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Miloš Radovanovićb, and Sanja Brdara

aBioSense Institute, University of Novi Sad, Novi Sad, Serbia; bFaculty of Sciences, University of Novi Sad, 
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ABSTRACT
Allergenic pollen affects the quality of life for over 30% of the 
European population. Since the treatment efficacy is highly related 
to the actual exposure to pollen, information about the type and 
number of airborne pollen grains in real-time is essential for redu
cing their impact. Therefore, the automation of pollen monitoring 
has become an important research topic. Our study is focused on 
the Rapid-E real-time bioaerosol detector. So far, vanilla convolu
tional neural networks (CNNs) are the only deep architectures 
evaluated for pollen classification on multi-modal Rapid-E data 
obtained by exposing collected pollen samples of known classes 
to the device in a controlled environment. This study contributes to 
the further development of pollen classification models on Rapid-E 
data by experimenting with more advanced concepts of CNNs, 
residual, and inception networks. Our experiments included 
a comprehensive comparison of different CNN architectures, and 
obtained results provided valuable insights into which convolu
tional blocks improve pollen classification. We propose a new 
model which, coupled with a specific training strategy, improves 
the current state-of-the-art by reducing its relative error rate by 9%.
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Introduction

Pollen grains are structures in seed plants that protect male genetic material 
during transfer to female reproductive organs in sexual reproduction. About 
25% of vascular plants utilize wind for pollination (Culley et al. 2002). To 
increase success in fertilization, they rely on producing large quantities of 
pollen, exposed male flowers and anthers to simplify emission and improve 
the efficiency of aerodynamic properties of pollen grains to facilitate atmo
spheric dispersion. Anemophilous pollen grains are small, often circular with 
smooth surfaces and sometimes bearing additional structures that decrease 
their specific weight (i.e., air compartments or sacks).

During the flowering period, exposure to airborne pollen grains from wind- 
pollinated plants triggers allergic reactions and significantly decreases the 
quality of life for 30% of the world population sensitive to pollen (Burbach 
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et al. 2009). The sensations related to pollen are getting increasingly intense 
over time and can induce severe effects on health (Beggs 2017). The timing of 
flowering and pollen emission is species-specific and driven by environmental 
factors such as temperature and photoperiod (Dahl et al. 2013). Furthermore, 
the production and emission of pollen depend also on factors related to 
human activity, i.e., land use change and introduction of new species leading 
to the occurrence of new pollen types and global warming and increase of 
atmospheric CO2 leading to changes in timing and intensity of pollen season 
(Dahl et al. 2013).

Since the treatment efficacy for allergic diseases is highly related to exposure 
to pollen (de Weger et al. 2021), the information on the type and number of 
pollen allergens suspended in the air is essential for preventing their symp
toms. Besides timely information on exposure levels, pollen concentrations 
can be used to figure out trends in the annual rhythms of plants and anthro
pogenic changes (Ziska et al. 2011), in forestry research (Kasprzyk, Ortyl, and 
Dulska-Jez 2014) or crop forecasts (Oteros et al. 2014). Coupled with meteor
ological data, changes in the timing and intensity of pollen season can be 
monitored, which can be relevant to monitoring climate change (D’Amato 
et al. 2007). Finally, real-time measurements are of particular importance 
quality of forecast products since, as in meteorology, the assimilation of 
observation data is expected to improve the accuracy of predictions notably 
(Sofiev 2019).

Pollen identification is still done mostly manually with volumetric Hirst- 
type traps (Hirst 1952), where pollen impacts a moving adhesive tape, and the 
samples are examined manually with a microscope (Buters et al. 2018). Pollen 
can be easily discriminated against other bioaerosols using microscopic 
images. Methodology with Hirst allows pollen identification typically at the 
genus or family level, although within some groups, it is even possible at the 
species level (Bennett and Willis 2002). However, this manual method of 
counting pollen has apparent problems. Not only is it time-consuming and 
labor-intensive, but the information about pollen quantity is also delayed from 
a few days up to a few weeks. Furthermore, manual measurements have an 
error rate, which depends on the sampled area and the number of particles 
suspended in the air (Buters et al. 2022; Matavulj et al. 2022). Additionally, 
they are subjected to human errors and mistakes. However, several factors can 
also affect the accuracy of automatic measurements (Buters et al. 2022). But 
the biggest problem of manual measurements, which became apparent with 
the introduction of new pollen monitoring networks, is the lack of scalability 
since it requires additional time and a specialized workforce. Despite all the 
issues, this method still represents the standard for pollen monitoring. Up to 
2018, only 8 out of 525 pollen samples were automatic in Europe (Buters et al.  
2018).
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However, recent years have witnessed fast development of devices apply
ing a wide range of methods capable of bioaerosol detection in real-time 
(Huffman et al. 2019; Tummon et al. 2021). The device employed for this 
research is the Rapid-E real-time bioaerosol detector (Plair SA), which 
collects scattered light patterns and fluorescence information in real-time, 
representing particles’ morphological and chemical characteristics (Sauliene 
et al. 2019). Even though scattered light images explain the morphological 
characteristics of particles, the distinction of different pollen is not compar
able to the discrimination using microscopic images since the device works 
on another principle. Furthermore, the dataset containing particles recorded 
by Rapid-E and labeled for 24 pollen classes and two classes representing 
other (bio)aerosols were available for training the classification models 
(Tesendic et al. 2020).

Our work further contributes to the development of pollen classification 
models by adjusting more advanced concepts of CNNs, residual and inception 
networks, on Rapid-E data since they yielded better results on other datasets 
than vanilla CNNs (Krizhevsky, Sutskever, and Hinton 2012; Simonyan and 
Zisserman 2015). The motivation for this work is to improve on the current 
state-of-the-art results by proposing a high-performance solution to the pro
blem of pollen classification. Since the models classify 1-minute files in milli
seconds, the classification time in real-time is not critical. Therefore, our 
research focused on comprehensive experimental comparisons of different 
CNN architectures, which provided valuable insights into which computa
tional FE blocks can extract more discriminatory information and improve 
pollen classification on Rapid-E data when coupled with a specific training 
strategy.

Related Work

Since pollen classification has been heavily relying on grains’ morphological 
characteristics, many techniques based on microscopy have been developed, 
where deep learning models generally performed better than classic machine 
learning models (Viertel and König 2022). However, most techniques are not 
feasible in real time except for digital microscopy, where images are captured 
and analyzed automatically (Buters et al. 2022). This technique is implemented 
in the Helmut Hund BAA500, PollenSense APC, ACPD, and Aerotrap devices, 
where only for BAA500 device published peer-reviewed publications can be 
found. The algorithm segments particles of interest and classifies them (Oteros 
et al. 2020; Plaza et al. 2022). For segmentation and classification, deep 
learning methods yielded better results than classic machine learning algo
rithms (Boldeanu et al. 2022; Schiele et al. 2019). Besides digital microscopy, 
several other techniques for automatic pollen detection exist based on light- 
induced methods. Those include spectroscopy, scattering, and holography, 
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where signals from single particles exposed to laser light are used for describ
ing pollen morphological and chemical characteristics (Buters et al. 2022). 
Those techniques are applied in the Rapid-E (Plair), Poleno (Swisens), WIBS 
(Droplet Measurement Technologies), and KH-3000 (Yamatronics) devices. 
Sauvageat et al. (2020) have recognized six out of eight pollen taxa with an 
accuracy above 90%, combining the Polenos’ holography method with deep 
learning. However, the extension to other pollen taxa remains to be tested. 
O’Connor et al. (2014) obtained a strong positive correlation >0.9 for total 
pollen compared with Hirst data by implementing a fluorescence intensity 
threshold on the WIBS device. But no individual pollen taxa have been 
classified. Furthermore, with the KH-3000 device, Kawashima et al. (2007) 
obtained a positive correlation (>0.7) when compared with Hirst data for only 
three out of six pollen taxa since the device is designed to quantify particles in 
a predefined size range.

Recent studies addressing pollen classification on Rapid-E data experimen
ted with CNN-based type of models, primarily because of the Rapid-E data 
heterogeneity but also because of its noisiness which can be successfully 
suppressed with CNNs (Boldeanu et al. 2021; Matavulj et al. 2021; Sauliene 
et al. 2019; Tesendic et al. Simonyan and Zisserman 2015). CNNs operate 
automatic feature extraction. They are more noise resistant and perform better 
than classical machine learning algorithms on other datasets (Sothe et al.  
2020). So far, vanilla CNNs are the only CNN types experimented for pollen 
classification on Rapid-E data (Boldeanu et al. 2021; Sauliene et al. 2019; 
Simonyan and Zisserman 2015). Sauliene et al. (2019) tested multiple net
works consisting of different numbers of layers, number of feature maps in 
convolutions, kernel sizes in convolutional layers, number of network nodes, 
and adding regularization layers like dropout, batch normalization, and max
pool with different parameters. The architectures of the best FEs for each input 
are given in Table 1. Obtained features are then equalized in length by one 
fully-connected layer, concatenated, and the classification is performed 
(Figure 1).

Table 1. Feature extractors for each data type. Numbers in the convolution brackets correspond to 
the number of feature maps and the kernel size, respectively.

Scattered light image Fluorescence lifetime Fluorescence spectrum

batch normalization 
convolution(10, 5) 
relu activation

batch normalization 
convolution(70, (1, 7)) 
relu activation

batch normalization 
convolution(50, (1, 5)) 
relu activation

batch normalization 
convolution(20, 3) 
dropout(0.5) 
relu activation

batch normalization 
convolution(140, (1, 5)) 
relu activation

batch normalization 
convolution(100, 3) 
dropout(0.5) 
relu activation

batch normalization 
convolution(200, 3) 
dropout(0.5) 
relu activation
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A multi-modal convolutional neural network (CNN) has been trained to 
identify 24 pollen taxa with 65% accuracy (Simonyan and Zisserman 2015). 
This classification model was implemented in a system for automatic pollen 
classification and tested against the standard sampling with a Hirst-type 
method, obtaining a strong positive relationship with more than 0.5 
Spearman’s correlation coefficient for 14 out of 22 pollen classes (Simonyan 
and Zisserman 2015), and further research showed they could also detect 
starch particles in the ambient air with the same model (Sikoparija et al.  
2022). Boldeanu et al. (2021) improved the results by firstly training a CNN 
for each mode separately and then using the pretrained weights in a multi- 
modal network, which is why we implemented that training strategy. They 
reduced the error rate by 13% (Boldeanu et al. 2021), which is the current 
state-of-the-art in terms of accuracy. However, they used a reduced number of 
pollen classes.

To find the best model for pollen classification with Rapid-E data, we 
modified and tested more advanced concepts of FEs that performed better 
on the ImageNet dataset (Krizhevsky, Sutskever, and Hinton 2012; Simonyan 
and Zisserman 2015). These include residual networks (He et al. 2016), 
inception networks (Szegedy et al. 2015) and their improvements, Wide 
ResNet (Zagoruyko and Komodakis 2016), and ResNeXt (Xie et al. 2017). 
We have also tested the most famous vanilla CNNs: AlexNet (Krizhevsky, 
Sutskever, and Hinton 2012) and VGG net (Simonyan and Zisserman 2015), 
but only on the scattered light image since these models require bigger spatial 
dimensions of the input data. We compared those models with the state-of-the 
-art on Rapid-E data, which includes models with hyperparameters imple
mented from previous research (Sauliene et al. 2019; Simonyan and Zisserman  
2015) coupled with a training strategy for multi-modal networks that involves 

Figure 1. Multi-modal neural network architecture.
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training each mode separately and then combining them in one network 
(Boldeanu et al. 2021).

Models

Vanilla CNNs

FEs in Vanilla CNNs have a basic structure comprising layers stacked on each 
other. The input goes through one layer at a time in the order in which they are 
stacked. One of the most famous vanilla CNN is the AlexNet, the first end-to- 
end deep learning model that won the ImageNet challenge in 2012 
(Krizhevsky, Sutskever, and Hinton 2012). Simonyan and Zisserman, 2015 
replaced the 11 × 11 and 5 × 5 filters of AlexNet with a stack of 3 × 3 filters in 
the VGG network to reduce the number of parameters. However, the 
increased number of layers in the VGG network made the problem of vanish
ing gradient more apparent. While VGG networks are simple, they are still 
very computationally expensive (Simonyan and Zisserman 2015).

We implemented the AlexNet and the VGG16 network. Since these net
works have big receptive fields, it was impossible to implement them on 
fluorescence data. Therefore, we implemented VGG16 and AlexNet only on 
scattered light images. In AlexNet, we changed the first convolutional layer to 
have a 5 × 5 kernel size and no stride. Furthermore, we changed the final layer 
in both networks since our number of classes differs from the original 
network.

Residual Networks

As convolutional networks get deeper, the accuracy starts to saturate (He et al.  
2016). ResNet is considered a solution for degrading accuracy in deeper net
works. He et al. (2016) introduced shortcut connections that allow informa
tion to pass without any transformation, which is data-independent and 
parameter-free, so there are no additional computational costs. Those con
nections can be considered as obtaining a slightly altered representation of the 
input: as it passes through convolutional layers, the input x is transformed by 
some function F to F(x), representing edges, shapes, etc. of the original image. 
Therefore, x + F(x) represents a slight change in the input image (Figure 2a). 
The authors suggested that the residual functions can gain accuracy with 
increased network depth. The shortcut connections enabled the convergence 
speedup for deep networks. Furthermore, they solved the vanishing gradient 
problem since the gradients can flow directly through the skip connections 
backward from later layers to the first layer without losing information (He 
et al. 2016).
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We implemented an 18-layer residual network (ResNet18), where the 
reduction in spatial dimensions is achieved by increasing the stride instead 
of pooling operations (He et al. 2016). For the lifetime and spectrum data, the 
first convolutional layer was modified to take as input a monochrome image 
and implement a kernel of size 5 × 5, padding of 2 × 2, and no stride to save the 
dimensions. The final fully-connected layer was replaced for all three inputs to 
fit our classification problem regarding the number of classes. Even though 
ResNet18 is the smallest of the bunch, we wanted to experiment with even 
smaller networks to fit our dataset of small spatial dimension images. For that 
reason, we implemented ResNets that have from one to five residual blocks, 
with the Global Average Pooling (GAP) and without it. The networks with 
four and five residual blocks were prone to overfitting, so we introduced 
dropout to these networks to obtain better results.

Inception Network

To reduce the computational costs of CNNs while achieving state-of-the-art 
accuracy, Szegedy et al. (2015) proposed the inception block in GoogleNet, 
which was an important milestone for CNN development. Instead of going 
deeper by stacking convolutional layers on top of each other, the inception 
network implements wide inception blocks, which summarize filters of differ
ent sizes to obtain spatial information at various scales (Figure 2b). Input in 
the inception module convolves with three different filter sizes (1×1, 3 × 3, 5 ×  
5) and one max pooling layer. To make the network computationally cheaper, 
a bottleneck convolutional layer with a 1 × 1 filter is introduced before other 
large-size filters, except for the max pooling layer. The resulting outputs are 
concatenated and sent to the next module. In this way, the number of input 
channels is limited, and even though we are doing extra operations, the 
reduced number of input channels makes it worth it (Szegedy et al. 2016). 
Furthermore, GoogleNet introduced the concept of auxiliary learners to speed 
up the convergence rate by dealing with the vanishing gradient problem, 
which prevents the middle part of the network from “dying out” (He et al.  

Figure 2. Convolutional blocks of different CNN type.
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2016; Szegedy et al. 2015). In addition, GAP was used at the last layer instead of 
a fully connected layer, further decreasing the parameters from 138 million to 
4 million (Szegedy et al. 2015).

Similarly, as with ResNets, the first convolutional layer in GoogleNet for 
lifetime and spectrum data was replaced with the one with a kernel size of 5 ×  
5, a stride of 1 × 2, and padding of 2 × 2. The auxiliary and the final fully 
connected layers were replaced for all three inputs to output a vector of size 26, 
the number of classes for our specific problem. We also implemented 
GoogleNet with one to four inception blocks.

Wide Residual Networks

In deep residual networks, there is a possibility that some residual blocks do 
not learn anything since there is nothing to force the gradients to go through 
them. Therefore, they may contribute very little or nothing to learning, so 
a dropout was added between the convolutional layers instead of within 
a residual block, which forces the network to use all residual blocks 
(Srivastava, Greff, and Schmidhuber 2015). This idea was implemented by 
Zagoruyko and Komodakis (2016) in the Wide Residual Networks. They 
thought that the potential of ResNets lies in their residual units and therefore 
wanted to exploit the residual blocks to make a network wider than deep by 
increasing the number of feature maps in the convolutional layers.

We have implemented 50 layers deep Wide ResNet with a widening factor 
of 2. Note that the Wide ResNet with a widening factor of 1 is just ResNet. For 
fluorescence spectrum and lifetime data, the first convolutional and pooling 
layers were adapted to convolve and stride just over the image’s width since the 
height of these images is only 4 pixels. The final fully connected layer is 
adapted for all inputs to fit this classification problem.

ResNext

Xie et al. (2017) introduced the term “cardinality” to improve the inception 
network, which refers to the size of the inception block. They showed that an 
increase in cardinality significantly improves performance (Szegedy et al.  
2015). ResNeXt simplified GoogleNet by fixing the receptive field of the 
convolutional layers to 3 × 3 filters while still using residual learning to 
improve the convergence (He et al. 2016; Szegedy et al. 2015). The complexity 
of ResNeXt was regulated by applying 1 × 1 filters before 3 × 3 convolution 
(Larsson, Maire, and Shakhnarovich 2016).

We implemented 50 layers deep ResNeXt with the cardinality of N = 32 and 
the dimension of d = 256 (Figure 2c). ResNet 50 is a special case of ResNeXt 50 
with a cardinality of 1 and a dimension of 64. Similarly, as for the Wide 
ResNets, the first convolutional and pooling layers were adapted to convolve 
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and stride just over the image’s width for fluorescence spectrum and lifetime 
data. The final fully connected layer is adapted to output 26 classes for all 
inputs.

Dataset

Technology and Data

Laser-induced bioaerosol detector Rapid-E, produced by Plair SA, is an auto
mated instrument that continuously samples surrounding air and records 
airborne particles in real-time. It works on two physical principles by inter
acting with the particles with a deep-UV and an infra-red laser, resulting in 
scattered light and fluorescence patterns representing information about their 
morphological and chemical properties (Sauliene et al. 2019). It can detect 
particles of size 0.5–100 µm. However, the device employed for these experi
ments worked in the “smart pollen” mode, where only particles with an 
approximated size greater than 8 µm in optical diameter were detected 
(Sikoparija et al. 2019).

The first interaction of an infra-red laser with a particle is collected by 24 
spectral detectors representing different angles in the range of 45 to 135 
degrees relative to the laser light beam. Particles are illuminated multiple 
times depending on their size and shape, and the scattered light image is 
obtained, where the image’s width is not fixed. Additionally, a deep-UV laser 
excites the particle at 337 nm as it passes down the chamber. Light is collected 
by the 32 spectral detectors representing the particles’ emission wavelength in 
the range of 350 to 800 nm. The collection of light is repeated eight times with 
an interval of 500 ns. The laser light is then rotated to a second direction and 
interacts with a particle once again when the fluorescence duration is mea
sured for four spectral ranges: 350–400 nm, 420–460 nm, 511–572 nm, and 
672–800 nm (Figure 3).

Labeled Dataset

The labeled dataset for classification was available from the previous research 
study on pollen classification (Simonyan and Zisserman 2015). It is obtained 
by exposing the device to collected pollen samples in controlled environmental 
conditions. This process takes a few minutes for each class, provided that the 
pollen samples are already collected beforehand (Sauliene et al. 2019). The 24 
pollen classes (not referred to the taxonomical rank) are represented in train
ing set by pollen from one or more plant taxa as described in Matavulj et al. 
(2022), e.g., the class Artemisia consists of pollen from Artemisia absinthium 
L. and Artemisia vulgaris L. The dataset includes the following classes: Acer 
(ACER), Alnus (ALNU), Ambrosia (AMBR), Artemisia (ARTE), Betula 
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(BETU), Broussonetia (BROU), Carpinus (CARP), Corylus (CORY), Fraxinus 
excelsior (FRAX E), Fraxinus ornus (FRAX O), Juglans (JUGL), Morus 
(MORU), Pinaceae (PINA), Plantago (PLAN), Platanus (PLAT), Poaceae 
(POAC), Populus (POPU), Quercus (QUER), Salix (SALI), Taxaceae 
(TAXA), Tilia (TILI), Ulmus (ULMU), Urticaceae (URTI) and one class 
representing a collection of other pollen taxa which are present in air but in 
very low quantity (OTHER P). This class resulted in a low classification score 
in a previous study (Simonyan and Zisserman 2015). The results showed that 
the class is not contributing to the classification. However, we decided to keep 
it for the comparison of the results. Furthermore, we collected air measure
ments when no pollen was present in the ambient air, which included spores, 
starch, and other fluorescent material, represented by two additional classes in 
the dataset (STARCH, SPORES), so in the operational settings, the labeled 
dataset can better represent the variability of airborne particles.

Data Filtering and Preprocessing

The collected labeled dataset contains three types of measurements gathered 
for 535 718 particles. However, some particles have low-quality signals, which 
are filtered out from the dataset. Measurements with a scattered light image 
width lower than 450 pixels, a maximum lifetime index between 10 and 44, 
a maximum spectrum intensity higher than 2500, and four maximum 

Figure 3. Data instance of class Betula.
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spectrum indices between 3 and 10 are kept for further analysis. After filtering, 
measurements for 104 825 particles are included in the labeled dataset, repre
senting 20% of all measured particles. The number of data samples per class is 
given in Figure 4. Furthermore, data is preprocessed by centering the scattered 
light image, fixing its width, and removing two pixels from the top and bottom 
due to device dependence. Finally, the fluorescence signals are converted into 
images as in Simonyan and Zisserman (2015) and normalized into the 0–1 
range. Moreover, the signals of scattered light and fluorescence spectrum are 
smoothed. Detailed preprocessing steps are explained in Simonyan and 
Zisserman (2015).

Experiments and Results

Experimental Setup

We split the labeled dataset into train, validation, and test datasets. The 
training dataset used for training the models contains 80% of the data for 
each class, and the rest is split into validation and test datasets, containing 10% 
of data each. The former is used to tune the hyperparameters of models and 
validate their performance during training, and the latter to test the best- 
performing model to ensure there is no overfitting on the validation set. The 
impossibility of counting collected pollen grains before bulk sample for each 
pollen class passes through the device and the different percentages of dis
carded samples with preprocessing due to pollen particles’ morphological and 
chemical properties resulted in an imbalanced dataset. Therefore we created 
batches by sampling procedure that represents all classes equally. The batch 
size was 260, containing ten samples per class. Each batch takes ten new 
samples of each class until there are no new ones. Then, the samples start 
repeating in the same order. The sampling procedure for creating batches is 

Figure 4. Number of data samples per class (abbreviations defined in the Labeled dataset 
subsection) before and after preprocessing. The y-axis is limited for visibility since classes 
Poaceae and spores have 82,143 and 157,753 samples before preprocessing, respectively.
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done only once; therefore, all models were trained with the same order of data. 
The only difference was the training time – models with the lowest validation 
error were saved. Therefore, some models were trained with more epochs than 
others. All models implemented the log-softmax activation function and 
calculated loss with the negative log-likelihood function. The optimization is 
performed with the stochastic gradient descent with 0.9 momentum, and the 
learning rate was 0.0001 for uni-modal models and 0.001 for multi-modal 
networks. For faster training of the models, GPU acceleration was used. Since 
we have an imbalanced dataset, we have chosen to evaluate our models using 
accuracy, precision and recall, and F1 score. The precision measures how good 
the model is at classifying a sample as the correct class, the recall measures how 
correct are the predictions for one class, and the F1 score is defined as the 
harmonic mean of the precision and recall. Because we have a multiclass 
problem, the precision, recall, and F1 score are calculated for each class, 
weighted by the number of samples of that class, and then averaged, which 
can result in an F1 score that is not between precision and recall.

Uni-Modal Networks

For each of the inputs independently, we trained different networks: ResNet, 
GoogleNet, ResNet Wide, and ResNeXt, while for scattering images, we 
trained two more: AlexNet and VGG. All networks were trained with weights 
initialized randomly and weights trained on the reduced ImageNet dataset 
(Krizhevsky, Sutskever, and Hinton 2012; Simonyan and Zisserman 2015) 
Along with these networks, we have trained vanilla CNNs, adjusted 
GoogleNet with one to four inception blocks, and adjusted ResNet that has 
one to five residual blocks, with and without GAP (Hsiao et al. 2019). Since the 
four and five-block networks were prone to overfitting, we introduced dropout 
to those networks. Figure 5 shows the number of trainable parameters for each 
described network and input. Some networks have the same number of 
parameters no matter the input: GoogleNets, ResNet18, Wide ResNet, and 
ResNeXt, while the variations of ResNets with GAP have the same number of 
parameters for the fluorescence spectrum and lifetime.

Table 2 shows the results obtained with different networks for the scattered 
light image, fluorescence spectrum, and fluorescence lifetime data. Among the 
top-5 worst performing networks for each data type were Wide ResNet and 
ResNeXt, with random weights and weights pretrained on the ImageNet 
dataset. These networks were prone to overfitting after a few epochs, probably 
since the data was too small and contained a lot of noise. Furthermore, the 
variations of GoogleNet also had a low performance for the scattered light 
image, implying that the width of the inception module is not suitable for this 
data type and that sufficiently discriminatory features can be obtained without 
the width of the convolutional block. This is further noticeable for the 
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fluorescence lifetime data, where the difference between the best GoogleNet 
and the best ResNet was around 10%.

The top-5 best-performing networks were variations of ResNet, no matter 
the data type. The networks that implemented GAP performed the best for 
scattered light images, while for the fluorescence spectrum data, these were 
without GAP. This implies that for scattered light images, enough information 
can be preserved just by averaging the data over the spatial dimensions and 
that there is no need for fully-connected layers, which can introduce much 
more complexity to the models (Figure 5), while for the fluorescence spectrum 
data, there is more information than what is preserved after averaging and this 
information is best exploited with the fully-connected networks. In other 
words, the number of feature maps is not enough for the spectrum data to 

Figure 5. Number of parameters for each network and data type in a logarithmic scale.

Table 2. Performances of the uni-modal networks.
Accuracy Precision Recall F1 score

Scattered light image
Vanilla CNN 0.438 0.434 0.438 0.436
Best GoogleNet 0.427 0.445 0.427 0.436
Best ResNet 0.478 0.507 0.478 0.493
Wide ResNet 0.394 0.392 0.394 0.393
ResNeXt 0.400 0.414 0.400 0.407
AlexNet 0.460 0.492 0.460 0.476
VGG16 0.432 0.448 0.432 0.440
Fluorescence spectrum
Vanilla CNN 0.434 0.475 0.434 0.454
Best GoogleNet 0.447 0.459 0.447 0.453
Best ResNet 0.461 0.490 0.461 0.475
Wide ResNet 0.411 0.421 0.411 0.416
ResNeXt 0.399 0.438 0.399 0.419
Fluorescence lifetime
Vanilla CNN 0.493 0.489 0.493 0.490
Best GoogleNet 0.398 0.420 0.398 0.409
Best ResNet 0.492 0.510 0.492 0.501
Wide ResNet 0.319 0.320 0.319 0.319
ResNeXt 0.332 0.334 0.332 0.333
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be expressed in a way to contain the most information. For the fluorescence 
lifetime data, four of the top-5 best-performing networks included four and 
five-block ResNets, with and without GAP. The difference between them 
varies around 4%, but the clear winners are four-block ResNet and a vanilla 
CNN, and it’s a tossup between them (Table 2). For scattered light images, the 
best performance was obtained with a three residual block-ResNet using GAP, 
outperforming the vanilla CNN by 5% in accuracy and F1 score, while for the 
fluorescence spectrum also a three residual block-ResNet performed the best, 
this time without GAP, improving the vanilla CNN results by approximately 
2.5%. The difference between the worst and the best performing networks 
overall was the biggest for the fluorescence lifetime data as it is around 20%. 
The results are the most stable for the fluorescence spectrum data, for which 
the difference was around 7%. For the scattered light image, the difference 
was 13%.

Multi-Modal Networks

After training the networks for each of the inputs separately, the FEs of the 
best performing models, which were different variations of ResNets, were 
implemented in a multi-modal network, along with the vanilla CNNs for 
comparison with previous studies (Sauliene et al. 2019; Simonyan and 
Zisserman 2015). We can have multiple training strategies when dealing 
with multi-modal networks (Boldeanu et al. 2021):

(1) Train the model with random initialization of FE weights – weights not 
yet learned from the data. However, this approach disables the use of 
different learning rates or training times for different FEs, which can be 
a problem since some FEs can train faster than others, depending on the 
architecture of the FE, leading to some FEs overfitting while others are 
not fully trained yet (Boldeanu et al. 2021)

(2) Train the model with random initialization of FE weights and with 
intermediate outputs, as in (Boldeanu et al. 2021) - not only does the 
network classify with the common fully-connected layers, but each 
input does its separate classification, which should exploit FE layers 
for each of the inputs to the best of their abilities (Boldeanu et al. 2021). 
Here, the loss can be calculated in different ways. We have explored two 
options, one as recommended in (Boldeanu et al. 2021), and 
a straightforward summation of the losses: 

L ¼ Lmain þ 0:1� Lscattering þ Lspectrum þ Llifetime
� �

(1) 

L ¼ Lmain þ Lscattering þ Lspectrum þ Llifetime (2) 
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(3) Train the whole model (FEs and the classifier) with pretrained FE 
weights – FE weights are first learned on each input separately and 
then utilized in the multi-modal network. If we train each FE indepen
dently, we can choose different learning rates and training times for 
each FE. That way, we can obtain an optimal solution for each data type 
(Boldeanu et al. 2021). However, training the whole multi-modal net
work with a classifier that is not yet learned can corrupt the FE weights 
previously learned on each input separately. Therefore, we utilized the 
following strategy:

(4) Training just the model’s classifier with pretrained FE weights – training 
just the fully-connected part of the network, the FE weights are frozen 
during training, i.e., they are not changed

(5) unfreezing the FE layers of the model learned with the training strategy 
4. and fine-tuning it

Figure 6 shows the results of training multi-modal vanilla CNNs and 
ResNets by applying the previously described training strategies. As noticed 
in some other studies (Boldeanu et al. 2021; Sauliene et al. 2019), the results of 
the multi-modal classification exceed the performance of any uni-modal net
work trained on an individual feature, making the features seem complemen
tary. With each learning strategy, we observed an increase in the performances 
of both models. Multi-modal vanilla CNN outperforms ResNet when FE 
weights are initialized randomly in both training settings: training with just 
one classifier (by 4%) or with intermediate classifiers with loss defined as (2) 
(by 1%). Training a network with intermediate outputs with the loss is defined 
as (1) yielded worse performance for both vanilla CNN and ResNet, where the 
difference for vanilla CNN was 2%, while for ResNet, it was 12%. The perfor
mances of both models are equal when the whole network is trained with 
pretrained FE weights. The results when the pretrained FE weights are frozen               

Figure 6. F1 score of multi-modal networks for different training setups.
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are better for both models, which makes sense since training a whole network 
with random weights for the classifier yields too big of a step in which the 
weights are updated at the beginning of the training.

The direct comparison of model performances with the state-of-the-art on 
Rapid-E data is impossible since the authors of that work used a different 
dataset containing only 11 classes (Boldeanu et al. 2021). However, by imple
menting a training strategy (4), we obtained a model on our dataset compar
able with the state-of-the-art: a multi-modal vanilla CNN with pretrained 
features. As a result, the ResNet network now outperforms vanilla CNN by 
4%, obtaining a relative reduction in the error rate of 9%. Fine-tuning the 
networks improves the classification performance, although very little. It 
should be noted that a multi-modal ResNet has 13.9 million parameters, 5.6 
times more than a multi-modal vanilla CNN.

Analyzing the confusion matrix of the best classification model (Figure 7), 
we observe that most classes have good classification: four classes have a > 90% 
classification rate, nine have between 80% and 90%, and five have between 70% 
and 80%. The confusion between Alnus, Betula, Corylus, and Quercus is                                                    

Figure 7. Confusion matrix of the best-performing multi-modal network.
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expected since they have similar morphology and fluorescence patterns 
(Boldeanu et al. 2021). The lower score of Betula and Fraxinus ornus could 
be due to the low number of data samples in the labeled dataset (Figure 4). 
However, the most problematic classes are Carpinus, Juglans, Other pollen, 
and Quercus, where 58% of Carpinus and 54% of Juglans are classified as 
Quercus, while Quercus is classified as Juglans (33%), Other pollen (23%), and 
Plantago (20%). These results were expected from the previous analysis 
(Simonyan and Zisserman 2015). The class Other pollen encompasses eight 
different pollen classes, which is probably why it’s mixed a lot with other 
classes. Analyzing the fluorescence spectrum data for the rest of the mixing 
classes shows why, in part, those classes are confused by the model. The signals 
for the mixing classes overlap much more than the Taxaceae class, which has 
a good classification (Figure 8). This is further noticed in the precision, recall, 
and F1 scores when looking at each class separately (Figure 9). Classes Juglans, 
Other pollen, and Quercus have precision and recall close to zero, while 
Carpinus is a little better (complementary to Figure 7). Furthermore, 
Fraxinus ornus has very low recall; therefore, its F1 score is also low.

Accurate classification is a prerequisite for application in the operational 
mode. However, it should be emphasized that because of flowering seasonality, 
all pollen types classified in this study never overlap. Therefore, the presented 
results are expected to underestimate the performance in the operational 
setup, as confirmed in previous studies (Matavulj et al. 2022; Simonyan and 
Zisserman 2015). From the end-user perspective, false positives are equally 
unwanted as false negatives, with particular importance to avoiding misclassi

Figure 8. The average fluorescence spectrum data with standard deviation for Carpinus, Juglans, 
Quercus, and Taxaceae.
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fications at the beginning of the season when the cause and treatment of the 
first symptoms are to be determined. The uncertainty of classifications should 
be reported with the result, and additional quality control procedures sug
gested by Crouzy et al. (2022) could limit the number of misidentifications. It 
should be noted that for individual patients, the quantities measured at the 
usual monitoring locations (i.e., single point measurement at roof level) have 
limited value because the exposure takes place at street level and is not limited 
to a single location during the day. The real-time measurements are of utmost 
importance for atmospheric dispersion models as they allow improvements 
via data assimilation, and they can handle data coming with known 
uncertainty.

Conclusion

This paper evaluates more advanced architectures of CNNs for pollen classi
fication on Rapid-E data and proposes a new model which, coupled with 
a specific training strategy, improves the current state-of-the-art. So far, vanilla 
CNNs are the only CNN types experimented for pollen classification on 
Rapid-E data (Boldeanu et al. 2021; Sauliene et al. 2019; Simonyan and 
Zisserman 2015). Therefore, we wanted to further contribute to the develop
ment of pollen classification models by adjusting more advanced concepts of 
CNNs, residual, and inception networks since they yielded better results on 
other datasets compared to vanilla CNNs (Krizhevsky, Sutskever, and Hinton  
2012; Simonyan and Zisserman 2015). Although all tested models were 
expected to improve on the vanilla CNN since they yielded better results on 
other datasets, most of the models did not achieve that, implying that model 
implementation depends heavily on the data. However, residual networks 
improved over the vanilla CNNs for each data type (Table 2). We further 
showed that this is not the case for the multi-modal settings when learning 
starts from random weights. This is probably because the multi-modal ResNet 
has 5.6 times more parameters than a vanilla CNN, so learning new 

Figure 9. Precision, recall, and F1 score for each class (abbreviations defined in the Labeled 
dataset subsection).
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information from features of smaller spatial dimensions is more challenging 
when there are a lot of trainable parameters. However, when the pretrained 
weights of FEs are implemented from the models trained on each input 
separately, the multi-modal ResNet gains a boost and outperforms the vanilla 
CNN. To conclude, we have improved the current state-of-the-art with 
ResNets. Still, their use is not straightforward and requires adaptation and 
specific training strategies to surpass the vanilla CNNs on the examined pollen 
classification task.
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