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Abstract 
The dynamics of a unidirectional nonlinear delayed-coupling chaos system is investigated. Based 
on the local Hopf bifurcation at the zero equilibrium, we prove the global existence of periodic so-
lutions using a global Hopf bifurcation result due to Wu and a Bendixson’s criterion for higher di-
mensional ordinary differential equations due to Li & Muldowney. 
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1. Introduction 
In the 19th century, H. Poincaré found that three-body gravitational interactions can produce amazing complex 
behaviors by studying the celestial mechanics, that is, there may be uncertainty even in the dynamic equations of 
very simple object interactions. He found that some systems have sensitive dependence on initial values and 
behavioral unpredictability. It is the first discovery of chaos. In 1963, E.N. Lorenz [1] unexpectedly discovered 
the first chaotic attractor in simulating weather, since then, chaos occurs in many areas and has access to the far- 
reaching development. 

Since the discovery of chaos, it has been highly regarded in many areas, such as mathematics, mechanics, 
meteorology, astronomy, and economics. Chaos can be used to achieve the encrypted transmission of infor- 
mation. If the information is hidden in the chaotic signal, when the receiver has synchronized with the trans- 
mitter signal, the signal can be obtained, rather than by other people. The important feature of chaos is its highly 
sensitive to initial values, which makes it difficult to control. In practical applications, we hope to eliminate the 
negative effects resulting chaos and strengthen its positive effects. This makes the chaos control has become a 
highly anticipated new field. In particular, we can control the bifurcation of system [2], such as retarding the 
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occurrence of inherent bifurcation, stabling bifurcation solution, changing the shape or type of bifurcation, and 
controlling multiplicity of the limit cycle, amplitude or frequency. It has formed a number of chaos control 
methods, such as the OGY method [3], variational parameter control [4], state feedback control [5], adaptive 
control [6], optimal control [7], robust control [8] and non-feedback control [9]. As an important research aspect 
of chaos control, chaos synchronization has also been widely concerned, resulting in a variety of effective 
methods: PC synchronization [10], active-passive synchronization [11], chaos synchronization based on mutual 
coupling [12] and adaptive synchronization method [13]. Chaos control and chaos synchronization are identical. 
These methods often make the dimension of original system increases, forming a new coupled system. In order 
to understand the ultimate effect of chaos control and synchronization, we not only need to know the dynamic 
behavior of original system, but also need to discuss the one of new coupled system (see [14]-[18]). 

A system with unidirectional nonlinear delayed-coupling scheme is considered in this paper. T. Banerjee et al. 
[19] proposed system  

( ) ( )( ) ,x ax t bf x t τ= − − −                                (1) 

where x is the state variable, , 0a b >  are system parameters, and 0τ >  is the time delay. f is the nonlinear 
function. When ( ) ( ) ( )0.5 tanh , , , 0f x n x x m lx n m lτ τ τ τ= − + + > , [19] has reported that as b or τ  varies, 
chaos and hyperchaos are observed. Furthermore, [20] studied the synchronization of the following coupled 
system.  

( ) ( )( )
( ) ( )( ) ( )( )

1

1 2

,

,
x

y c

x ax t b f x t

y ay t b f y t b f x t

τ

τ τ

 = − − −


= − − − − −





                       (2) 

where x and y are drive and response variables. 1 0τ >  is the system delay, and 2 0τ >  is the coupling delay. 
xb  and yb  are as usual positive parameters. The value of cb  determines the strength of the coupling. Our 

purpose is to investigate the global existence of periodic solutions for the system. 
The remainder of this paper is organized as follows. In Section 2, we employ the preliminary results about the 

existence of the local Hopf bifurcation. In Section 3, the global Hopf bifurcation is established. An example is 
given in order to illustrate the results obtained in Section 4. 

2. Preliminary Results  
We present some preliminary results of system (2) about the existence of local periodic solutions. This is the 
basis of the global Hopf bifurcation. 

Let ( ) ( ) ( ) ( )1 2 2, u t x t u t y tτ= − = , and denote 1τ  as τ . Using x and y to represent the variables still, 
Equation (2) can be written into the following system  

( ) ( )( )
( ) ( )( ) ( )( )

,

.
x

y c

x ax t b f x t

y ay t b f y t b f x t

τ

τ

 = − − −


= − − − −





                         (3) 

Clearly, ( )0, 0  is an equilibrium point. The characteristic equation of its corresponding linear system around 
( )0, 0  is  

( )( ) ( )( )0 e 0 e 0,x ya b f a b fλτ λτλ λ− −′ ′+ + + + =                       (4) 

that is,  

( )0 e 0,xa b f λτλ −′+ + =                                  (5) 

or  

( )0 e 0.ya b f λτλ −′+ + =                                  (6) 

When 0τ = , the eigenvalues are ( )( ) ( )( )1 20 0, 0 0x ya b f a b fλ λ′ ′= − + < = − + < . 
Let ( )i 0ω ω± >  be a pair of roots of Equation (5). Substitute iω  into Equation (5) and separate the real 

and imaginary parts  
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( )
( )
0 cos 0,

0 sin 0, 0,1, 2, .
x

x

a b f

b f k

ωτ

ω ωτ

′+ =
 ′− = = 

                           (7) 

Denote (H1) ( )2 2 20 0xb f a′ − >  and (H2) ( )2 2 20 0yb f a′ − > . Let ( ) ( ) ( )iλ τ α τ ω τ= +  be a root of Equa- 
tion (4) near ( )k jτ τ=  satisfying ( )( ) ( )( )0, , 0,1, 2, , 1, 2k k kj j j kα τ ω τ ω= = = = . 

Lemma 1. If (H1) or (H2) is satisfied, then  

( )i , 

dRe 0.
d

k k jλ ω τ τ

λ
τ = =

 
>  

 
 

Lemma 2. 1) If (H1) and (H2) are not satisfied, then all roots of Equation (4) have negative real parts for any 
0τ ≥ . 

2) If (H1) is satisfied, then there exists a sequence of ( )1 jτ  satisfying ( ) ( ) ( )1 1 10 0 1 nτ τ τ< < < < <   
such that Equation (4) has a pair of purely imaginary roots 1iω±  when ( )1 jτ τ= , and all roots of Equation 
(4) have negative real parts when ( ))10, 0τ τ∈  . 

3) If (H2) is satisfied, then there exists a sequence of ( )2 jτ  satisfying ( ) ( )2 2 20 0 1 nτ τ τ< < < < <   
such that Equation (4) has a pair of purely imaginary roots 2iω±  when ( )2 jτ τ= , and all roots of Equation 
(4) have negative real parts when ( ))20, 0τ τ∈  . 

4) If (H1) and (H2) are satisfied, then there exists a sequence of ( )k jτ  satisfying  
( ) ( ) ( )1 1 10 0 1 nτ τ τ< < < < <   and ( ) ( ) ( )2 2 20 0 1 nτ τ τ< < < < <   such that Equation (4) has two 

pairs of purely imaginary roots i kω±  when ( )k jτ τ= , and all roots of Equation (4) have negative real parts 
when ( ) ( ){ })1 20, min 0 , 0τ τ τ∈  , where  

( ) ( ) ( )
2 2 2

1 1
0

10 ,  arccos 2 π ,
0x

x

ab f a j j
b f

ω τ
ω

 
′= − = +  ′ 

 

and  

( ) ( ) ( )
2 2 2

2 2
2

10 ,  arccos 2 π ,  0,1, 2, .
0y

y

ab f a j j j
b f

ω τ
ω

 
′= − = + =  ′ 


 

Using the lemmas above, we have Theorem 1. 
Theorem 1. Suppose (H1) is satisfied. 
1) If (H1) and (H2) are not satisfied, then the zero equilibrium point of system (3) is asymptotically stable for 

any 0τ ≥ . 
2) If (H1) is satisfied, then the zero equilibrium point of system (3) is asymptotically stable when 

( ))10, 0τ τ∈   and unstable when ( )1 0τ τ> . System (3) undergoes a Hopf bifurcation at when ( )1 jτ τ= . 
3) If (H2) is satisfied, then the zero equilibrium point of system (3) is asymptotically stable when 

( ))20, 0τ τ∈   and unstable when ( )2 0τ τ> . System (3) undergoes a Hopf bifurcation when ( )2 jτ τ= . 
4) If (H1) and (H2) are satisfied, then the zero equilibrium point of system (3) is asymptotically stable when  

( ) ( ){ })1 20, min 0 , 0τ τ τ∈   and unstable when ( ) ( ){ }1 2min 0 , 0τ τ τ> . System (3) undergoes a Hopf  

bifurcation when ( )k jτ τ= , where ( ) , 1, 2k j kτ =  are defined above.  

3. Global Existence of Periodic Solutions 
In this section, we study the global continuation of periodic solutions bifurcating from the point ( )( )*, kz jτ , 

( )* 0,0z = , 1, 2k = , 0,1, 2,j =  . Throughout this section, we follow closely the notations in Wu [21] and let 
(H1) or (H2) be satisfied, namely local Hopf bifurcation occurs. We define  

[ ]( )
( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }
( ) ( ) ( )( ) ( )( )*

2

, ,

, 0 , ,

Cl , , : , , ,  is a -periodic solution of system 2.1 ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ, , : ( , ), ,  ,

0 e 0 e

x y c

x yz l

X C

z l z l X z l

N z l z x y ax b f x ay b f y b f x

a b f a b fλτ λτ
τ

τ

τ τ

τ

λ λ λ

+ +

− −

= −

Σ = ∈ × ×

= = − = − = +

′ ′∆ = + + + +



 
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and let ( )( )*, , 2πk kC z jτ ω  denote the connected component of ( )( )*, , 2πk kz jτ ω  in Σ , where kω  and  

( )k jτ  are defined in Lemma 2. 
We assume (H1) or (H2) is satisfied so that the local Hopf bifurcation occurs.  
Lemma 3. If ( )f x  is bounded, then all periodic solutions of the system (3) are uniformly bounded.  
Proof. Suppose that there exists 0L >  such that ( ) ( ) f x L x≤ ∀ ∈ , ( ) ( )( ),x t y t  is a nonconstant peri- 

odic solution of system (3) and ( ) ( ),x t y t  have maximums at 1 2, t t , respectively, then ( ) ( )1 20, 0x t y t′ ′= = . 
We have  

( ) ( )( )1 1 ,x xb b Lx t f x t
a a

τ= − ≤  

( ) ( )( ) ( )( ) ( )2 2 2
1 .y c y c

Ly t b f y t b f x t b b
a a

τ= − + ≤ +  

This shows that the periodic solutions of (3) are uniformly bounded.  
Lemma 4. System (3) has no nontrivial τ-periodic solution.  
Proof. If system (3) has a nontrivial τ-periodic solution, then  

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )

,

,
x

y c

x t ax t b f x t

y t ay t b f y t b f x t

= − −

= − − −





                           (8) 

has a nontrivial periodic solution. 
However, system (8) only has trivial periodic solutions. In fact,  

( ) ( ) ( )( )xx t ax t b f x t= − −  

only has a trivial periodic solution x  (i.e., equilibrium). Moreover,  

( ) ( ) ( )( ) ( )y cy t ay t b f y t b f x= − − −  

has no nontrivial periodic solution. 
Thus, system (3) has no nontrivial τ-periodic solution.  
Next, we show system (3) has no nontrivial 2τ-periodic solution.  
Lemma 5. Assume  

(H3) ( ) ( ) ( ){ }2 max , ,x y ca b f z b f z b f z′ ′ ′>  

is satisfied, system (3) has no nontrivial 4τ-periodic solution. Moreover, system (3) has no nontrivial 2τ-periodic 
solution.  

Proof. Let ( ) ( ) ( )( ),z t x t y t=  be a 4τ-periodic solution of system (3).  

( ) ( ) ( )( ) ( )( ), 1 , 1, 2,3, 4.k k ku t x t y t z t k kτ= − − =  

Then ( ) ( ) ( ) ( ) ( )( )1 2 3 4, , ,u t u t u t u t u t=  is a periodic solution to the following system of ODE:  

( )
( ) ( )

1

1

,

,
i i x i

i i y i c i

x ax b f x

y ay b f y b f x
+

+

= − −

= − − −





                             (9) 

where 1, 2,3, 4i =  and 5 1x x , 5 1y y . 
From Lemma 3, the periodic orbit of the system (9) belongs to the region:  

( )8 | , , 1, 2,3, 4 .x
k k y c

b L LG u x y b b k
a a

 = ∈ ≤ ≤ + = 
 

                   (10) 

If we want to prove there is no nontrivial 4τ-periodic solution in (3), it suffices to prove that there is no 
nonconstant periodic solution for (9). To do this, we apply the general Bendixson’s criterion in higher 
dimensions developed by Li & Muldowney [22]. It is easy to compute the Jacobian matrix ( )J u  of the system 
(9) for 8u∈ :  
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( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

2

1 2

3

2 3

4

3 4

1

1 4

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

.
0 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

x

c y

x

c y

x

c y

x

y c

a b f x
b f x a b f y

a b f x
b f x a b f y

J u
a b f x

b f x a b f y
b f x a

b f y b f x a

′ 
 ′ ′ 
 ′
 

′ ′ = − ′
 

′ ′ 
 ′ 
 ′ ′ 

 

Then the second additive compound matrix [ ] ( )2J u  of ( )J u  is a 
8 8
2 2
   

×   
   

 matrix defined as follows.  

For any integers { }, 1, 2, , 28i j N∈ =  , the element in the i-row and the j-column of [ ] ( )2J u  is  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }

( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

1

1

2

2

3

3

2 , if   1, 2, , 28,
, if   , 12,1 , 17, 2 , 21,3 , 24, 4 , 26,5 ,

, if   , 28,7 ,

, if   , 1,8 ,

, if   , 3,14 , 4,15 , 5,16 , 6,17 , 7,18 ,

, if   , 2, 4 , 14,19 ,

, if   , 8,10 , 14, 23 , 17

x

x

x

x

x

x

ij

a i j
b f x i j

b f x i j

b f x i j

b f x i j

b f x i j

b f x i j

b

− = =
′ ∈

′− ∈

′ ∈

′− ∈

′ ∈

′− ∈

=



( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }

( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

4

4

1

1

2

2

, 24 , 18, 25 ,

, if   , 23, 26 ,

, if   , 4,6 , 10,12 , 15,17 , 19, 21 ,

, if   , 18,8 , 22,9 , 26,10 , 27,11 , 28,12 ,

, if   , 7,1 ,

, if   , 8,14 ,

, if   , 1,3 , 10,19 , 12, 20 , 12, 21 , 13, 22 ,

x

x

y

y

y

y

y

b f x i j

b f x i j

b f y i j

b f y i j

b f y i j

b f y i j

b

′ ∈

′− ∈

′ ∈

′− ∈

′ ∈

′− ∈

′− ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( )

3

4

4

1

2

, if   , 3,5 , 9,11 , 14,16 , 19, 23 , 19, 24 , 21, 26 , 22, 27 ,

, if   , 26, 28 ,

, if   , 5,7 , 11,13 , 16,18 , 20, 22 , 23, 25 ,

, if   , 8, 2 , 9,3 , 10, 4 , 12,5 , 12,6 , 13,7 ,

, if   , 3, 2 , 9,8 , 19,15 , 20,16 , 21,1

y

y

c

c

f y i j

b f y i j

b f y i j

b f x i j

b f x i j

∈

′ ∈

′− ∈

′− ∈

′− ∈ ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

3

4

7 , 22,18 ,

, if   , 5, 4 , 11,10 , 16,15 , 20,19 , 26, 24 , 27, 25 ,

, if   , 7,6 , 13,12 , 18,17 , 22, 21 , 25, 24 , 25, 28 , 27, 26 ,

0, others.

c

c

b f x i j

b f x i j


































′− ∈
 ′− ∈



 

Choose a vector form in 28  as  

( ) { }1 2 28, , , max ,  1, 2, , 28.ix x x x i= =   

With respect to this norm, we can obtain that the Lozinski l


 measure [ ] ( )( )2J uµ  of the matrix [ ] ( )2J u  is 
given by   

[ ] ( )( ) ( ) ( ) ( ){ }
{ }

2
0 0 0

0 1 1 2 2 3 3 4 4

max 2 , 2 , 2 ,

, , , , , , , .

x y cJ u a b f z a b f z a b f z

z x y x y x y x y

µ ′ ′ ′= − + − + − +

∈
           (11) 
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By Corollary 3.5 of Li & Muldowney [22], the system (9) has no periodic orbit in G if [ ] ( )( )2 0J uµ < . By  

(11), we have [ ] ( )( )2 0J uµ <  if and only if  

( ) ( ) ( ){ }2 max , , .x y ca b f z b f z b f z′ ′ ′>                          (12) 

So we get (9) only has trivial periodic solutions when (H2) is satisfied. 
Thus, (9) has no nontrivial periodic solution. System (3) has no 4τ-periodic solution.  
Theorem 2. Suppose that (H1)/(H2) and (H3) are satisfied, then, for each ( )k jτ τ> , system (3) has 1j +   

nonconstant periodic solutions with periods in 2 4, , 0,1, 2, ,
2 1 4 1

jτ τ σ
σ σ

  = + + 
 , respectively. Here,  

( ) , 1, 2, 0,1, 2,k j k jτ = =   are defined in Lemma 2.  
Proof. We can prove that the projection of ( )( )*, , 2πk kC z jτ ω  onto τ-space includes ( ) ), k jτ ∞ , 1j ≥ . 

We have given the characteristic matrix of the system (3) at zero equilibrium. 
By Lemmas 1 and 2, there exist 0ε > , 0δ >  and a smooth curve ( ) ( )( ): ,k kj j Cλ τ δ τ δ− + →  such that 

( ) ( ), k kj jτ τ δ τ δ∈ − +    and  

( )( ) ( )( )
( )=

d Re
i , 0.

d
k

k k

j

j
τ τ

λ τ
λ τ ω

τ
= >  

Then ( )( ) ( )0, i kλ τ λ τ ω ε∆ = − < . 
Denote 2πp kl ω=  and  

( ){ }, : 0 , .pu l u l lε ε εΩ = < < − <  

Obviously, if ( )k jτ τ δ− ≤  and ( ),u l ε∈∂Ω  such that ( ) ( )
*, , 2πi 0z l u lτ∆ + = , then ( )k jτ τ= , 0u = , 

pl l= . Set  

( )( ) ( ) ( )( ) ( )
** , ,, , 2π , 2πi .

kk k z j lH z j u l u lτ δτ ω±
±= ∆ +  

We obtain the crossing number  

( )( ) ( )( )( )
( )( )( )

1 * *

*

, , 2π deg , , 2π ,

deg , , 2π , 1.

k k B k k

B k k

z j H z j

H z j

ε

ε

γ τ ω τ ω

τ ω

−

+

= Ω

− Ω = −
 

We conclude that  

( ) ( )( )
( )

*

1
ˆ, , , ,2π

ˆ, , 0.
k kz l C z j N

z l
τ τ ω

γ τ
∈

<∑


 

By Theorem 3.3 of Wu [21], ( )( )*, , 2πk kC z jτ ω  is unbounded. 
Lemma 3 implies that the projection of ( )( )*, , 2πk kC z jτ ω  onto the z-space is bounded. 
From the definition of ( )k jτ , we know that  

( ) ( ) ( )π 10 π, 2 π 2 1 π, 1.
2 2k k k kj j j jτ ω τ ω < < + < < + ≥ 

 
 

Hence  

( ) ( ) ( ) ( )2 42π 2π2 0 4 0 , , 1.
2 1 4 1

k k
k k

k k

j j
j

j j
τ τ

τ τ
ω ω

< < < < ≥
+ +

 

From Lemmas 4 and 5, we know that 2 4lτ τ< <  if ( ) ( )( )*, , , 0 , 2πk kz l C zτ τ ω∈ , and  
( ) ( )2 2 1 4 4 1j l jτ τ+ < < +  if ( ) ( )( )*, , , , 2π , 1k kz l C z j jτ τ ω∈ ≥ . So, to make ( )( )*, , 2πk kC z jτ ω  unbo- 

unded, the projection of ( )( )*, , 2πk kC z jτ ω  onto τ-space must be unbounded. Obviously, ( )( )*, , 2πk kC z jτ ω  
are pairwise disjoint. So system (3) has 1j +  nonconstant periodic solutions for ( )k jτ τ> .  

In this section, we derive the global existences, number and periods of periodic solutions. However, the 
stability of periodic solutions far away from ( ) , 1, 2, 0,1, 2,k j k jτ = =   is unclear. 
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4. An Example 
Choosing 1, 1.7, 0.45, 1.25x y ca b b b= = = =  and ( ) ( ) ( )0.5 tanhf x n x x m lxτ τ τ τ= − + +  with  

1, 0.5, 1.5m n l= = = , system (2) can be expressed as follows:  

( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

1 1 1

1 1 1

2 2 2

1.7[ 0.25 tanh 1.5 ],

0.45 0.25 tanh 1.5

1.25 0.25 tanh 1.5 .

x x t x t x t x t

y y t y t y t y t

x t x t x t

τ τ τ

τ τ τ

τ τ τ

 = − − − − + − + −

  = − − − − + − + −  

  − − − + − + − 



              (13) 

[19] gave the curves of ( )f xτ  corresponding to different parameters , n m  and l (see Figure 1). It 
evidences ( )f xτ  is bounded when ( ), x Aτ ∈ −∞  (A is any finite constant).  

For system (13), ( )2 2 20 1.89 0xb f a′ − = > , ( )2 2 20 0.7975 0yb f a′ − = − <  and 1 1.3748ω = . (H1) is satisfied 
and (H2) isn’t. Furthermore, ( )1 1 0 0.6851τ τ= = . 

System (13) has a periodic solution near ( )1 0τ . As shown in Figure 2 at 1 0.7τ = .  
(H3) is correct, and we now show large amplitude periodic solutions exist for values of τ  far away from 
( )1 0τ . This indicates the global existence of periodic solutions. As shown in Figure 3 at 6.5τ = .  
 

 

Figure 1. Nonlinearity with the function ( ) ( ) ( )0.5 tanhf x n x x m lxτ τ τ τ= − + +  

with “n1”: 1.15, 0.97, 2.19;n m l= = =  “n2”: 0.85, 1, 4;n m l= = =  “n3”: 
0.5, 1, 5n m l= = = .                                                              

 

 
Figure 2. Numerical simulations of a periodic solution to system (13) when 

1 0.7τ =  is near ( )1 0 0.6851τ = .                                                         
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Figure 3. Numerical simulations of a periodic solution to system (13) when 

6.5τ =  is far away from ( )1 0 0.6851τ = .                                            

5. Conclusion  
In our paper, the effect of parameters on dynamics of a unidirectional nonlinear delayed-coupling chaos system at 
the zero fixed point is investigated. There exist the critical values of Hopf bifurcation ( ) , 1, 2, 0,1, 2,k j k jτ = =   
and small amplitude periodic solutions. Furthermore, we derive that the local periodic solutions also exist 
globally for 0τ ≥ . In addition, the results indicate the variation of dynamics of system (2) is owing to the 
inherent delay, and not owing to the coupled one. Our results are propitious to investigate chaos synchronization 
using system (2), especially synchronization of periodic solutions. However, it still needs to study further for the 
dynamics of bidirectional coupled system. 
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