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ABSTRACT
Different types of research have been done on video data 
using Artificial Intelligence (AI) deep learning techniques. 
Most of them are behavior analysis, scene understanding, 
scene labeling, human activity recognition (HAR), object loca-
lization, and event recognition. Among all these, HAR is one of 
the challenging tasks and thrust areas of video data processing 
research. HAR is applicable in different areas, such as video 
surveillance systems, human-computer interaction, human 
behavior characterization, and robotics. This paper aims to 
present a comparative review of vision-based human activity 
recognition with the main focus on deep learning techniques 
on various benchmark video datasets comprehensively. We 
propose a new taxonomy for categorizing the literature as 
CNN and RNN-based approaches. We further divide these 
approaches into four sub-categories and present various 
methodologies with their experimental datasets and effi-
ciency. A short comparison is also made with the handcrafted 
feature-based approach and its fusion with deep learning to 
show the evolution of HAR methods. Finally, we discuss future 
research directions and some open challenges on human 
activity recognition. The objective of this survey is to give the 
current progress of vision-based deep learning HAR methods 
with the up-to-date study of literature.
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Introduction

Video surveillance has become a vital need in the smart city era to enhance the 
quality of life and develop the area as a safe zone. Surveillance cameras are 
usually installed at a certain distance for the proper coverage of an area. 
Therefore, better analysis and more in-depth understanding of videos are 
highly required, profoundly impacting the security system. A video data- 
driven system also helps healthcare, transportation, factory, schools, malls, 
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marts, etc. The objective of every camera feed is to know the specific incidence, 
such as identifying suspicious activities (Chen et al. 2020) at the airport, bus 
stop, railway station, unusual activities at public gathering events (S. Wang 
et al. 2021), an unusual pattern followed by the workers in the factory (Tao 
et al. 2018). These are the few exemplary areas where human activity recogni-
tion is highly desirable. In HAR-based system, usually, an alert generates to the 
control room for unusual activities. It is essential to know certain defined 
things in such cases instead of sitting in front of the camera feed and watching 
what is happening in every second of the camera feed.

Human activity recognition’s primary objective is to accurately describe 
human actions and their interactions from a previously unseen data sequence. 
It is often challenging to accurately recognize humans’ activities from video 
data due to several problems like dynamic background and low-quality videos. 
In particular, two main questions arise among various human activity recog-
nition techniques: “Which action is performed?” – which comes under the 
action recognition task, and “Where exactly in the video?” is the localization 
task. The sequences of images are referred to as frames. Thus, the primary 
objective of an action recognition task is to process the input video clips to 
recognize the subsequent human actions.

Human activity mimics their habits; therefore, every human activities are 
unique, which turns into a challenging task to recognize. Moreover, develop-
ing such a deep learning-based model to predict human action within ade-
quate benchmark datasets for evaluation is another challenging task. With the 
ImageNet (Jia Deng et al. 2009) dataset’s immense success for image proces-
sing, several benchmark action recognition datasets (Kay et al. 2017; Soomro, 
Zamir, and Shah 2012) have also been released to pursue research in this area. 
Similarly, suppose we compare video data processing with image processing; it 
requires enormous computation power and a large number of input para-
meters to train the deep learning model.

Types of HAR System

There are two main categorizations of the HAR system based on the 
equipment:

Vision-based HAR
Static cameras installed at various places for surveillance purpose record the 
videos and store at servers. These camera feeds or recorded videos are then 
used for monitoring purposes. For example, (Htike et al. 2014) performed 
human posture recognition for video surveillance applications using one static 
camera. This type of HAR is used for road safety, public security, traffic 
management, crowd monitoring, etc. Figure 1 shows the typical steps of 
a vision-based human activity recognition system.
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Sensor-based HAR
Smartphones have become a global communication tool and, more recently, 
a technology for studying humans. Built-in sensors of smartphones can cap-
ture continuous information about human activities. Wan et al. (S. Wan et al. 
2020) performed the identification of human activity using smartphone sen-
sors. In this approach, data is retrieved from the smartphone’s in-built accel-
erometer and gyroscope sensors, and then machine learning techniques were 
applied to recognize human activity. This type of HAR is helpful for patient 
monitoring systems, an individual player’s activity monitoring during sports, 
etc., but cannot be applied to the broad application of human activity recogni-
tion for security at home/public places, monitoring, etc.

Motivation

Many factors have motivated us to perform this study. However, few signifi-
cant factors are listed below:

● In ImageNet 2012 Challenge, we observed that a novel architecture of 
convolutional neural network (CNN) called AlexNet (Krizhevsky, 
Sutskever, and Hinton 2012) emerged as pivotal research in image pro-
cessing and has proven to be a catalyst for video processing using CNN. 
Now researchers are focusing on deep learning-based HAR from real- 
time video processing.

● Video processing researchers are paying attention to develop deeper net-
works while utilizing GPU’s harness with large training parameters. Thus, 
many deep learning methods have been developed for HAR, which must 
propagate among upcoming researchers.

● An adequate number of HAR video datasets is also attractive to the compu-
ter-vision community to set benchmarking methodologies. Thus, we are 
motivated to introduce the readers to the newest deep learning techniques 
for HAR and their evaluation of benchmark HAR video datasets.

Figure 1. A typical human activity recognition system. (Image sequence (*) from Southampton 
database http://www.gait.ecs.soton.ac.uk/. Accessed: 2016–10-12).

APPLIED ARTIFICIAL INTELLIGENCE e2093705-2857

http://www.gait.ecs.soton.ac.uk/


Contribution

The current survey aims to provide the literature review of vision-based 
human activity recognition based on up-to-date deep learning techniques on 
benchmark video datasets. These video datasets are containing the video clips 
recorded from the static cameras installed at specific fixed locations. This 
paper presents the review in two portions – first introducing a benchmark 
video dataset and then giving the state-of-the-art HAR techniques in detail. 
The presentation of deep learning methods is the primary focus. 
Simultaneously, we also discuss the handcrafted feature-based approach and 
combined approach briefly to show the evolution in HAR techniques. In the 
previous literature surveys, researchers proposed a variety of taxonomy to 
categories the HAR methods. We show the novelty of our paper by introdu-
cing a taxonomy of deep learning-based HAR methods based on their network 
architecture and categorize each method under these categories. Also, the 
unique highlights of our study, which make it different from other surveys; 
are as follows:

● We comprehensively included almost all the advanced deep learning 
models shown in the literature up-to-date, outperforming the human 
activity recognition task.

● We present the performance mapping of each deep learning model with 
their experimented benchmark dataset.

● We show the evolution of action recognition from the traditional 
approaches to the advanced approaches.

● This paper aims to help the researchers of this field get detailed HAR 
information with techniques and datasets.

Furthermore, the objective behind choosing the time range of literature review 
between January 2011 and May 2021 for this study is that many deep learning 
architectures have been invented in this duration. We include few articles 
containing the handcrafted feature-based HAR methods only for background 
study, which is out of this time range. We chose much literature published in 
this duration and considered only those papers that were published only in 
Scopus and WoS’s peer-reviewed journals.

The rest of the paper is arranged as follows: section 2 shows the related 
literature surveys in this area, and section 3 lists the benchmark video datasets. 
Section 4 gives the detail of HAR methods, which presents various deep 
learning techniques. Section 5 elaborates the analysis of our study. Section 6 
listed the significant challenges faced by the researchers. Section 7 shows the 
future directions, and section 8 concludes with this study.
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Related Surveys

Human activity recognition techniques start from the handcrafted feature- 
based approach to advanced AI-based deep learning techniques. In related 
surveys, authors (Vrigkas, Nikou, and Kakadiaris 2015) have surveyed 
human activity recognition by dividing its scope into data modalities and 
their applications; in further sub-categories, the study divides based on the 
model development methods and various HAR activities. In the main 
categorization, the authors examine the unimodal and multimodal methods 
of HAR. In Unimodal categories, space-time, stochastic, rule-based, and 
shape-based models are grouped. Simultaneously, multimodal lists the 
affective, behavioral, and social networking sub-categories of human 
activity.

Reining et al.(Reining et al. 2019) performed a systematic literature review 
of HAR for production and logistics. This survey presents a detailed overview 
of state-of-the-art HAR approaches along with statistical pattern recognition 
and deep architectures. This study is beneficial for industrial applications. 
Beddiar et al. (Beddiar et al. 2020) surveyed vision-based human action 
recognition and categorized the entire study into the following fields: 
Handcrafted-feature and feature learning-based approach, where authors dis-
cussed the various techniques, including their implementation details. The 
authors also highlight related literature based on human activity types – 
Elementary human actions, Gestures, Behaviors, interactions, group actions, 
and events, which advocate HAR approaches at the minute level. Similarly, 
Zhu et al. (Zhu et al. 2016) also examined both handcrafted and learning-based 
approaches for action recognition. Unlike (Beddiar et al. 2020), the authors 
first evaluated the limitation of the handcrafted method then shows the rise of 
deep learning techniques of HAR in brief, till 2016. A review by Zhang et al. (S. 
Zhang et al. 2017) focuses on the advancement of state-of-the-art activity 
recognition approaches in terms of activity representation and HAR classifica-
tion techniques. This survey categorizes the representation elements according 
to global, local, and advance depth-based, whereas categorization of classifica-
tion techniques is based on template, discriminative, and generative models. 
The briefly explained models with the HAR dataset show performance accu-
racy in experimental results. All the HAR classification methods include in this 
study are till 2017.

Another survey by Herath et al. (Herath, Harandi, and Porikli 2017) of the 
same year shows a similar study, initiated with the pioneer of the HAR 
technique – a handcrafted-feature-based approach to deep learning-based 
methods. This survey is the first to present deep learning methods compre-
hensively, mapping with HAR datasets, which is missing in the previous 
surveys. But it includes the literature till 2016; therefore, advances after this 
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need to be present to researchers. The future direction mentioned by these 
authors is well defined, which is an excellent motivation to implement within 
the research community.

The survey conducted by Koohzadi et al. (Koohzadi and Charkari 2017) 
investigate the role of deep learning in image and video processing for the 
HAR. The overall approach is categorized into five types of models – 
Supervised-deep generative, Supervised-deep discriminative, Unsupervised 
deep, Semi-supervised deep, and Hybrid. One unique point highlighted in 
this survey is the benefits and tips & tricks of choosing a deep learning model 
for HAR in the abovementioned five categories. The author also discussed 
deep learning approaches to Spatio-temporal representation in terms of add-
ing time as the third dimension of traditional image processing of 2D. Nweke 
et al. (Nweke et al. 2018) present a comprehensive review of deep learning 
methods for mobile and wearable sensor-based HAR. Categorization of meth-
ods is generative, discriminative, and hybrid by explaining the advantage and 
disadvantages. This study evaluates the deep learning methods on mobile 
sensor-based human activity recognition datasets, not vision-based activity 
recognition datasets. Authors also make the comparison of deep learning 
feature representation methods with conventional feature learning. 
Challenges of the HAR using sensor networks are also discussed.

The survey by Zhang et al. (H.-B. Zhang et al. 2019) shows progress in 
action features for depth and RGB data, advances in human-object interaction 
recognition methods, and recent deep learning-based action feature represen-
tation methods. This survey’s main work comprehensively explains the hand-
crafted action feature for RGB, depth, and skeleton data, making this survey 
different from previous work. Deep learning methods performance evalua-
tions are also discussed well with HAR datasets, which were presents till 2018. 
A survey was conducted by Singh et al. (Singh and Vishwakarma 2019) to 
guide researchers to match the suitable HAR dataset for benchmarking their 
algorithms. The existing HAR dataset categorizes into RGB and RGB- 
D(depth). Challenges with these datasets are also discussed in terms of illu-
mination variation, annotation, occlusions, view variation, and fusion mod-
alities. Liu et al. (B. Liu et al. 2019) presented the RGB-Depth sensor-based 
HAR survey where handcrafted and learning-based features are discussed. 
This survey shows a novel taxonomy for both the methods under three sub- 
categories – Depth-based methods, Skeleton-based methods, Hybrid feature- 
based methods. This survey examines the deep learning method’s accuracy 
performance on RGB-D-based human action datasets very briefly. Challenges 
and future research are also discussed for RGB-Depth sensor-based HAR. In 
the survey by Hussain et al. (Hussain, Sheng, and Zhang 2020), the authors 
discuss different areas of HAR with the primary focus on device-free techni-
ques, especially RFID. The author proposes a new taxonomy based on the 
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related literature into three sub-areas: action-based, motion-based, and inter-
action-based. These areas are further divided into 10 sub-topics and presented 
the latest HAR methods under each sub-area.

In a related survey by Dang et al. (Minh Dang et al. 2020), the authors 
comprehensively presented both the sensor-based and vision-based HAR 
methods. Further, each group divides into subgroups that perform different 
procedures, including the data collection, pre-processing methods, feature 
engineering, and the training process. A short description is also given for 
deep learning HAR methods along with challenges and future direction. Wang 
et al. (Lei Wang, Huynh, and Koniusz 2020) utilize the kinetics-based litera-
ture, which talks about Kinect camera for data collection and deep learning 
algorithms for activity recognition. The authors surveyed 10 Kinect-based 
algorithms for cross-subject action recognition and cross-view action recogni-
tion using six kinetics-based datasets. This survey is a novel source for 
researchers to develop HAR models for real-time applications1 using 
Microsoft Azure Kinect Developer Kit2 .The authors Jegham et al. (Jegham 
et al. 2020) addressed the challenges of HAR methods and datasets. They 
focused on surveying to investigate an overview of the existing methods as per 
the various types of issues shown in the literature. This survey motivates 
computer-vision researchers to find out the critical challenges in HAR to 
choose future research to overcome these real-world applications. To improve 
the accuracy of the HAR system, a survey conducted by Majumder et al. 
(Majumder and Kehtarnavaz 2021) reported the literature evidence of fusion 
of vision and inertial sensing. The study investigated in the form of fusion 
approaches, features, classifiers, and multimodality datasets is chosen, which is 
the first type of survey in this field. In a recent survey by Özyer et al. (Özyer, 
Ak, and Alhajj 2021), the authors categories the existing HAR methods into 
network-based, motion-based, multiple instances learning-based, dictionary- 
based, and histogram-based approaches. Also, they compared the results on 
HAR datasets.

Author (Verma, Singh, and Dixit 2022) has conducted a review on various 
supervised and unsupervised machine learning techniques for human beha-
vior recognition. In this review, the authors reported the impactful literatures 
for abnormal behavior and activity recognition in the categories of supervised 
learning methods (classification and regression) such as support vector 
machine (SVM), Hidden Markov Model (HMM), and neural network. 
Whereas, in the category of unsupervised learning method (Clustering) for 
anomaly detection, author reported object trajectory analysis and pixel-based 
features for abnormal behavior detection in video sequence. Various types of 
clustering algorithms such as Partition-based clustering, hierarchical, density- 
based latent, Gaussian method for the applications of track analysis, moving 
hands, Multiple objects, behavior analysis, walking, running, and cycling on 
the highway.
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To sum up, we observed that most of the surveys introduce a taxonomy 
for HAR methods categorization for comparison purposes. In the compared 
surveys, we also noticed a wide variety of HAR approaches: dataset-based, 
input-type-based, HAR real-world challenge-based, or learning-based. In 
this context, we state that the approach we have taken in this survey is 
the learning-based approach and propose a novel taxonomy of study based 
on the architecture of recent deep learning algorithms. We have covered 
more than 25 up-to-date deep learning-based algorithms and presented 
their performance on benchmark vision-based HAR datasets as reported 
in their original work. Table 1 summarizes the comparison of the surveys 
mentioned above. It includes the focus of study, taxonomy, year of publish-
ing, source of data collection in those papers, whether deep learning-based 
HAR methods are included in brief or comprehensively, and a view on 
whether deep learning-based HAR methods are mapping with HAR 
datasets.

Benchmark HAR Datasets

In simple words, benchmarking is a way of discovering what the best perfor-
mance being achieved is. The action recognition’s benchmark video datasets 
are carefully prepared, validated, annotated, and earned good accuracy com-
pared with its contemporary datasets. We list many action recognition datasets 
that are appeared in the various top-level international conferences3 as 
a baseline for the action recognition algorithm challenge. Those algorithms 
achieved higher accuracy on these datasets and were top-ranked. Therefore, 
these datasets are known as benchmark datasets. This study includes the 
following benchmark video datasets to investigate various deep learning tech-
niques for human action recognition and accuracy.

Ucf 101

The Center for Computer Vision Research, University of Central Florida, the 
USA, prepared the UCF101 human activity recognition dataset (Soomro, 
Zamir, and Shah 2012) in 2012. UCF101 is the newest version of the previously 
created UCF50 dataset, which contains 50 action categories. It has 13,320 
videos of different categories of human actions, originally trimmed from 
YouTube. The UCF101 dataset is a widely adopted benchmark for action 
recognition, where all the activities are divided into 25 groups for each action 
category. This dataset is having 101 action classes and a minimum of 100 video 
clips in each class.
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Hmdb 51

Brown University released the HMDB51 (H Kuehne et al. 2011) dataset, where 
most of the videos are from movies, and some are from public databases and 
online video libraries such as YouTube. The database contains 6849 samples, 
divided into 51 categories, and each class has at least 101 samples. The frame 
rate of clips is 30 fps.

JHMDB

Joint-annotated Human Motion Data Base JHMDB (Jhuang et al. 2013) is 
a fully annotated data set for human actions and human poses released by the 
Brown University research group. It contains 923 videos, which are categor-
ized into 21 different activities, namely pick, run, stand, sit, brush hair, pour, 
throw, shoot the bow, catch, clap, wave, shoot, climb stairs, pull-up, golf, push, 
jump, kickball, shoot ball, gun, swing baseball, walk. This dataset is 
a comparatively less used dataset among all.

Kinetics

The Kinetics 400 dataset (Kay et al. 2017) was released by Deepmind, focusing 
on human actions (rather than activities or events). With more than 400 clips 
for each class, each from a unique YouTube video, are two orders of magni-
tude larger than previous datasets, HMDB-51 and UCF-101. Categories of 
several action classes are: i) Person Actions (singular) – drawing, drinking, 
punching, laughing, etc. ii) Person–Person Actions – kissing, hugging, shaking 
hands, etc., and iii) Person-Object Actions- mowing the lawn, opening gifts, 
mopping, washing dishes, etc. The dataset contains 400 human action classes, 
and each class has 400 or more clips, each from a unique video, for a total of 
240k training videos. The length of each clip is around 10 s. The test set is also 
having 100 clips for each class. An extension of the Kinetics human action 
dataset from 400 classes to 600 classes is available as Kinetics 600 (Carreira 
et al. 2018), released in 2018. Further, a dataset with 700 action classes was 
released in 2019 as kinetics 700 (Carreira et al. 2019), all by Deepmind. The 
vision for the Kinetics dataset is that it becomes the ImageNet equivalent of 
video data.

Hollywood-2

Hollywood-2 (Bojanowski et al. 2014) is a human actions and scenes dataset 
with 12 classes of human actions and 10 classes of scenes distributed over 3669 
video clips and a total of 787720 frames containing sequences from 69 
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Hollywood movies. A set of video clips, each one is annotated as a sequential 
list of actions, such as “walking” then “sitting,” then “answer the phone.” The 
length of a total video is 20.1 hours.

Breakfast Dataset

The breakfast dataset (Hilde Kuehne, Arslan, and Serre 2014) consists of 10 
classes related to breakfast preparation performed by 52 different individuals 
in 18 different kitchens. The dataset is considered one of the biggest fully 
annotated human action datasets. Video clips of this dataset are recorded “in 
the wild” instead of recording the data in a controlled lab environment.

It appears closer to real-world conditions as it behaves as it is monitoring 
and doing analysis of daily activities. The total length of the video is approxi-
mately 77 hours. The cameras used to record human actions are webcams, 
standard industry cameras, and a stereo camera. All videos were down- 
sampled to a resolution of 320 × 240 pixels with a frame rate of 15 fps. Here 
cooking activities include preparing sandwiches, tea, coffee, orange juice, 
chocolate milk, a bowl of cereals, pancakes, fried eggs, fruit salad, and 
scrambled egg. This dataset was released by SERRE Lab, Brown University, 
in 2014.

Charades

Charades (Sigurdsson et al. 2016) comprises of daily indoor activities. Videos 
are recorded as acting out the sentence like in a game of Charades. It is one of 
the most extensive public datasets with continuous action videos, containing 
9848 videos of 157 classes (7985 training and 1863 testing videos). Each video 
is ∼30 seconds. Because of its different variety of activities and long-duration 
clips, it is a challenging dataset. This dataset is released by The Allen Institute 
for Artificial Intelligence in 2016.

AVA

AVA (Gu et al. 2018) dataset consists of 80 different unique visual actions, 
with 57.6k video segments collected from approximately 192 movies. Video 
clips are 3 s-long and extracted sequentially in 15-min chunks from each 
movie. Using a batch of 15 min per video enables variations simultaneously 
in the video. A total of 210k actions are labeled. Google released it in 2018, and 
it appeared at the conference on Computer Vision and Pattern Recognition 
(CVPR), 2019.
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Epic-Kitchens-55

Epic Kitchen-55 (Damen et al. 2018) is the largest dataset in first-person 
(egocentric) vision, released by the University of Bristol, UK, and the 
University of Catania, Italy, in April 2018. It has 39596 action segments 
recorded by 32 individuals while performing routine daily activities in their 
kitchen environments. Each action is labeled as a combination of a verb and 
a noun in this dataset, e.g., “cut vegetable,” “wash utensil,” etc. There are 331 
noun classes and 125 verb classes, but still, these are heavily imbalanced. Total 
video is 55 hours long in full HD format. The latest Epic kitchen version is 
available with 100 hours of full HD video with 45 individual kitchen record-
ings, Epic-Kitchen-100, and released in July 2020.

Something – Something

The 20BN-SOMETHING-SOMETHING dataset (Goyal et al. 2017) is an 
extensive collection of densely labeled video clips that show humans perform-
ing pre-defined basic actions with everyday objects. The total Number of 
Videos is 220847, and the total number of classes is 174. The JPG images 
were extracted from the original videos at 12 frames per second. TwentyBN 
released it in June 2017. The specialty of the dataset is that a large number of 
crowd workers created it.

Moments-in-Time

The Moments in Time (MIT) dataset (Monfort et al. 2020) is a large-scale 
video classification dataset. Its objective is to help AI systems recognize and 
understand actions and events in videos. It has more than 800 K videos 
(∼3 seconds per video). It is released by CSAIL, MIT, in 2018. The moment- 
in-time recognition challenge appeared in CVPR, 2018, and later on ICCV 
2019 as Moments in Time Multimodal Multi-Label Action Detection 
Challenge.

ActivityNet

ActivityNet (Heilbron et al. 2015) is a large-scale video benchmark dataset 
for human activity understanding. It covers a wide range of complex human 
activities that interest people in their daily living. ActivityNet provides video 
clips of 203 activity classes. ActivityNet has 849 hours long video and was 
released in 2016 as version −2. In contrast, the older version was released in 
2015 and contained 100 activity classes. This dataset illustrates three sce-
narios to compare algorithms for human activity understanding: global 
video classification, trimmed activity classification, and activity detection. 
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Data were annotated with the help of Amazon Mechanical Turk (AMT). 
Figure 2 shows the three main steps of data acquisition: Collection, 
Filtering, and Temporal Localization. In step 1, candidate videos were 
searched on the web for each ActivityNet category by multiple queries. 
Step 2 shows the filtration process, where collected videos from step 1 
were verified by Amazon Mechanical Turk workers and deleted videos 
unrelated to any exciting activity. In step 3, every video was provided by 
temporal localization, where starting and ending times were marked. The 
action is performed, and annotation was done to every video clip by AMT. 
The annotation files are stored in JSON format. This dataset first appeared 
in CVPR, 2015.

Sports- 1 M

The Sports-1 M dataset (Karpathy, Toderici, Shetty, Leung, Sukthankar, and Li 
2014b) consists of roughly 1.2 million YouTube sports videos annotated with 
487 classes, and it is representative of videos in the wild. Approximately 1000 
to 3000 videos are available for each class. And, around 5% of the videos are 
annotated with more than one class. However, this dataset is the largest 
publicly available sports action video dataset, but the annotations that it 
gives are at the video level. No detailed information is mentioned about the 
location of the class of interest. Google released this dataset in 2014. This 
dataset first appeared in CVPR, 2014. Table 2 shows the list of the above 
benchmark datasets.

Figure 2. Three steps of ActivityNet human activity collection and annotation process (Source: 
(Heilbron and Carlos Niebles 2014)).
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Vision-based HAR Methods

Human activity recognition is a challenging time series classification task. In 
a vision-based approach, it involves predicting the movement of a person by 
analyzing the camera feeds. The problem of action recognition in videos can 
vary widely, and there’s no single approach that suits all the problem state-
ments. In this section, we present the various techniques of HAR, right from 
the traditional approaches to the advanced Deep learning approaches. Thus, 
we have divided this section into three sub-sections – i) Handcrafted-feature- 
based approach, ii) Deep learning-based approach, and iii) Fusion approach. 
This paper’s primary focus is to present a deep learning-based approach 
mainly; We demonstrate this approach in-depth, whereas the other two sub- 
sections are brief. Therefore, we further divide the deep learning-based 
approach into CNN and RNN-based approaches. Categorization of methods 
based on network architecture shows the novelty of our survey. Figure 3 shows 
the proposed taxonomy of vision-based HAR methods, on which basis we 
organize the entire study.

Handcrafted feature-based Approach

This section investigates how human activity recognition was done before 
deep learning, using a handcrafted feature-based approach. This approach 
usually includes a three-stage process – feature extraction, feature classifica-
tion, and feature representation. Handcrafted feature extractors such as HOG 
(Dalal et al. 2005), HOF (Laptev et al. 2008), SIFT (Lowe 2004), SURF (Bay, 
Tuytelaars, and Van Gool 2006), etc., are used to extract the low-level features. 
Further, to make the final feature classification, some specific feature repre-
sentation algorithms encode them into global feature-based methods and local 
feature-based methods. The global feature treats the representation as a whole. 
The region of interest is generally located by tracking or background subtrac-
tion; after that, this region is considered as a whole representation. The local 

Figure 3. Proposed taxonomy of vision-based HAR Methods.
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representation shows the observation as a group of independent features 
offered collectively or at space-time points where the location belongs to 
exciting motions. Since more specific feature representations enhance classi-
fication performance, rewriting the original feature with discriminative words 
is vital to this HAR method. Authors have proposed various feature represen-
tation algorithms, and most of them have shown effective performance in 
feature encoding.

The older methods (Kläser, Marszałek, and Schmid 2008; Scovanner, Ali, 
and Shah 2007) implemented for human activity recognition in video data 
mainly focus on handcrafted features. These methods primarily considered 
motion and appearance information while using various local features. Local 
features have already been proven a successful technique for the image recog-
nition task. Local features describe images in terms of Speeded Up Robust 
Features (SURF) (Bay, Tuytelaars, and Van Gool 2006) and Scale-Invariant 
Feature Transform (SIFT) (Lowe 2004). After the massive success of image 
recognition techniques, various researches have been done by directly extend-
ing the image classification methods to learn Spatio-temporal information of 
video for action recognition. Kläser et al. (Kläser, Marszałek, and Schmid 
2008) developed Histograms of Oriented 3D spatiotemporal Gradients 
(HOG3D) by extending the HOG descriptor for action recognition in video.

Similarly, an extension of SIFT, a new technique SIFT-3D (Scovanner, Ali, and 
Shah 2007), was proposed to extract the spatiotemporal motion features for 
action recognition. One practical approach is Dense Trajectories (DT) (H. 
Wang et al. 2013a), which consist of HOG, HOF, and Motion Boundary 
Histogram (MBH). The same author (H. Wang and Schmid 2013) further 
added some new features based on temporal templates with dense trajectories, 
which are called combinedly as “Improved Dense Trajectories.” They constructed 
templates by considering a video sequence as a third-order tensor and computing 
three different projections. Further, they used several functions to protect the 
fibers from the video sequences and combined them through sum pooling.

Figure 4. Deep learning-based HAR architectures. K shows the total number of frames in the input 
video, and N shows the subset of neighboring frames of the video (Carreira and Zisserman 2017).
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Unfortunately, these feature-based approaches have some drawbacks. First of 
all, most of the commonly used feature extractors are developed based on 
a specific dataset, and the feature extractors are often database-biased. They do 
not have general-purpose feature extraction ability. And secondly, creating 
a handcrafted feature-based human activity recognition system required careful 
feature engineering. Thus, handcrafted feature engineering works are labor- 
intensive and time-consuming; severely hindering the development of related 
technologies. Therefore, newer HAR systems are deep learning-based techniques.

State-of-the-art Deep Learning Approach

In the past few years, deep learning techniques (Krizhevsky, Sutskever, and 
Hinton 2012; H. Wang et al. 2013b; Simonyan and Zisserman 2015a; 
Szegedy et al. 2015) outperformed on image data with the ImageNet 
dataset’s advent. Many deep learning algorithms have been developed for 
human activity recognition from video data, especially on the benchmark 
datasets (Kay et al. 2017; Soomro, Roshan Zamir, and Shah 2012; H Kuehne 
et al. 2011; Sigurdsson et al. 2016; He et al., n.d.). Unlike handcrafted- 
feature-based approaches, a deep learning-based HAR method can simulta-
neously learn visual features, feature representations, and classifiers. Deep 
learning architectures have different variants, but the most attractive model 
for vision-based HAR is Convolutional Neural Network (CNN) and 
Recurrent Neural Network (RNN), which have achieved very promising 
results on benchmark video datasets. Videos can be considered as 
a sequence of individual images. Therefore, many deep learning practi-
tioners quickly treat video classification as performing image classification 
techniques as a sum of all the frames. In this section, we present state-of-the 
-art deep learning techniques for human activity recognition. In the deep 
learning approach, we have further sub-categorized this method as a CNN- 
based and RNN-based system. Figure 3 shows the categorization of CNN- 

Figure 5. An example of multi-stream CNN architecture (Source Simonyan et al. (Simonyan and 
Zisserman 2014)).

APPLIED ARTIFICIAL INTELLIGENCE e2093705-2873



based methods as – multi-stream networks and sequential networks, 
whereas RNN-based methods as – LSTM with CNN and Fusion LSTM. 
Figure 4 shows the different video processing architectures for HAR meth-
ods. For the input as RGB video, the convolutional layers use 2D image- 
based and optical flow layers, whereas 3D (video-based) layers include pre- 
computed optical flow. Another is combinations of 2D ConvNets and 
temporally recurrent layers LSTMs. In Figure 4,5 architectures (c), (d), 
and (e) are categorized as CNN-based multi-stream networks, whereas (b) 
type architectures are placed inside CNN-based sequential networks. Also, 
architecture (a) shows the RNN-based LSTM with CNN architecture, 
whereas RNN-based models that use more than LSTM with CNN are 
grouped into the FusionLSTM approach.

Convolutional Neural Network (CNN) Based Approach
In the past few years, CNNs have been proven to be one of the most successful 
image processing models. The deeper architecture of CNN is helpful for object 
recognition from static images (Krizhevsky, Sutskever, and Hinton 2012). But 
the traditional CNN architectures are not suitable for video processing. 
Karpathy et al. (Karpathy et al. 2014b) experimented with video action recog-
nition using stacked video frames as input to the network. The results were 
unsatisfactory and even lower than handcrafted feature-based approaches (H. 
Peng et al. 2016; Wang and Schmid 2013). Further, the researchers also 
propose various architectures by using different benchmark action datasets. 
This paper further categorized these advanced CNN-based methods into 
a multi-stream network and a sequential network, based upon the model’s 
architecture.

Multi-Stream Network
This section categorizes deep learning models that use separate spatial and 
temporal streams in CNN architecture for HAR. Figure 4(c,d,) shows the 
concept of multi-stream CNN architectures. A novel, widely used approach, 
introduced by (Peng et al. 2016), two-stream CNN, where first stream is for 
video’s spatial feature, whereas the second stream focuses on temporal fea-
tures. The spatial stream recognizes the action from still images, and the 
temporal stream performs action recognition in the form of dense optical 
flow. Finally, these two streams are combined using late fusion – this metho-
dology of action recognition is proven to be better than handcrafted-based 
methods (H. Wang and Schmid 2013). Similar work was extended to action 
recognition from videos in (Karpathy et al. 2014b), using stacked video frames 
as input to the network, but the results were worse than the previous approach. 
Later on, researchers relied on the fact that two-stream architecture is not 
applicable for human activity recognition from live camera feeds in the real- 
time scenario because of its computational complexity. In (Feichtenhofer, 
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Pinz, and Zisserman 2016) (the extension of (Simonyan and Zisserman 2014)), 
authors fuse the spatial and flow streams after the last network convolutional 
layer, showing some improvement on the HMDB51 dataset while requiring 
less test time augmentation (snapshot sampling). Followed by this method, 
Carreira et al.(Carreira and Zisserman 2017) implemented a technique by 
using Inception-V1. The spatial and temporal streams passed through the 
3D convolutional layer before going to the last average pooling layer of 
Inception-V1.

In another work, inspired by the two-stream ConvNets (Simonyan and 
Zisserman 2014), the authors propose a novel three-stream ConvNet model 
(C. Di Huang, Wang, and Wang 2016). This network introduces an additional 
movement ConvNet stream along with spatial ConvNet and Temporal 
ConvNet. The purpose of the movement ConvNet stream is to distinguish 
the action which has similar pose change but with different speed or direction; 
for example, walking versus running and push versus pull. The movement 
ConvNet handles these kinds of actions. The input of the moving stream is the 
centroid of detected human regions. Finally, these three streams are combined 
with the hinge loss classifier to classify human activity correctly. Similar work 
was also performed in (Najeera, Anu, and Sadiq 2018), where “Movement 
Stream” is the third stream; in contrast, spatial and temporal streams perform 
the same functionality as in (Feichtenhofer, Pinz, and Zisserman 2016). This 
additional movement stream is a traditional neural network (Simonyan and 
Zisserman 2015b), which takes the same vector of the human centroid (Huang 
et al. 2016) and combines these three scores streams using a hinge loss 
classifier in the last layer. A long-range temporal-based network was intro-
duced by (Limin Wang et al. 2016). This network aims to utilize the visual 
information of entire videos to perform video-level prediction. This model is 
built on top of the (Simonyan and Zisserman 2014). In this method, learning 
of CNN on video data with the help of temporal segment networks and limited 
training data was proven to be a very effective method compared to its 
contemporary methods of HAR. This network overcomes frame-level predic-
tion issues (Karpathy et al. 2014b) by predicting the action for long-range 
videos. The authors of (Feichtenhofer, Pinz, and Wildes 2017) introduce an 
architecture based on multiplicative interactions of space-time features called 
SpatioTemporal Network. This model is the combination of motion and 
appearance in the form of a two-stream. The multiplicative gating functions 
have also been evaluated for the residual networks and closely observed the 
effect of the gating function on model accuracy. This model also injects an 
identity mapping function to track the long-term dependencies and learn 
temporal features. This architecture is fully convolutional in space-time and 
can evaluate a video for human action recognition in a single forward pass.

APPLIED ARTIFICIAL INTELLIGENCE e2093705-2875



Hao et al. (Hao and Zhang 2019) proposed a model for HAR from video 
data called Spatiotemporal Distilled Dense-Connectivity Network (STDDCN). 
This network is partially inspired by (G. Huang et al. 2017), which uses 
a dense-connectivity and knowledge distillation network. This model focuses 
on exploring the relationship between appearance and motion streams along 
with multiple features. The dense network explicitly enhances the relationship 
of the Spatio-temporal features at the feature representation layers. In addition 
to that, knowledge distillation among these two streams and last fusion allows 
both streams to communicate with the last layers. The unique architecture of 
STDDCN enhances the capacity of the model to acquire high-level ordered 
spatiotemporal features.

In (Verma and Singh 2021) author proposed a fusion method using two 3D 
Convolutional Neural Network (3DCNN) and a Long Short Term Memory 
(LSTM) network from RGB, Depth and skeleton joint positions, then score 
generation using trained SVM model, thereafter, fusion of score and optimi-
zation using Evolutionary algorithms – Genetic algorithm (GA) and Particle 
Swarm Optimization (PSO) algorithm. Thus, accuracy achieved were with GA 
85.93% and with PSO 83.75%.

Author (Verma, Brij Mohan Singh, and Chauhan 2020) proposed a 2D 
CNN-based algorithm to recognize single-limb and multi-limb human activ-
ities. In the first step, single-limb and multi-limb activities are separated, then 
the separated single- and multi-limb activities recognize using sequence- 
classification. Thus, they achieved the overall accuracy as 97.88%.

Sequential Network
Figure 4(b) depicts the network architecture of CNN-based sequential net-
works, or we can say those networks, uses a single stream or stacked structure. 
This type of 3D ConvNet architecture is like a natural approach to video 
modeling and is just like standard convolutional networks, but with Spatio- 
temporal filters. This type of network structure has specific characteristics – 
they directly create hierarchical representations of Spatio-temporal data.

To overcome the problem of computing motion information of frames, Ji 
et al. (Ji et al. 2013) proposed a 3D convolution in which features are computed 
from spatial and temporal at the convolution stages of CNNs. Unlike the 
conventional 2D CNNs, where convolutions are applied to compute features 
from the spatial dimensions on the 2D feature maps, the 3D convolution 
network is modeled by convolving a 3D kernel by keeping multiple sequential 
frames together in the cube format. Thus, the convolution layer’s feature maps 
connect to the network’s back layer contiguous sequential frames. Thereby 
capturing motion information in 3D CNN, kernel extracts one feature from 
the frame, while kernel weights apply in the entire cube. Instead of using 2D 
convolutions across frames, Tran et al. (Tran et al. 2015) use a 3D convolution 
network on video data in their work. This network train the 3D CNN on the 
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Sports-1 M dataset and then use them (or an ensemble of nets with different 
temporal depths) as a feature extractor for other video datasets. Afterward, 
they utilize a simple linear classifier, such as a support vector machine on top 
of the extracted features. Thus, it has proven to be more accurate than the 
other state-of-the-art algorithms. Further, it has been observed that this model 
could have performed even better if handcrafted features like HOG, HOF, or 
IDT were used additionally. In this experiment, five random two-second clips 
were extracted from every video as an action performed in the entire video at 
the training time. And during testing, 10 clips were randomly sampled, and 
predictions made across them were averaged for final prediction.

Varol et al. (Varol, Laptev, and Schmid 2018) present a new architecture of 
a two-stream convolutional neural network with Long-short-term 
Spatiotemporal Features (LSF CNN). This network aims to recognize human 
action from video data fast and efficiently compared to previous networks. 
This complete network is a fusion of two subnetworks. The first subnetwork is 
a long-term spatiotemporal features extraction network (LT-Net), which 
receives the RGB frames as inputs. Another subnetwork is the short-term 
spatiotemporal features extraction network (STNet) that accepts the optical 
flow data as input. Further, these two streams fuse in the CNN fully connected 
layer. Finally, the fully connected layer’s output sends to the simple classifier 
support vector machine (SVM). This model includes a novel approach for 
better utilizing the optical flow field, which has better performance than CNN- 
based deep learning models (Feichtenhofer, Pinz, and Zisserman 2016). They 
followed conventional methods to use optical in action recognition problems. 
This model can learn very deep features in both spatial and temporal areas in 
this fusion-based two-stream network.

Zheng et al. (Zheng and Zhang 2020) introduce a cross-modal architecture 
that includes an ”Alignment Network” and a ”Fusion Network” to improve the 
performance of the human activity recognition as compared to a model that 
uses three separates streams of CNN (Huang et al. 2016; Simonyan and 
Zisserman 2014). In this model, the first step is to extract the different 
modal information mapped into a common subspace to align. After that, the 
aligned features are further combined to generate correlated, consistent, and 
complementary representations. In the last layer, the learned features are fed 
as input for actual action recognition to the classifier. The MARS method 
(Crasto et al. 2019) proposes two learning approaches to train a standard 3D 
CNN. It operates on a single RGB frame that explicitly mimics the motion 
stream. Thus, it saves the optical flow computation cost at test time. Two 
learning approaches perform in this model are – i) by minimizing a feature- 
based loss compared to the Flow stream, the network reproduces the motion 
stream with high fidelity, ii) leverages the effect of appearance and motion 
information simultaneously. The model is trained with a linear combination of 
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the feature-based loss and the standard cross-entropy loss for action recogni-
tion in this method. As a single stream, MARS performs better than RGB or 
Flow alone.

Yang et al. (Yang et al. 2018) propose an Asymmetric 3D CNN model that 
works on asymmetric single-direction 3D convolution architecture to assess 
the conventional 3D convolution network (Shuiwang et al. 2013). In this 
model, the Asymmetric 3D convolutions network enhances the capacity of 
feature learning. This model is a collection of local 3D convolutional networks, 
called MicroNets, which are built by incorporating multi-scale 3D convolution 
branches. To efficiently perform the action recognition task, an asymmetric 
3D-CNN deep network is developed using these MicroNets. Unlike those 
models (Simonyan and Zisserman 2014), trains separately for two–streams 
network. This model minimizes the training efforts for the RGB frames and 
optical Flow frames separately. A simple but effective multi-source enhanced 
input is also implemented here, where vital information of the RGB and 
optical flow frames are fused at the early preprocessing stage. Moreover, the 
performance of this model is evaluated on a benchmark dataset. This asym-
metric 3D-CNN model outperforms all the conventional 3D-CNN models. Its 
accuracy for action recognition is also compared with various state-of-the-art 
CNN-based human action recognition models on benchmark datasets.

Principal Component Analysis Network (PCANet), proposed by Abdelbaky 
et al. (Abdelbaky and Aly 2020), selects a subset of frames from each action. At 
the same time, a feature vector is calculated from the previously trained 
PCANet for each frame. All feature vectors are then fused, and their dimen-
sionality is reduced by using the Whitening Principal Component Analysis 
algorithm (WPCA)(Thameri et al. 2011). The Support Vector Machines 
(SVM) classifier is used in the output layer, followed by the block-wise 
histograms for the feature pooling layer. Thameri et al. (Thameri et al. 2011) 
compare this HAR method to observe the impact of using features from the 
first convolutional stage, and this network is named as PCANet-1, whereas 
using deep features from the second stage is named as PCANet-2.

RNN Based Approach
There is a problem with the approach, where the video considers a sequence of 
images and processes them to combine for classification. Video classification is 
more than just a simple image classification. There is an assumption that 
videos have subsequent frames (images) in which they correlate to semantic 
content. In this way, if videos’ temporal nature can include, it improves actual 
video classification performance. Neural network architectures, such as 
Recurrent Neural Networks (RNNs) are suited for time series data. 
Particularly, Long Short-Term Memory (LSTMs) have outperformed on 
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video data for human action recognition. But practically, these methods are 
very resource-hungry and time-consuming for training over thousands of 
video files.

However, inspired by the success of RNN in sequential information model-
ing (Sutskever, Vinyals, and Le 2014), many researchers propose an LSTM 
model for action recognition to learn spatiotemporal features with CNN 
effectively. We explain these techniques under the ‘LSTM with CNN’ 
approach. Research shows that advanced RNN architectures have also been 
developed, which uses more than LSTM with CNN. We categorize these 
methods under the ‘fusion LSTM’ approach. The description of HAR methods 
under these two RNN-based approaches is given in the following sub-sections:

LSTM with CNN
Srivastava et al. (Srivastava, Mansimov, and Salakhutdinov 2015) use multi-
layer Long Short-Term Memory (LSTM) networks to learn high-level features 
of video sequences. An encoder LSTM employ in this model to map the input 
sequence for a fixed-length representation. This representation is decoded by 
using a single or multiple LSTMs decoder to output the numerous tasks, such 
as predicting the future sequence, reconstructing the input sequence, etc. The 
author shows two types of input sequences in this model – First, patches of 
image pixels and, secondly, ”percepts.” These are high-level representations of 
video frames and extracted through a pre-trained CNN model.

A Lattice-LSTM architecture, proposed by Sun et al. (L. Sun et al. 2017), is 
an extension of LSTM by learning hidden state transitions of memory cells for 
individual spatial locations. This method effectively and efficiently increases 
model dynamics’ ability across time and focuses on the non-stationary long- 
term motion dynamics issue without significantly increasing the model com-
plexity. This network works differently than traditional two-stream architec-
tures(Crasto et al. 2019; Najeera, Anu, and Sadiq 2018). Lattice-LSTM uses 
RGB and optical flow to train input gates and forget gates in one network. 
Traditional two-stream architecture considers these two data as separate 
entities without information of each other. This architecture reduces the 
complexity of the method by avoiding multiple streams.

Li et al. (Li et al. 2018) propose a novel architecture for end-to-end learning 
of human actions in video data, called VideoLSTM. Instead of training the 
input video with the unique features of recurrent or convolutional neural 
network architectures, VideoLSTM architecture builds according to the 
input video’s essential requirements. Initiating the VideoLSTM functionality 
from the soft-Attention LSTM, this model took advantage of the spatial 
correlation and used a convolution layer in the soft-Attention LSTM archi-
tecture. Also, the authors introduce motion-based attention. Another archi-
tecture proposes in (C. Dai, Liu, and Lai 2020) utilizes the visual attention 
mechanism and introduces an end-to-end two-stream attention-based LSTM 
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network. This network aims to overcome the problems of assigning the same 
weights on different visual and temporal cues in the parameter training stage 
by most CNN-based HAR network architecture(Feichtenhofer, Pinz, and 
Zisserman 2016; C. Dai, Liu, and Lai 2020; Baccouche et al. 2011). This 
problem mainly affects the feature distinction determination. This model 
can selectively focus on the compelling features for the original input images 
and pay different attention levels to each deep feature map’s outputs. 
A correlation layer is proposed to adjust the deep learning network parameter 
based on the correlation judgment by considering the relation between two 
feature streams. Here, two-stream attention-based LSTM consists of two 
streams, such as temporal feature stream and spatial-temporal feature stream. 
For the temporal stream, the authors design this network to automatically 
determine the dominant area in every optical flow-based image by temporal 
attention module; also, it sums the representation values of these images to 
make a feature vector. On the other hand, an LSTM model is used for the 
spatial-temporal stream after the pooling layer to effectively learn the spatial 
maps’ unique temporal relationship. In this entire process, spatial-temporal 
attention is assigned different weights for the different levels of features. In the 
end, a joint optimization layer is used to optimize the loss for the deep model 
to achieve reasonable accuracy.

Fusion LSTM
Few RNN architectures use very deep CNN and LSTM networks. We place 
those types of architectures of the HAR method in this section. Baccouche 
et al. (Baccouche et al. 2011) introduce an idea of fully automated deep 
learning architecture, which trains to classify human actions without using 
any prior knowledge. The basis of this model is – converting a vanilla CNN 
model to a 3D network, which automatically learns Spatio-temporal features. 
Further, an RNN-LSTM architecture trains for the classification by feeding the 
temporal feature of the already learned pattern w.r.t. every timestep. This 
model’s comparative result has proven to be more efficient than the existing 
CNN-based approach for human activity recognition.

Before this technique, various researches have been done based on using 
LSTMs on separately trained feature maps to observe if temporal information 
can be captured from clips. Unfortunately, researchers conclude that convo-
luted features temporal pooling had been proven more effective than LSTM 
stacked after trained feature maps. In (Donahue et al. 2017), the authors design 
a network on the same idea of using LSTM blocks (decoder) after convolution 
blocks (encoder) but using end-to-end training of the entire architecture. They 
compared RGB and optical flow as input choices and observed that a weighted 
scoring of predictions based on both inputs was the best. Here During train-
ing, 16 frame clips are sampled from the video. The RNN-based architecture is 
trained with input as RGB or optical flow of 16 frame clips. The final 
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prediction for each clip is based on the average of predictions of each time 
step. Thus, the final prediction at the whole video level is the average of 
predictions calculated from each clip. Even though the end-to-end training 
frameworks were available in this model. This model still has a few drawbacks, 
such as false label assignment, inability to capture long-range temporal infor-
mation, and more efforts for pre-computing optical flow.

Ng et al. (Ng et al. 2015) evaluate the numerous deep learning architectures 
to merge individual image information in the entire video for more extended 
periods than the (Donahue et al. 2017). This paper proposes two methods in 
this architecture, which can process the long-length videos very efficiently. In 
the first method, the authors apply a multiple convolutional temporal feature 
pooling network. It is useful, especially when implementing CNN for the Two- 
Stream LSTM network architecture. The second method is built on the generic 
concept of considering a hierarchical sequence of frames as video data. This 
model uses two CNN architectures to process individual video frames: 
AlexNet and GoogLeNet, which stacks inception modules to form a network 
22 layers deeper that is substantially different from the previous CNNs model. 
A deep LSTM architecture has been used in this model, in which the output 
from one LSTM layer is input for the next layer. The authors experimented 
with various layers and memory cells and used five stacked LSTM layers, at 
last, each with 512 memory cells. This architecture is one of the most popular 
method for HAR.

Wang et al. (X. Wang et al. 2019) propose a primarily decomposed model into 
two modules: Three Dimension Inception (I3D) network and Long Short-Term 
Memory (LSTM) work. In this model, I3D architecture extracts spatial features 
and captures motion features in sequential frames. Further, the output feature 
trained by the I3D model serves as the input of the LSTM network, which is 
mainly responsible for modeling high-level spatial features. As a result, video 
features were learned with high efficiency and represented in low-level and high- 
level features. To avail the benefit of pre-training, authors pre-trained the 3D 
CNN model on the Kinetics dataset to improve the model’s generality. And then, 
long short-term memory (LSTM) is introduced to model the high-level temporal 
features produced by the Kinetics pre-trained 3D CNN model.

Wan et al. (Y. Wan et al. 2020) present a two-stream CNN (Simonyan and 
Zisserman 2014) with LSF- CNN-based new architecture. This complete net-
work is a fusion of two subnetworks. The first subnetwork is a long-term 
spatiotemporal features extraction network (LT-Net), which receives the RGB 
frames as inputs. Another subnetwork is the short-term spatiotemporal fea-
tures extraction network (STNet) that accepts the optical flow data as input, 
which calculates from the two subsequent frames. Further, these two streams 
are fused in the CNN fully connected layer, and finally, the fully connected 
layer’s output is sent to the simple classifier support vector machine (SVM). 
This model includes a novel approach for better utilizing the optical flow field, 
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which has better performance than CNN-based deep learning models 
(Feichtenhofer, Pinz, and Zisserman 2016). They followed conventional meth-
ods to use optical flow in action recognition problems. This model can learn 
very deep features in both spatial and temporal areas in this fusion LSTM 
architecture.

Zhao et al. (Zhao and Jin 2020) develop a novel convolutional and recurrent 
network for action recognition, which is ”doubly deep” in spatial and temporal 
layers. Therefore, in the feature extraction stage, an improved p-non-local opera-
tion as a simple and effective component was introduced to capture long-distance 
dependencies with deep convolutional neural networks. Similarly, the class pre-
diction stage combines a Fusion KeyLess Attention with the forward and back-
ward bidirectional LSTM to learn the data’s sequential nature more efficiently and 
elegantly, using multi-epoch models fusion based on confusion matrix. The most 
important parts are the p-non-local block developed to solve the long-distance 
dependencies to reduce the computational complexity and the Fusion KeyLess 
Attention with Bi-LSTM, which aims to pay attention to the part of the interest of 
human motion. The CNN+p-non-local module takes the video frames as inputs 
and produces feature maps X. The hidden state of bidirectional LSTM obtains the 
KeyLess Attention Mask. Next, the model computes the feature map weighted 
according to the attention mask at each timestep and finally sends it to LSTMs for 
prediction. Yu et al. (Yu et al. 2020) introduce a new long-term temporal feature 
learning network for human action classification called ”Pseudo Recurrent 
Residual Neural Networks (P-RRNNs).” This network uses the recurrent model 
and performs the fusion of each in the different connections among all the units. 
P-RRNNs primarily use two-stream CNNs architecture – GoogLeNet, to extract 
local temporal and spatial features, respectively. These local deep features are 
further combined into global long-term temporal features with the help of two- 
stream P-RRNNs.

Combined Approach

Some researches show the deep learning architectures combined with feature- 
based techniques for HAR. This progress is shown in (Hao et al. 2018), where 
the author presents an Asymmetric 3D-CNN architecture in their extended 
research, and they fed the Asymmetric 3D CNN model with the enhanced 
RGBF frames. Thus, the deep features from RGB and RGBF frames are further 
combined with the traditional improved Dense Trajectories (IDT) (H. Wang 
and Schmid 2013) features used to train a linear SVM to classify actions. The 
resulting Asymmetric 3D-CNN (RGB+RGBF+IDT) out-performs the newest 
state-of-the-art HAR methods on the benchmark dataset. Duta et al. (Duta 
et al. 2017) show the Improved Dense Trajectories (IDT) approach to utilize 
the handcrafted features by keeping the default parameter settings recom-
mended to extract four different descriptors: HOG, HOF, MBHx., and MBHy. 
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This approach is one of the state-of-the-art handcrafted approaches for feature 
extraction. Each of these four descriptors was extracted along all valid trajec-
tories and combined with the Vector of Locally Aggregated Descriptors 
(VLAD) (Jégou et al. 2012), a popular super vector method. Further, the 
authors experimented with the Spatio-temporal VLAD (ST-VLAD) model, 
an extended encoding method that includes Spatio-temporal data at the 
encoding stage. This is achieved by using a video sequence and pulling specific 
information from every video clip.

Later, inspired by (Duta et al. 2017), Naeem et al. (Binte Naeem et al. 2021) 
propose a new method T-VLAD for an efficient multiview human action 
recognition. It uses simple C3D convolutional features that learn the long- 
term temporal pattern of the input video. Further, it comprises the spatial 
location of local features and the temporal location of global features frame by 
frame. This network architecture successfully extends the frame-level infor-
mation into complete video-level information. T-VLAD uniquely recognizes 
the human action by distinguishing the human motion. This method works 
sturdy for action recognition in the variable background scene.

Serpush et al. (Serpush and Rezaei 2021) considered the complexity of the 
preprocessing phase of previously developed models (Duta et al. 2017; Sheng 
et al. 2020) and proposed a model architecture that automatically chooses 
similar frames from the input video. They retrieve the primary features of only 
selected frames instead of extracting whole features. This hierarchical archi-
tecture combines background subtraction, HOG, deep neural network, and 
skeletal modeling method in the preprocessing step. The entire network is 
consisting of CNN, and the LSTM, which works as a feature selector, and 
finally, a Softmax-KNN is employed for the classification task.

In the VideoLSTM model (Zhenyang et al. 2018), a complementary 
approach was followed by using IDT features for human activity recognition. 
For IDT, the authors used the software from (H. Wang and Schmid 2013) and 
the implementation of the classification pipeline. The author observes 
VideoLSTM result combines with IDT features improves the HAR 
performance.

Table 3 shows the List of HAR Methods along with its benchmark dataset(s) 
and accuracy.

A Quantitative Analysis

In this section, we provide a high-level analysis of the HAR datasets and 
methods as mentioned above. We highlight the performance of some remark-
able HAR methods by focusing on the following point-method performance, 
architectural complexity, commonly used approaches, and the popularity of 
datasets. We present the analysis from two ways:
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HAR Dataset Analysis

HAR datasets are a vivid variety of qualities based upon their parameters, such 
as RGB, RGB-D(Depth), Multiview, recorded in a controlled environment. 
Other parameters are – recorded “In the wild,” annotated with a complete 
sentence, annotated with only action label datasets, etc. We list all these 
varieties of datasets in Table 2 with their comprehensive information, such 
as the source of data collection, number of actions, video clips, nature of 
datasets, and released year to show the progress in this area. We observe that 
most of the HAR datasets could not become a popular choice among compu-
ter-vision researchers due to their over simplicity, small size (Jhuang et al. 
2013; Bojanowski et al. 2014; Hilde Kuehne, Arslan, and Serre 2014), and 
unsatisfactory performance(L. Sun et al. 2017). However, there is no such 
thing as the most accurate standard datasets, i.e., on which researchers mea-
sure the HAR method to set as a benchmark, but of course, as we observe 
UCF101(Soomro, Roshan Zamir, and Shah 2012) and HMDB51 (H Kuehne 
et al. 2011) are the dominating datasets for researchers interest. The reason 
reported by Serpush et al. (Serpush and Rezaei 2021) for choosing UCF101 
over other datasets is that it contains well categorization of actions, which 
helps to train the models efficiently. Also, the actions played in the recorded 
clips are, by various individuals, while in other datasets, the activities and 
actions are usually performed by one actor only.

We found enough gap in the works of literature despite the emerging of 
newer datasets in the last 5 years (Carreira et al. 2018, 2019; Damen et al. 2018; 
Goyal et al. 2017; Heilbron and Niebles 2014; Kay et al. 2017; Sigurdsson et al. 
2016). Researchers have chosen UCF101 (Soomro, Roshan Zamir, and Shah 
2012) and HMDB51 (H Kuehne et al. 2011) datasets very frequently. We 
notice YouTube URL-based datasets (Carreira et al. 2018, 2019; Kay et al. 
2017) seem a bit complex to fetch the clips while training. This training 
process requires additional computational power and processing time. 
Despite a well-annotated dataset (Monfort et al. 2020), it still seems heavily 
imbalanced, which might be a reason to attract the HAR researchers less. Also, 
researchers are bound for a limited choice of availability of Sports datasets 
(Karpathy et al. 2014b; Lin et al. 2017). In Dataset Hollywood Extended 
(Sigurdsson et al. 2016), clips are extracted from movies recorded from several 
viewpoints; this brings multiple-viewpoint variations to the video streams. We 
note that Hollywood 2 extended and SPORTS-1 M datasets are well annotated, 
but labeling is slightly noisy.

We observe that ActivityNet (Heilbron et al. 2015) dataset is prepared to 
reduce previous datasets’ limitations and enhance the possibility of training 
and tuning large networks.
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HAR Methods Analysis

Our study includes a list of HAR and results on benchmark datasets reported 
in the literature. It is shown in Table 3. We analyze these methods with the 
main focus on their network architecture. On this basis, we introduce novel 
taxonomy. Broadly, we categories them into Handcrafted-feature-based, Deep 
learning-based, and combined approach. We further examine the deep learn-
ing – CNN & RNN-based HAR method’s architectures exquisitely followed by 
combined approach in brief.

Focusing on handcrafted methods, dense trajectory descriptors (H. Wang et al. 
2013a) show satisfactory results on UCF101. Moreover, these descriptors can 
easily incorporate with optical flow for temporal feature pooling(Carmona and 
Climent 2018). At this point, from the above-mentioned handcrafted architec-
ture, we analyze that dense trajectory descriptors (Carmona and Climent 2018) 
which outperform the deep learning CNN-based solutions (Simonyan and 
Zisserman 2014) on UCF101 with 89.3% and 88.1, respectively.

Convolutional Two Stream (Feichtenhofer, Pinz, and Zisserman 2016) net-
work shows significant performance on UCF 101 (92.5%) and HMDB 51 
(65.4%) from its previously designed architectures (Feichtenhofer, Pinz, and 
Zisserman 2016) due to having two separate streams – spatial and temporal in 
the form of CNN. A step ahead, by adding one more stream (movement 
stream), the architecture is converted into three streams (Najeera, Anu, and 
Sadiq 2018), which gave an average result on the KTH dataset; however, the 
authors did not report performance on other datasets.

Further improvement, by introducing 3D architecture for HAR method 
(Tran et al. 2015), still shows the same accuracy as two-stream until the 
existence of Inflated 3D architecture – reported 98.0%,80.7% accuracy on 
UCF101 and HMDB51, respectively. Surprisingly, this architecture got the 
highest accuracy on the HMDB51 dataset on previously introduced methods. 
Auto-encoder-based CNN architecture (Zheng and Zhang 2020), motion 
augmented RGB stream architecture (Crasto et al. 2019), and Asymmetric 
3D CNN architecture (Hao et al. 2018) have almost similar accuracy despite 
having diversity in the complex internal architecture. Principle Component 
analysis-based CNN architecture (Abdelbaky and Aly 2020) implicitly utilizes 
the Whitening Principal Component Analysis method and the block-wise 
histograms for the feature pooling layer. This compound network makes this 
CNN architecture completely different than others, and the evaluated result is 
87.5% on the KTH dataset.

A network designed by considering video data as time-series, LSTM based 
HAR methods have various architecture reported in the literature included in our 
work. Turning our attention to RNN-based LSTM architectures, we find that the 
LSTM network (Donahue et al. 2017; Ilya, Vinyals, and Le 2014; Taylor et al. 
2010; Thameri et al. 2011) learns spatiotemporal features more effectively than 
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CNN, which also outperforms. The work in (X. Wang et al. 2019) also suggests 
deeper architecture than (Carreira and Zisserman 2017) like models, which helps 
to improve the performances. To lead in competitive results on the HMDB-51 
and UCF-101 datasets, LSTM architecture (Lin et al. 2017; Zhenyang et al. 2018) 
achieves equal accuracy (84.5%), whereas (Ng et al. 2015; Srivastava, Mansimov, 
and Salakhutdinov 2015) reported more than 90% accuracy. Lately, both the 
CNN and RNN structures include 3D convolution filters (Wan et al. 2020b). 
Attention-based LSTM architecture uses a three-layer Bi-directional LSTM 
approach (Zhao and Jin 2020) but a comparatively lower result on HMDB51 
and Hollywod2 datasets than (Ilya, Vinyals, and Le 2014; Thameri et al. 2011). In 
Combined architecture(Crasto et al. 2019; Lin et al. 2017; Sheng et al. 2020), 
handcrafted and deep learning HAR methods formed a deeper network and gave 
spirited performance (above 90% accuracy) on UCF101, HMDB51 datasets. This 
indicates that the HAR method architecture developed by deep networks is 
complementary to the handcrafted approach. In most cases, we must mention 
that both deep learning networks and trajectory descriptors consider similar 
inputs – RGB and optical flow frames and observed that combining them gave 
the best result among all approaches.

Challenges

Although there has been significant progress over the past few years, there are 
still many challenges in applying Deep Learning models to build vision-based 
action recognition systems and bring their benefits to our lives. Various 
challenges for the human activity recognition task are low-quality videos 
because of long-distance, multisubject interactions and group activities and 
complex and changing backgrounds, intraclass variation, and interclass simi-
larity. In addition, the lack of a dataset is still a challenge. More HAR video 
datasets from various domains are highly required. Designing the algorithm 
for real-time recognition of human activity from multi-camera systems and 
camera-calibration are still a big challenge.

Future Research

Human activity recognition, a thrust area of video data processing research 
and new approaches, regularly solves HAR issues with the above-discussed 
advanced deep learning techniques. However, a study conducted by Jegham 
et al. (Jegham et al. 2020) shows that few significant challenges are still 
a huddle in video processing, such as background clutter, high computational 
complexity, responsiveness to illumination changes, fast irregular motion, 
occlusion, viewpoint changes, etc. Several advanced research are required to 
overcome these challenges. Many HAR future research topics and break-
through techniques that are interesting to investigate are listed below:
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Deep Learning Hybrid Network

A hybrid network structure of existing deep learning-based methods can be 
developed as a holistic approach to boost the feature extraction technique. It is 
considered that each algorithm is developed for specific feature extraction and 
learning purposes. Therefore, the tuning of few prominent methods can be 
useful in diverse HAR applications, rather than developing a technique for 
some particular dataset, restricted domain, and application. This hybrid net-
work may also be helpful to tackle the significant issues of HAR, such as – 
camera rotation angles, cluttered background, and occlusions.

Human Behavior Analysis

Human behavior analysis is a less explored area of HAR research. Detecting 
abnormal behavior and predicting subsequent activity based upon behavior 
could be the possible research area. This would be very useful for public 
security, surveillance, and other application for detecting abnormal action. 
For example, Sun et al. (B. Sun et al. 2021) prepared a dataset of students’ 
behavior in the classroom environment and designed an algorithm for beha-
vior analysis. The extension of similar work in other domains will give a novel 
direction to the researchers. Another conceivable direction is to analyze logical 
and semantic relations between behaviors and activity, including natural 
language processing (NLP) techniques.

Recognizing Complex Activities

Most of the existing HAR methods recognize simple actions, such as eating, 
running, sitting, jumping, etc. But in a real scenario, these simple actions are 
part of some complex activities: eating pasta, cleaning glass, cooking vegeta-
bles, etc. Complex activities are a series of multiple actions performed in 
a systematic order. Future research can be designing systems for recognizing 
complex activities that are composed of simple actions. The key technology for 
complex action recognition research could be the combination of data mod-
alities, such as RGB data, depth data, and skeleton data (Coppola et al. 2020).

Development of State-of-the-art HAR Dataset

The future direction of HAR research is motivated to develop a more realistic 
dataset. To overcome the challenges of real-time HAR, a new dataset could 
consider as a merger of existing homogenous datasets. Therefore, a complex 
model can consume a scale dataset to train, test, validate. However, every 
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dataset is considered a benchmark in its specific domain; uniting them would 
be more practical. Moreover, in the future, a standard parameter could be 
defined to annotate HAR datasets to fit with any model.

Efficient Transfer Learning

After the immense success of transfer learning in image processing, now 
emerging research is transfer learning for video processing (Chakraborty 
et al. 2021; Serpush and Rezaei 2021) on cross datasets, hyperparameter, fine- 
tuning, and utilization of pre-trained HAR models. A few pre-trained action 
recognition models like I3D pre-trained on ImageNet, and Kinetics400 data-
sets, SlowFast model, pre-trained on HMDB51/UCF101 datasets are freely 
available on MXNet4 to ease the researchers. This practice is a time-saver 
approach as well as helpful in the non-availability of high computation power. 
To set up a benchmark in transfer learning for video–processing in on urge.

Data Augmentation

Lack of datasets is often a huddle in HAR research; therefore, data augmenta-
tion techniques give a way to move on with on-the-fly generated data. 
Generative Adversarial Network(GAN) (X. Dai, Yuan, and Wei 2021) got 
immense popularity among the computer-vision community. It provides 
sophisticated domain-specific data augmentation and generative solutions, 
such as video-to-video translation. Other data augmentations techniques5 

can be explored and match up with the HAR methods to train the model on 
small datasets.

Leveraging High-Performance Computing Power

Analyzing human action data requires significantly increased computational 
power than still images when deep learning techniques are employed. 
Achieving fast and accurate action detection is a critical issue in real-time 
applications. The convergence of HPC-AI technologies (Huerta et al. 2020) 
indicates an appropriate research direction to harness the power of super-
computing to train a very deep network in a multi-GPU parallel computing 
platform for timely, quick, and accurate analysis in real-time. The high 
accuracy of real-time video processing is in high demand. These could be an 
important direction of future research on human action recognition – fast 
action detection in the spatiotemporal dimension. People perform actions 
differently and at different speeds; therefore, Real-time inferencing of algo-
rithms is a must.
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Conclusion

This review shows that much successful research has been done in human activity 
recognition on benchmark video datasets. Initially, applying CNNs at the frame 
level helped improve the HAR model’s accuracy compared to the traditional 
handcrafted manual feature-based extraction techniques. Later on, 3D-CNNs 
improved the accuracy of CNN’s by applying and processing a set of frames at 
a time. Many advanced HAR models started using RNNs and LSTMs to include 
the temporal component of the videos efficiently. The Two Stream Fusion method 
improved the performance over C3D without the extra parameters used in C3D. 
The TSN architecture has attempted to tackle two significant challenges in action 
recognition – overfitting due to small sizes and long-range modeling. However, 
extra computation power usage for pre-computing optical flow and related input 
modalities is still a problem. The choice of VLAD as an effective way of feature 
pooling was already proved long back. This model’s extension at an end-to-end 
trainable framework proven this technique extremely robust and state-of-the-art 
for most action recognition tasks in early 2017. By using hidden Two-stream, 
there was an improvement in speed and associated cost of prediction. The authors 
showed the dependency on slower traditional methods to compute optical flow 
with the automated generation of optical flow. It was observed that using T3D 
architecture; the results didn’t improve on I3D results, which can mainly be 
attributed to a much lower model footprint than I3D. The contribution of the 
model was the supervised transfer learning technique. All the papers included for 
review are from peer-reviewed journals, indexed in Scopus and Web of Science, 
and published between 2011 and 2021. However, the supporting evidence of 
related survey used to show the evolution of HAR methods (such as literature 
included for handcrafted feature-based approach) is older than 2011, and existing 
datasets for video processing are referenced arXiv too, such as(Carreira et al. 2018; 
Soomro, Roshan Zamir, and Shah 2012). We notice that most of the HAR 
methodologies developed even after the advent of big datasets like Kinetics, 
EPIC Kitchen, Something–Something, etc., have experimented on UCF 101 and 
HMDB51 datasets. In addition to this, we observe that HAR architectures 
achieved higher accuracy on UCF 101 than the HMDB51 dataset.

Endnotes

1. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp = &arnumber = 8197492
2. https://www.microsoft.com/en-us/p/azure-kinect-dk/8pp5vxmd9nhq?activetab = pivot 

%3aoverviewtab
3. International Conference on Machine Learning – https://icml.cc/, Computer Vision and 

Pattern Recognition – http://cvpr2021.thecvf.com/ etc.
4. https://cv.gluon.ai/model_zoo/action_recognition.html
5. https://github.com/okankop/vidaug
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