

The Classification and Regression Tree (CART) works via successive splitting 
of the input feature space into smaller and further smaller sub-regions. This 
procedure is like a tree that is divided into successively smaller branches, 
where each branch represents a sub-region of the input variable ranges. 
A natural expansion of CART, called Random forest (RF), is merely a set of 
many trees (Loh 2014; PS 2019). The training procedure is similar to CART, 
except that a subset of candidate variables, selected randomly, is used to pick 
optimal variables for each split. The practical results show the good perfor-
mance of the RF algorithm in a wide range of areas.

In the present study, this characteristic is used to find the input variables 
with a powerful relationship with output variables. It is of note that the 
importance of each variable should not be assessed separately in this process; 
instead, they should be evaluated collectively for the feature subset used in the 
RF by using the ideas of relevance (the strength of association between variable 
and response), redundancy (the strength of association between variables), 
and complementarity (the strength of joint association between variables and 
response). This means that strongly correlated variables are redundant pena-
lizing variables although they may be strongly correlated with the response 
(Breiman 2001).

Figure 10 shows the results obtained from the random forest method. The 
right-hand image shows the bar chart with a margin error rate for the sample 
test prediction dataset. The left-hand image shows the error rate chart for 
comparing the predicted and real values of the sample test dataset. In this 
method, the accuracy was estimated at 96%.

Decision Tree

Decision Trees provide a non-parametric learning method for categorization 
and regression. In machine learning, the aim is to create a classification model 

Figure 10. Error rate chart for comparison predicted and real values of sample test dataset (left), 
Bar chart with margin error rate for sample test dataset prediction(right) in random forest model.
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(classification tree) capable of predicting the target variable value (also known 
as label or class) by learning simple decision rules (also known as attributes or 
predictors) extracted from data characteristics (Abdallah et al. 2018). Decision 
Trees are first suggested for information classification through a dividing-and- 
conquer approach that continues until the final leaf (Dougherty 2012). They 
are then applied in regression models with a huge number of factors and 
instances. Besides, their simplicity and effectiveness make them suitable for 
prediction.

Figure 11 shows the results obtained from the Decision Tree method. The 
right-hand image presents the bar chart with a margin error rate for the 
sample test prediction dataset. The left-hand image shows the error rate 
chart for comparing the predicted and real values of the sample test dataset. 
In this method, the accuracy was estimated at 95%.

Support Vector Regression (SVR)

The SVR method is commonly used for the analysis of classification and 
regression (Hu, Hu, and Du 2019). The goal is to find a function f(x, a) with 
a maximum deviation from the actual targets yi observed for all training data. 
Moreover, this function should be as linear as SVR to be suitable for prediction 
purposes. Also, it is necessary to minimize the error rate by maximizing the 
hyperplane margin to differentiate between features (Henrique, Sobreiro, and 
Kimura 2018).

Figure 12 presents the results obtained from the SVR method. The right- 
hand image shows the bar chart with a margin error rate for the sample test 
prediction dataset. The left-hand image shows the error rate chart for compar-
ing the predicted and real values of the sample test dataset. In this method, the 
accuracy was estimated at 46%.

Figure 11. Error rate chart for comparison predicted and real values of sample test dataset (left), 
Bar chart with margin error rate for sample test dataset prediction(right) in decision tree model.
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Artificial Neural Network (ANN)

ANNs are powerful tools for estimating project parameters using current 
project conditions (Kim and Kim 2019b). ANNs, as a powerful experience- 
based learning and adapting method (Yadav and Chandel 2014), consist of 
four hidden layers. Each layer is comprised of n neurons or processing units, 
which are interconnected to all neurons in the neighbor layers. The first layer 
is called the input layer. In this study, the input layer has eight neurons, as the 
representative of independent variables. The input layer receives the data and 
feeds forward them throughout the network (Figure 13). The following hyper- 
parameters are used in this study: 4 hidden layers; Relu activation function; 
Adam optimizer; maximum epochs of 1000; and n neurons for each hidden 
layer (Figure 14); and MSE of the cost function.

Figure 15 illustrates the results obtained from the ANN method. The right- 
hand image shows the bar chart with a margin error rate for the sample test 

Figure 12. Error rate chart for comparison predicted and real values of sample test dataset (left), 
Bar chart with margin error rate for sample test dataset prediction(right) in SVR model.

Figure 13. Architecture of network.
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prediction dataset. The left-hand image shows the error rate chart for compar-
ison predicted and real values of the sample test dataset. In this method, the 
accuracy was estimated at 98%.

Figure 14. ANN model and number of neurons in each hidden layer.

Figure 15. Error rate chart for comparison predicted and real values of sample test dataset (left), 
Bar chart with margin error rate for sample test dataset prediction(right) in ANN model.
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Conclusion and Discussion

This paper presents a parametric computational tool and method that can be 
used by architects and designers to generate, explore, evaluate, and predict 
the influence of various static external louvers on the internal measurement 
of illuminance. The method and tool were tested in a dataset that was created 
by simulation. The dataset showed the importance of generating and pre-
dicting data on results for various louvers. Such results allow the designer to 
have the ramifications of choosing variables of the louver that are optimal for 
internal illuminance. This study investigated the influence of the exterior 
louver design on interior energy performance as the AI model’s case study. 
The topic selected in the current study was a sample benchmark that can be 
generalized to other energy-related topics. The general methodology 
employed in this study can be extended to include more input variables in 
theory.

We developed a comprehensive structure to cover a greater variety of inputs 
for studying the illuminance. This study compared the accuracy of goal 
prediction using different methods, such as ANN, polynomial linear regres-
sion, RF, SVR, and DT. The models are based on regression metrics (i.e., MSE 
and R2 score). Analysis of the evaluation methods reveals that ANN produced 
higher and steadier results than RF, DT, and SVR. Also, it was found that ANN 
accurately estimates illuminance with a slight deviation from the ground truth. 
These findings are particularly convincing, given the accuracy of predictions. 
Moreover, they provide required variables in a short length of time without 
getting involved in simulation tools, such as Rhino. Furthermore, the pro-
posed methodology can generate accurate values regardless of the simulation 
program. It is worth noting that illuminance values produced by Rhino are 
considered to reflect the valid values.
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