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ABSTRACT 
 

This review briefly summarises the literature concerning our current understanding of the aetiology 
and immunopathogenesis of sarcoidosis, and the identification of novel markers of this disease. 
Although the immune paradox is a key part of sarcoid immunology, the mechanisms underlying this 
remarkable phenomenon are not well understood. Biomarkers may further the current 
understanding of the granulomatous inflammation seen in sarcoidosis. Exhaled breath condensate 
(EBC) is a novel, minimally invasive tool to sample the fluid lining the respiratory tract. EBC can be 
used to identify sarcoid specific biomarkers, which may shed light on the sarcoid immune paradox.  
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1. INTRODUCTION 
 

Sarcoidosis is a rare multi-system inflammatory 
disorder that is characterised by the formation of 
non-specific, non-caseating granulomas. While 
first described in the 19th century, there is much 
about the disease that is yet unknown, including 
its aetiology and pathogenesis [1,2]. Notably, the 
disease entails what is known as the “immune 
paradox”, with the coexistence of intense 
localised granulomatous inflammation and 
peripheral anergy (poor response to common 
antigens in vitro and in vivo) [3]. 
 

Sarcoidosis has been reported worldwide in 
males and females, but distinctive differences in 
manifestation have been identified in particular 
ethnic and racial groups [1,4]. Sarcoidosis has 
variable organ involvement. While it typically 
involves the pulmonary (>90%) and lymphatic 
systems, it can also affect the skin, and 
cardiovascular and neurological systems. 
Clinically apparent disease is generally limited to 
a few organs however, and is typically fixed 
within the early presentation of the disease [5]. 
Sarcoidosis is most often asymptomatic (>60%), 
but can manifest with non-specific constitutional 
or organ-specific presentations [6]. Currently, 
while no “gold standard” diagnostic tests or 
pathognomonic criteria exist for sarcoidosis, 
compatible clinical and radiological findings guide 
clinicians towards the diagnosis. 
Characteristically, the histological appearance of 
non-caseating epitheliod cell granulomas 
obtained via invasive tissue biopsy warrants the 
exclusion of other known causes of such 
inflammation such as tuberculosis [5,7].  
 

The clinical course which sarcoidosis follows is 
difficult to predict. Most patients require no 
treatment; those who do, improve with moderate 
doses of corticosteroid therapy [8]. While two-
thirds of patients experience remission post 
diagnosis, for up to 30%, the condition is chronic 
and progressive. In most of these patients, 
unremitting disease leads to the destruction of 
lung structure and irreversible loss of lung 
function [5]. While mortality in sarcoidosis is 
<5%, given the unpredictable course of the 
disease, a major area of interest in research is to 
prospectively identify patients with unfavorable 
outcomes. Currently there is much interest in 
determining a minimally invasive and sensitive 
method of diagnosing and staging sarcoidosis 
[5,9,10] 

 

This report reviews current literature on sarcoid 
aetiology and immunopathogenesis, and 

describes current methods for the detection of 
immunological mediators in patients with 
sarcoidosis. 
 

2. DISCUSSION 
 

2.1 Aetiology 
 

The aetiology of sarcoidosis remains unclear and 
no single causative agent has been identified. 
Due to the heterogeneous nature of the disease, 
it is postulated that sarcoidosis may not 
represent a single disease entity, but a reaction 
pattern common to multiple independent 
causative agents and dependent on host factors 
[11,12]. Controversy exists however, as evidence 
from clinical studies also supports the 
presumption that sarcoidosis involves a directed 
immune response to a small number of specific 
antigens [13]. Ultimately candidate aetiological 
agents must be able to induce the T-helper    
(Th)-1 driven formation of the non-caseating 
sarcoid granuloma, and yet allow for the varying 
clinical manifestations and outcomes of the 
disease. Additional research has been directed 
towards genetic profiles and environmental 
exposures associated with the sarcoid immune 
response, as it has long been suspected that 
exposure to extrinsic antigens in a genetically 
susceptible individual triggers the amplified 
sarcoid inflammatory reaction [10-12]. 

 

A genetic predisposition to developing 
sarcoidosis has been suspected due to two main 
observations; firstly, that the disease clusters in 
families [14]. The multicenter epidemiological 
study ‘A Case Control Etiologic Study of 
Sarcoidosis (ACCESS)’ demonstrated a 
significant elevated risk of sarcoidosis among 
first- and second-degree relatives of sarcoidosis 
cases compared with relatives of matched 
control subjects. Increased concordance in 
monozygotic twins compared to other siblings 
was also found [15] Secondly, the frequency of 
sarcoidosis varies widely between ethnicities and 
populations from different geographic regions 
around the world, with higher prevalence rates in 
Scandinavian, Japanese and African American 
populations [2,15,16].  

 

The notion of a genetic predisposition to 
sarcoidosis has been supported by the success 
of various genetic association and family studies 
in identifying genes implicated with sarcoid risk. 
While no unifying genetic signature has been 
discovered, a number of genes have been linked 
to particular sarcoid subtypes in specific 
populations [17]. This delineates the complex, 
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polygenic nature of genetic susceptibility in 
sarcoidosis, and the need for population 
stratification and careful clinical phenotyping of 
patients in future research [18].  
 

While investigation of genes has focused 
primarily on association with the Human 
Leukocyte Antigen (HLA) genes, genome-wide 
studies have also implicated a range of non-HLA 
genes. Many of these have been implicated in 
affecting sarcoid risk, phenotype, or outcome 
[14,19], and they are summarised in Table 1.  
 

There are suggestions that some genotypes that 
predispose to sarcoidosis may also be linked to 
detrimental autoimmune responses. Antigenic 
peptides recognised as auto-antigens in various 
conditions, including vimentin, ATP synthase, and 
lysyl tRNA synthetase, were identified in the 
bronchoalveolar lavage (BAL) fluid of sarcoid 
patients with the HLA-DRB1*0301 genotype [37]. 
These peptides also elicited strong autoimmune 
T-cell responses in the peripheral blood and BAL 
fluid of HLA-DRB1*0301 patients. The 
pathological significance of these antigenic 
peptides in the aetiology of sarcoidosis however, 
remains unclear [38]. 
 

Ultimately, it appears that sarcoidosis is 
associated with a complex genetic risk profile of 
many variant genes. Future research is needed to 
clarify the genetics of sarcoidosis and identify 
specific signatures with clinical relevance [17].  
As DNA polymorphisms have so far been unable 
to explain the phenotypic variability seen within 
sarcoidosis, of recent interest are small sections 
of non-coding RNA called microRNA [39], which 
will be discussed later. 
 

Epidemiological studies have provided a basis for 
the suggestion that environmental exposure may 
act as a risk factor for developing sarcoidosis 
[40]. This notion has been supported by the 
similar histological pattern of inflammation found 
in sarcoidosis and other granulomatous lung 
diseases including tuberculosis and chronic 
beryllium disease, which both have established 
environmental aetiological agents [41]. Table 2 
summarises the evidence available regarding the 
role of specific environmental agents in 
contributing to sarcoidosis. 
 

2.2 Pathogenesis 
 
The immunopathogenesis underlying 
sarcoidosis is not entirely understood. It has 
been postulated that extrinsic factors such as 
those outlined in Table 2 could represent 

potential antigens responsible for triggering 
the sarcoid immune response. Antigen 
presenting cells (APCs), which are mostly 
macrophages or dendritic cells (DCs), 
phagocytose this presumptive antigen and 
display the antigen peptide (AP) on the 
surface HLA Class II molecule [67]. When the 
AP is displayed by an APC to a compatible T-
cell receptor (TCR) of a naïve CD4 + T-cell, 
the T-cell is activated. Effective T-cell 
activation is also dependent on the binding of 
co-stimulatory molecules (CD28) on the cell 
surface to specific ligands on the APC (CD80) 
[68,69].  
 
Upon TCR activation, naïve T-cells are then 
induced to develop a Th1 phenotype and 
secrete an array of Th1 cytokines. The sarcoid 
immune response has thus long been 
described as a Th1 response, with Th2 
involvement implicated in the eventual 
outcome of granulomatous inflammation [70]. 
Recently however, other relevant mechanisms 
including Th17 and Natural Killer T- cells have 
been identified, although a full overview          
of these is beyond the scope of this review 
[71-73]. 
 
Predominantly, the production of Th1 cytokines 
Interleukin-2 (IL-2) and Interferon-γ (IFN-γ) is 
amplified. IL-2 is a local growth, survival and 
differentiation factor for T-cells and thus its 
autocrine production results in clonal 
proliferation of CD4+ T-cells [67,74]. IFN-γ, has 
shown to be highly expressed in the BAL fluid 
of patients with sarcoidosis, promotes 
granulomatous inflammation and inhibits 
fibrosis and also been implicated in the 
activation of alveolar macrophages [75]. Given 
the critical role of IFN-� in the formation of the 
sarcoid granuloma, considerable interest exists in 
its action, and mechanisms involved in its 
production [76]  (Figure 1). TCR activation results 
in amplified IFN-γ transcription and enhanced 
Tbx21 gene expression. Enhanced Tbx21 
expression then leads to an increase in the 
production of T-bet, a protein increasing IFN-γ 
transcription [77]. A significant function of IFN-γ is 
ultimately to inhibit the activity of the 
immunosuppressive molecule peroxisome 
proliferator-activated receptor-γ (PPAR-γ) within 
APCs. Under typical conditions, PPAR-� 
promotes the production of immunosuppressive 
IL-10. Thus its inhibition by IFN-γ means the 
immunosuppressive effects of IL-10 are 
minimised, promoting inflammation and tissue 
damage [78]. 
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Table 1. List of genes implicated in sarcoidosis 
 

                                                                       Genes 
HLA-genes HLA-DQB1 Predisposition demonstrated in Japanese, Swedish, British, Dutch, German and African American populations [19-23] 

HLA-DRB1*01 & HLA-DRB1*04 Protective & under-represented in patients [24]. 
HLA-DRB1∗14 & HLA-DRB1∗15 Increased risk & disease chronicity [20,25] 
HLA-DRB1*03 In Swedish patients, linked to Löfgren’s syndrome & disease remission [26], and spontaneous resolution [20] 

Non-HLA genes Toll-like receptors  Some alleles associated, but inconclusive links [27-30]. 
RAGE transmembrane receptor Gene mutations linked to sarcoid. Close proximity to HLA region means association may instead be due to linkage with 

HLA genes [31].   
BTLN2 Gene mutations linked to sarcoidosis in German & Caucasian, but not African American patients. [25, 32, 33] 
TNF Mutation associated increased risk [34] 
Annexin A11 Mutation associated with sarcoidosis; unconfirmed [35]. 
Chromosome region 5p &5q Regions with disease susceptibility in African American patients [36] 

 
Table 2. List of non-infectious and infectious causative agents implicated in sarcoidosis 

 
Nature  Causative agent  Evidence for link to sarcoidosis Evidence against link to sarcoidosis 

`Non infectious Environmental& 
occupational exposure 

 Agricultural employment, pesticides, insecticides, 
organic solvents, and mould/mildew exposure 
[40,42].  

 Rural lifestyle (wood stove & fireplace usage) [43] 
 Nanoparticulates (common minerals & metals) 

linked to immune dysregulation [44] 

 No dominant environmental factor [17]. 
 No positive or negative association to previously hypothesised 

exposure materials (wood dust, metals) [11,17,40].   
 Microbial exposure may be contributing trigger rather than 

coexisting environmental exposure [45]  

Transplantation   Granulomatous inflammation post bone marrow 
transplant [46], heart and lung transplants [47-49]. 

 

Infectious Mycobacteria 
 
 
 
 

 PCR evidence of mycobacterial nucleic acid 
[50,51] 

 Mycobacterial antigens elicit increased responses 
in sarcoid CD4+ and CD8+ T cells compared to 
controls [52-58]. 

 Mycobacterial organisms not found in routine acid-fast stain 
and culture of sarcoid specimens [59] 

 Mycobacterial DNA not in all patients with sarcoidosis [60,61] 
 No evidence of active/reactivated latent tuberculosis in patients 

with sarcoidosis receiving corticosteroid treatment [17] 
Propionibacterium spp.  Higher proprionibacterial DNA in sarcoid BAL fluid 

[62] 
 Healthy lung &mediastinal tissue culture yields this commensal 

organism [63] 
Viruses, fungi & other 
infectious agents  

 Increased incidence in communities with higher 
fungal exposure. Anti-fungal medications shown to 
improve disease outcome [64].  

 Serum antibodies to human herpes virus-8, herpes 
simplex virus, and Epstein-Barr virus elevated in 
patients with sarcoidosis [65] 

 Viruses do not cause epithelioid-type granulomas & no known 
mechanism for granuloma formation via molecular mimicry 
after viral exposure [17]. 

 Elevated serum antibodies may be due to non-specific 
polyclonal hypergammaglobulinemia common in sarcoidosis 
[66]. 



 

Figure
Enhanced IFN-γ transcription, Tbx21 expression and the activity of certain Signal Transducers and Activators of 

Transcription (STAT) fa

 
APCs secrete a number of cytokines that 
promote the Th1 immune response. 
IL-12 and IL-18 act synergistically to 
upregulate IFN-γ expression [79]
been shown to perform a similar function to 
IL-2 in that in acts as a proliferative factor for 
T-cells, even binding to IL-2R to trigger growth 
[74]. TNFα acts to upregulate IL
and induce the expression of IL
encouraging CD4+ T cell proliferation and 
survival. Ultimately, the milieu of inflammatory 
cytokines result in granuloma formation 
 
Granulomas are the histologic hallmark of 
sarcoidosis and develop largely from the 
aggregation of cells around inflammatory foci 
in an attempt to localise the inciting antigen. 
This is a chemotactic process that occurs v
the induction of cell adhesion molecules and 
their ligands, and increased expression of Th1 
cytokines and their receptors 
outcome of the granuloma is either resolution 
or fibrosis. Disease remission is postulated to 
occur due to antigen clearance and/or 
increased IL-10 leading to suppression of Th1 
cell and APC activity. Alternatively, disease 
chronicity results in a predominance of Th2 
cytokines, resulting in lung remodelling by 
fibrosis [83,84]. 
 
Structurally, the core of the granuloma 
consists of macrophages, epithelioid cells, and 
multinucleated giant cells interspersed with 
CD4 T-cells. These cells are encircled by 
CD8+ T-cells, regulatory T-cells, fibroblasts 
and B-cells which become predominant as th
granulomatous inflammation regresses to give 
way to fibrosis [76,85]. An abundance of 
serum amyloid A (SAA) proteins have also 
been found in sarcoid granulomas where they 
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survival. Ultimately, the milieu of inflammatory 
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Granulomas are the histologic hallmark of 
sarcoidosis and develop largely from the 
aggregation of cells around inflammatory foci 
in an attempt to localise the inciting antigen. 
This is a chemotactic process that occurs via 
the induction of cell adhesion molecules and 
their ligands, and increased expression of Th1 
cytokines and their receptors [76]. The 
outcome of the granuloma is either resolution 
or fibrosis. Disease remission is postulated to 
occur due to antigen clearance and/or 

10 leading to suppression of Th1 
atively, disease 

chronicity results in a predominance of Th2 
cytokines, resulting in lung remodelling by 

rally, the core of the granuloma 
consists of macrophages, epithelioid cells, and 
multinucleated giant cells interspersed with 

cells. These cells are encircled by 
cells, fibroblasts 

cells which become predominant as the 
granulomatous inflammation regresses to give 

. An abundance of 
serum amyloid A (SAA) proteins have also 
been found in sarcoid granulomas where they 

are capable of eliciting Th1 immune responses 
through the Toll-like Receptor 2 (TLR2) 
expressed on APCs [86]. 
 
Despite this localized 
sarcoidosis also entails anergy in sites 
unaffected by inflammatory hyperactivity. 
Notably, cutaneous anergy to certain antigens 
and lymphopenia in the periperhal blood have 
been noted in patients with sarcoidosis. This 
coexistence of localised granulomatous 
inflammation with peripheral anergy is known 
as the “immune paradox” of sarcoidosis 
number of theories have been postulated to 
explain this remarkable phenomenon, 
including the paradoxical activity of T
regulatory cells, impaired dendritic cell 
function and defective T-cell co
[83,87]. Some differences in the inflammatory 
activity between the peripheral
disease sites are outlined in Table 
 
However this difference between the 
immunological responses at disease sites 
compared to the rest of the body is not always 
pronounced. Multiple studies indicate that 
several inflammatory markers including
angiotensin-converting enzyme, 
chitotriosidase, soluble IL-2 receptor, IL
18, neopterin, monocyte chemoattractant 
protein-1 and TNF receptors, are significantly 
altered peripherally, and at sites of localized 
granulomatous inflammation [84,
 
Ultimately, the mechanisms underlying the 
pathogenesis of sarcoidosis and particularly 
the immune paradox are complex, and further 
research is required to understand this 
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inflammation with peripheral anergy is known 
as the “immune paradox” of sarcoidosis [3]. A 
number of theories have been postulated to 
explain this remarkable phenomenon, 
including the paradoxical activity of T-
regulatory cells, impaired dendritic cell 

cell co-stimulation 
. Some differences in the inflammatory 
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disease sites are outlined in Table 3. 

However this difference between the 
immunological responses at disease sites 
compared to the rest of the body is not always 
pronounced. Multiple studies indicate that 
several inflammatory markers including 

converting enzyme, 
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Ultimately, the mechanisms underlying the 
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the immune paradox are complex, and further 
research is required to understand this [82]. 



 
 
 
 

Amin et al.; BJMMR, 5(6): 734-748, 2015; Article no.BJMMR.2015.077 
 
 

 
739 

 

Table 3. Peripheral anergy and localized granulomatous inflammation 
 

Feature Peripheral blood Localized inflammatory activity 
Lymphocytes  
[80-82] 

o Reduced levels of circulating  
T-cells.  

o Normal/slightly reduced 
CD4+:CD8+ cell ratio 

o Increased levels of activated  
T-cells 

o Elevated CD4+:CD8+ cell 
ratio  

Anti-proliferative  
T-regulatory cells: 
 Global amplification  

[3,13] 
 CD4+CD25brightFoxP3

+ cells accumulation [3] 

 
 
o Suppress cell-mediated 

systemic immune response  
o Anti-proliferative effect on  

naïve T-cells 

 
 
o Unable to control localized 

inflammation 
o Weakly inhibit TNFα 

production  

 

2.3 Detection of Biomarkers 
 
Methods by which the immunopathogenesis of 
sarcoidosis has been studied have evolved over 
time, from the use of blood and serum, to BAL 
fluid, which provides insight into the inflammatory 
processes occurring at the lungs [96]. As 
sarcoidosis affects the lungs in the majority of 
patients [17], this is a particularly useful means to 
study inflammatory cells and mediators at the 
sites of disease activity in patients with 
sarcoidosis. While BAL fluid is reported to have 
high positive predictive values for the diagnosis 
of sarcoidosis (in the absence of other causes) 
by detecting lymphocytosis with elevated 
CD4+/CD8+ T-cells in a ratio of more than 3.5 
[97,98], the interpretation remains controversial 
[99,100].  
 
Recently, elevated levels of exhaled eicosanoids 
8-Isoprostane (8-IP) and cysteinyl leukotrienes 
have been detected in the BAL fluid of patients 
with sarcoidosis. The lack of correlation between 
these eicosanoids and the percentage of 
lymphocytes in BAL fluid however, suggests they 
are poor markers of disease activity [101,102]. 
Despite this, 8-IP levels have been shown to 
reflect disease persistence, indicating it may be 
useful as a prognostic marker [103].  

 
Notably, BAL fluid has provided insight into the 
inflammatory profile of the disease. Ex-vivo 
studies have demonstrated a greater activation 
of unstimulated CD4+ and CD8+ T-cells in BAL 
fluid compared to peripheral blood lymphocytes 
[104]. This compartmentalisation of the sarcoid 
immune response has also been confirmed with 
increased expression of Th1 chemokine and 
cytokine receptors (CXCR3, CCR5, IL-12R, IL-
18R) in CD4+ T cells in sarcoid BAL fluid 
compared to peripheral blood [105], which is 
stimulated by IFN-γ activity [106] 

 

Under unstimulated conditions, the difference in 
percentages of IFN-γ secreting CD4+ 
lymphocytes in BAL fluid and peripheral blood of 
patients with sarcoidosis is insignificant 
[107,108]. After stimulation with ionomycin and 
phorbol12-myristate acetate however, there was 
a notable increase in levels of IFN-γ secreted by 
CD4+ T-cells was detected in the BAL fluid of 
patients with sarcoidosis [109]. Upon stimulation, 
elevation of the number of CD4+ IFN-γ + cells 
was detected in the BAL fluid of patients with 
sarcoidosis compared with healthy controls 
[110,111]. 
 
Although a number of other inflammatory 
mediators have been detected in the BAL fluid of 
patients with sarcoidosis, BAL and other 
methods (e.g. transbronchial biopsy) are 
considered too invasive for repeated use 
[112,113]. Induced sputum has been considered 
as an alternative method for sampling airway 
secretions in patients. Although the CD4+:CD8+ 
T cell ratio  and TNFα levels in induced sputum 
correlated strongly with that in BAL fluid, no 
correlation has been found in differential cell 
count [114]. Ultimatey, the usefulness of this 
technique is called into question as induced 
sputum primarily samples the more proximal 
airways, potentially providing an incomplete 
picture of airway inflammation in sarcoidosis. 
[115,116]. More importantly, while less invasive 
than BAL, there is concern that induced sputum 
collection is still too invasive a means by which to 
sample airway secretions [117]. 
 
Thus there remains a need to identify a minimally 
invasive sampling method by which to 
comprehensively assess sarcoid inflammation 
[80,112,113]. Considerable attention has 
therefore been paid to exhaled breath 
condensate (EBC), a simple and minimally 
invasive method of sampling airway-lining fluids. 
EBC has been shown to be useful for analysing 



 

exhaled breath markers and is less invasive 
compared to BAL fluid [118,119].  
 
An EBC collecting device is illustrated in 
Figure 2. During exhalation, water droplets and 
volatile molecules (e.g. nitric oxide, carbon 
monoxide) diffuse as gases. Non
molecules (e.g. leukotrienes, prostanoids) from 
the airway lining fluid join this gaseous mixture, 
which then condenses with th
refrigerator device [120]. There are, however 
technical limitations to EBC analysis. While BAL 
fluid notably provides relevant biological material, 
problems of dilution apply to both BAL and EBC
[118,121]. The lack of a dilution denominator 
means that quantitative assessment of 
inflammatory mediators is limited, and the 
absence of standardised analytical procedures 
limits comparison between laboratories 
 
The device consists of glass condensing 
chamber, which is cooled by ice. EBC collects 
between the two glass walls and falls to the 
bottom of the outer glass container in a liquid 
form [117]. 
 
Although total protein is at much higher levels in 
BAL fluid compared to EBC, a number of 
mediators have been detected in the EBC of 
patients with sarcoidosis [113,118]. In particular, 
levels of TNFα, Insulin- like growth factor
(IGF-1), and plasminogen activator inhibitor

Figure 2. Schematic dia
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exhaled breath markers and is less invasive 

An EBC collecting device is illustrated in     
2. During exhalation, water droplets and 

volatile molecules (e.g. nitric oxide, carbon 
monoxide) diffuse as gases. Non-volatile 
molecules (e.g. leukotrienes, prostanoids) from 
the airway lining fluid join this gaseous mixture, 
which then condenses with the aid of a 

e are, however 
technical limitations to EBC analysis. While BAL 
fluid notably provides relevant biological material, 
problems of dilution apply to both BAL and EBC 

. The lack of a dilution denominator 
means that quantitative assessment of 
inflammatory mediators is limited, and the 

rdised analytical procedures 
limits comparison between laboratories [119]. 

The device consists of glass condensing 
hich is cooled by ice. EBC collects 

between the two glass walls and falls to the 
bottom of the outer glass container in a liquid 

Although total protein is at much higher levels in 
BAL fluid compared to EBC, a number of 

ted in the EBC of 
. In particular, 

like growth factor-1  
1), and plasminogen activator inhibitor-1 

(PAI-1) have been identified in EBC as closely 
correlating with BAL fluid samples. 
found that IL-6 levels however, were significantly 
lower in EBC compared to BAL fluid though this 
is potentially attributable to likelihood that IL
formed high molecular weight complexes 
compared to other cytokines. On the whole, 
these findings indicate the ability of EBC to mirror 
cytokine production in the lung as effectively as 
BAL fluid [122]. Another study detected TGF
PAI-1, TNFα, IL-8 and vascular endothelial 
growth factor in sarcoid EBC, though it had a 
small sample size and lacked a control group 
[123].  
 
Elevated levels of exhaled eicosanoids (8
and cysteinyl leukotrienes detected in BAL fluid 
have also been detected in EBC. These 
eicosanoids are unlikely to be useful mediators 
for sarcoid disease activity, as levels did not 
correlate with lymphocyte percentage in BAL 
fluid [101,102,124]. While other inflammatory 
mediators discovered in BAL fluid and serum of 
patients with sarcoidosis (such as eosinophils, 
neutrophils, serum angiotensin converting 
enzyme, soluble IL-2R and neopterin) have been 
suggested as potential EBC biomarkers 
128], few have demonstrated sufficient sensitivity 
and specificity [129]. Aside from a few recent 
studies, most inflammatory mediators are yet to 
be assessed in the EBC of patients with 
sarcoidosis [113]. 

 

 
2. Schematic diagram representing an EBC device 
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be assessed in the EBC of patients with 
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Few studies have compared findings in EBC and 
BAL fluid with peripheral blood. A comparison of 
markers of oxidative stress in the EBC and 
serum of patients with sarcoidosis found 
significantly elevated levels of hydrogen peroxide 
only in exhaled breath [130]. Recently, a study 
found significantly reduced levels of IFN-γ in 
peripheral blood mononuclear cell supernatant of 
patients with sarcoidosis, contrasting with 
elevated levels detected in EBC. This disparity in 
EBC and peripheral blood results is considered a 
refection of the immunological paradox inherent 
within sarcoidosis [131]. Although a number of 
immunological mediators have been detected in 
EBC, further research is required to identify 
suitable biomarkers specific to sarcoidosis, 
particularly those which signify the differing 
immunological states of disease sites compared 
with peripheral blood [117,132]. The potential of 
interferon modulators as novel EBC biomarkers 
is discussed below. 
 

2.4 Novel Immunological Markers 
 
MicroRNA (miRNAs) are small non-coding 
segments of RNA that act post-transcriptionally 
to inhibit mRNA production. They exist within 
exosomes, which are small secretory vesicles 
allowing transfer of miRNA between cells [133]. 
Through the dysregulation of fundamental 
biological processes, abnormal tissue miR-29 
expression has been associated with the 
pathogenesis of various cancers and fibrotic and 
obstructive lung disease [134-136], and in the 
fibrotic progression of sarcoidosis [39]. 
MicroRNA PCR array analysis has identified the 
down-regulation of a number of miRNAs in the 
BAL fluid of patients with sarcoidosis, although 
further research is required to determine the 
significance of the identified miRNA sequences 
[137]. 

 
MicroRNA 29 (miR-29) has been found to 
modulate IFN-� productionby directly targeting 
IFN-γ mRNA [138,139]. Specifically, miR- 29a 
and miR-29b have been demonstrated to be 
down-regulated in IFN γ -secreting T cells. The 
miR-29 deficiency is believed to initiate a positive 
feedback loop which enhances IFN-γ  
production. Mice with suppression of miR-29 
activity demonstrated enhanced Th1 responses 
and greater resistance to infection with 
Mycobacterium tuberculosis [139,140]. A recent 
study in our laboratory identified impaired 
expression of miR-29a in EBC of patients with 
sarcoidosis compared to healthy controls (Loke 
et al. [141] unpublished), suggesting that miR-29 

family members may potentially be implicated in 
sarcoid pathogenesis. 
 
PPAR-� has been implicated in a number of 
chronic inflammatory conditions [142]. In BAL 
fluid of patients with sarcoidosis, alveolar 
macrophages were found have lower levels of 
PPAR-�, although only a small sample size was 
studied [143]. In another study, PPAR-� gene 
expression was found to be decreased and IFN- 
� significantly elevated in BAL fluid of patients 
with severe, treatment-requiring sarcoidosis. In 
patients with mild disease, levels of PPAR-� 
were comparable to that of controls but still 
accompanied by increased IFN-�, suggesting 
that PPAR-� rather than IFN-� levels best 
correlates with disease severity [144].  
 
There is a paucity of studies that measure 
PPAR-� levels and expression in the EBC or 
PBMCs of patients with sarcoidosis. The 
literature also lacks studies of miR-29b 
expression in EBC or PBMCs of patients with 
sarcoidosis compared to healthy controls.  
 

3. CONCLUSION 
 
Sarcoidosis is a multi-system inflammatory 
disorder characterized by non-specific, non-
caseating granulomas. Currently the aetiology 
and pathogenesis of the disease are unclear, 
complicating the diagnosis and staging of 
patients with sarcoidosis [17]. As the majority of 
patients with sarcoidosis have pulmonary 
involvement, EBC and results from PBMC 
activation can offer novel insights into the 
“immune paradox” associated with sarcoidosis. A 
range of inflammatory mediators have been 
identified in sarcoid EBC, but further research is 
needed to identify sarcoid specific biomarkers 
involved in the pathogenesis [113]. 
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