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Abstract

This paper study mathematical theory, called the max-plus algebra, which have the wherewithal

for a uniform treatment of most problems that arise in the area of Operations Research. The

basic properties of max-plus algebra is also explained including how to solve systems of max-plus

equations.

In this paper, the discrepancy method of max-plus is used to solve n×n andm×n system of linear

equations where m ≤ n. From the examples presented, it is clear that an n× n system of linear

equations in (Rmax,⊕,⊗) and (R,+, ·) either had One solution, an Infinite number of solutions

or No solution. Also, both m× n system of linear equations (where m < n) in (Rmax,⊕,⊗) and

(R,+, ·) have either an infinite number of solutions or no solution. It is therefore clear that many

charateristics of the max-plus algebraic structure can be likened to the conventional mathematical

structures. Max-plus is used to solve different types of matrix operations.

We also applied max-plus algebra in solving linear programming problem involving linear

equations and inequalities.
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1 Introduction

Max-plus algebra is defined as the algebraic structure in which simple addition and multiplication
are replaced by τ⊕ψ = max(τ, ψ) and τ⊗ψ = τ+ψ, respectively. Each system of linear equations in
max-plus algebra can be written in the matrix form B⊗x = ψ, where B is a matrix and ψ is a vector
of suitable size. The max-plus algebra emerged in the late 1950’s, soon after the area of Operations
Research started to develop [1]. This algebraic structure (Max-plus algbra) is a semi-ring whose
elements are the typical real numbers in addition to −∞, where the operator of multiplication,
⊗, represents standard addition and the operator of addition, ⊕, represents taking a maximum of
the real numbers been added [2, 3]. Because there is no additive inverse in the max-plus algebra,
problem formulation and solutions require different techniques [4].

2 Algebraic Characteristics of Max-Plus Algebra

The max-plus algebra is an algebraic structure made up of real numbers where the traditional
operations of multiplication is substituted by the operation of standard addition and addition is
substituted by the operation of taking a maximum of the real numbers [5]. Indubitably, for all
τ, ψ, γ ∈ Rmax, the operations ⊗ and ⊕ can be defined in max-plus algebra as τ ⊗ ψ = τ + ψ
and τ ⊕ ψ = max(τ, ψ) respectively. For instance, 5 ⊗ 3 = 5 + 3 = 8 = 3 + 5 = 3 ⊗ 5 and
7⊕ 5 = max(7, 5) = 7 = max(5, 7) = 5⊕ 7.

In max-plus algebra ϵ = −∞ is the additive identity: τ⊕ϵ = ϵ⊕τ = max(τ,−∞) = τ , for τ ∈ Rmax.

The multiplicative identity is e = 0: τ ⊗ e = e⊗ τ = τ + 0 = τ , for all τ ∈ Rmax.

Also the distributive property also exist in max-plus algebra, that is: τ⊗(ψ⊕γ) = τ+max(ψ, γ) =
max(τ + ψ, τ + γ) = (τ ⊗ ψ)⊕ (τ ⊗ γ). This shows that ⊗ is distributive over ⊕, [6].

The above obviously proves that ⊗ and ⊕ are commutative and do comply with other properties
comparable to the traditional × and + in algebra, [6]. Other properties of max-plus algebra are:

• Multiplicative inverse, if τ ̸= ϵ then ∃ a distinct ψ with τ ⊗ ψ = e.

• Unit Element, τ ⊗ e = e⊗ τ = τ

• τ⊗(−∞) = τ+(−∞) = −∞. Hence the additive identity, ϵ, is absorbing under multiplication,
thus for τ ∈ Rmax,−∞⊗ τ = −∞ = τ ⊗ (−∞).

• Undoubtedly, the operation of taking a maximum is commutative and associative [7], therefore
(Rmax,⊕) is an abelian semi-group [8]. (Rmax,⊕) is not a group, because τ ∈ (Rmax has an
additive inverse iff τ = −∞

• The solution to τ ⊕ ϵ = ψ is ϵ = ψ iff ψ ≥ τ . If ψ = τ , it follows that the solution for ϵ can
be any number equal to or less than ψ, and τ + ϵ = ψ has no solution if ψ ≤ τ . The system
τ + ϵ = −∞ has a solution only if τ = −∞. For the reason that τ + τ = τ , each element of
(Rmax) is idempotent with regard to ⊕.

• The existence of a zero element τ ⊕ ϵ = ϵ⊕ τ = τ .

3 Matrices in Max-Plus Algebra

Max-plus algebra can be used in matrices [9]. Matrix addition in max-plus can only be performed
on matrices of the same dimensions [10]. The results from the matrix sum A⊕B is the maximum
from the corresponding entries. Whilst the scalar multiplication of a matrix in max-plus is where
each entry of the matrix is increased by the scalar.
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A zero matrix is a matrix that has all the entries being −∞, which is being denoted by −∞.

An identity matrix has its diagonal as a 0 and the other entries being −∞. It is denoted by 0. For
any matrix B and I of the same dimensions I ⊗B = B ⊗ I

Suppose X = [τij ], Y = [ψij ], and Z = [γij ] be m × n matrices with elements in (Rmax) and
q ∈ (Rmax), then:

X ⊕ Y = [τij ⊕ ψij ] = [max(τij , ψij)]
q ⊗ Y = [q ⊗ ψij ] = [q + ψij ] = [ψij + q] = Y ⊗ q.

Also suppose X = [τij ] be m × n matrix and Y = [ψij ] be n × p matrix with elements in (Rmax),
then:

XY is the m×p matrix whose i, j entry is (τi1⊗ψ1j)⊕ (τi2⊗ψ2j)⊕· · · (τin⊗ψnj) = max(τik+ψkj)

3.1 Numerical Examples of Max-plus on Matrix Operations

Let X =

[
3 0
−2 4

]
, Y =

[
6 1

−∞ 9

]
and q = 2, where X,Y ∈ Rn×nmax

3.1.1 Matrix addition (X ⊕ Y )

X ⊕ Y =

[
3 0
−2 4

]
⊕

[
6 1

−∞ 9

]

X ⊕ Y =

[
3⊕ 6 0⊕ 1

−2⊕−∞ 4⊕ 9

]
X ⊕ Y =

[
6 1
−2 9

]
3.1.2 Scalar multiplication (q ⊗X)

q ⊗X = 2⊗
[
3 0
−2 4

]
q ⊗X =

[
2⊗ 3 2⊗ 0
2⊗−2 2⊗ 4

]
q ⊗X =

[
5 2
0 6

]
3.1.3 Matrix multiplication (X ⊗ Y )

X ⊗ Y =

[
3 0
−2 4

]
⊗

[
6 1

−∞ 9

]
X ⊗ Y =

[
(3⊗ 6)⊕ (0⊗−∞) (3⊗ 1)⊕ (0⊗ 9)
(−2⊗ 6)⊕ (4⊗−∞) (−2⊗ 1)⊕ (4⊗ 9)

]
X ⊗ Y =

[
9⊕−∞ 4⊕ 9
4⊕−∞ −1⊕ 13

]
X ⊗ Y =

[
9 9
4 13

]
Multiplication of matrices in (Rmax,⊕,⊗) is associative, that is, X ⊗ (Y ⊗ Z) = (X ⊗ Y )⊗ Z but
not commutative , thus, X⊗Y ̸= Y ⊗ X. It is only commutative when X = Y or when one of them
is a unit matrix. This is where X,Y and Z are matrices with entries from Rmax.
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4 Systems of Equations in Max-algebra

Let Bx = ψ, where B is a matrix and ψ and x is a vector of any allowable adimension. Bx = ψ can
be rewritten into the following detailed matrix equation and then the equivalent system of max-plus
equations:

Bx = ψ
b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bn1 an2 · · · bnn




x1
x2
...
xn

 =


ψ1

ψ2

...
ψn


(b11 ⊗ x1) ⊕ (b12 ⊗ x2) ⊕ · · · ⊕ (b1n ⊗ xn) = ψ1

(b21 ⊗ x1) ⊕ (b22 ⊗ x2) ⊕ · · · ⊕ (b2n ⊗ xn) = ψ2

...
...

...
...

...
(bn1 ⊗ x1) ⊕ (bn2 ⊗ x2) ⊕ · · · ⊕ (bnn ⊗ xn) = ψn

Written in standard notation, the following system is solved simultaneously:

max{(b11 + x1),(b12 + x2), · · · , (b1n + xn)} = ψ1

max{(b21 + x1),(b22 + x2), · · · , (b2n + xn)} = ψ2

...

max{(bn1 + x1),(bn2 + x2), · · · , (bnn + xn)} = ψn

First, we consider the case that a solution exists and some of the entries of ψ is −∞. Without loss
of generality, the equations can be reordered so that the finite entries of ψ occur first:


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bn1 bn2 · · · bnn




x1
x2
...
xn

 =



ψ1

...

ψk

−∞
...

−∞


Written in standard notation, the following system of equations are obtained:

max(b11 + x1, b12 + x2, · · · , b1n + xn) = ψ1

...

max(bk1 + x1, bk2 + x2, · · · , bkn + xn) = ψk

max(b(k+1,1) + x1, b(k+1,2) + x2, · · · , b(k+1,n) + xn) = −∞
...

max(bn1 + x1, bn2 + x2, · · · , bnn + xn) = −∞

The finite part of B is assumed to be B1 with dimensions k× l, that of ψ be ψ′ = [ψ1, · · · , ψk]′ and
that of x be x′ = (x1, · · · , xl)′

It can be noted that if Bx = ψ has a solution , then xk+1 = xn = −∞, and Bx′ = ψ′. Thus,
Bx = ψ has a solution if and only if x′ is a solution to B1x

′ = ψ′ and solutions to Bx = ψ are
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x = [x′ ,−∞ , · · · ,−∞]′

The solvability of a system with infinite entries in ψ can consequently be reduced to that of a system
where all the entries in ψ are finite. For that reason attention will be limited to systems Bx = ψ
where all the entries of ψ are finite. If there is to be a solution to the system of max-plus equations,
then bij + xj ≤ ψ for all i ∈ {1, ..., n} and j ∈ {1, ..., n}. To find a solution to the system, firstly
consider each component of x separately. When x1 is considered for example, if there is a solution
to the system, then bi1 + x1 ≤ ψi for i = 1, 2, 3, ..., n. Thus x1 ≤ ψi − bi1 for each i leads to the
following system of upper bounds on x1:

x1 ≤ ψ1 − b11
x1 ≤ ψ2 − b21

...
x1 ≤ ψn − bn1

If this system of inequalities has a solution, then it satisfies:

x1 ≤ min{(ψ1 − b11), (ψ2 − b21), ..., (ψn − bn1)}

Similarly, the possible solutions for x2, · · · , xn can be found, giving the following system of inequalities
on the entries of x:

x1 ≤ min{(ψ1 − b11), (ψ2 − b21), · · · , (ψn − bn1)}
x2 ≤ min{(ψ1 − b12), (ψ2 − b22), · · · , (ψn − bn2)}

...

xn ≤ min{(ψ1 − b1n), (ψ2 − b2n), · · · , (ψn − bnn)}

This leads to the candidate for the solution to Bx = ψ, which will be denoted by x′.

x′ =


x1
x2
...
xn

 where

x1 ≤ min{(ψ1 − b11), (ψ2 − b21), ..., (ψn − bn1)}
x2 ≤ min{(ψ1 − b12), (ψ2 − b22), ..., (ψn − bn2)}

...
xn ≤ min{(ψ1 − b1n), (ψ2 − b2n), ..., (ψn − bnn)}

To simplify the process of solving a system of max-plus equations, another matrix can be introduced.
The discrepancy matrix, DB.ψ can be define as follows:

ψ1 − b11 ψ1 − b12 · · · ψ1 − b1n
ψ2 − b21 ψ2 − b22 · · · ψ2 − b2n

...
...

. . .
...

ψn − bn1 ψn − bn2 · · · ψn − bnn


Note that DB.ψ is simply a matrix with all the upper bounds of the xi’s and that each xi can be
found by taking the minimum of the jth column of DB.ψ.

Another matrix is formed from DB.ψ called reduced discrepancy matrix, RB.ψ:
RB.ψ = (rij) where

rij =

{
1 if dij=mininum of column j
0 otherwise

RB.ψ is useful in predicting the number of solutions to the matrix equation Bx = ψ.
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4.1 Solving Systems of Equations in Max-algebra

Example 4.1. Max-plus system with One solution

To solve Bx = ψ, where B =

 1 −9 4
−4 18 −8
2 1 −4

, x =

x1x2
x3

, and ψ =

 1
−6
−3



Calculate the discrepancy matrix: DB.ψ =

 0 10 −3
−2 −24 2
−5 −4 1


Taking the minimum of each column of DA.b gives the solution

x′1 = min(0,−2,−5) = −5
x′2 = min(10,−24,−4) = −24
x′3 = min(−3, 2, 1) = −3

The candidate solution to Bx = ψ becomes x′ = (−5,−24,−3)T . It can be verified that this is the
only solution to Bx = ψ by substituting it back in: 1 −9 4

−4 18 −8
2 1 −4

 −5
−24
−3

 =

 max(−4,−33, 1)
max(−9,−6,−11)
max(−3,−23,−7)

 =

 1
−6
−3


This will therefore be the only solution to the matrix equation as it will be shown later.

Example 4.2. Max-plus system with Infinitely many solutions

To solve Bx = ψ, where B =

1 1 3
2 −1 0
4 0 −1

, X =

x1x2
x3

, and ψ =

63
2



Calculate the discrepancy matrix: DB.ψ =

 5 5 3
1 4 3
−2 2 3


Taking the minimum of each column of DB.ψ gives the solution

x′1 = min(5, 1,−2) = −2
x′2 = min(5, 4, 2) = 2
x′3 = min(3, 3, 3) = 3

The candidate solution to Bx = ψ becomes x′ = (−2, 2, 3)T . This solution can be verified by
substituting it back in 1 1 3

2 −1 0
4 0 −1

−2
2
3

 =

max(−1, 3, 6)
max(0, 1, 3)
max(2, 2, 2)

 =

63
2


X’ is therefore a solution to the given matrix equation. It can be seen that there are other feasible
solution. Any x of the form {x : x = (u, v, 3)T where u ≤ −2 and v ≤ 2} is also a solution to the
given matrix equation.

Example 4.3. Max-plus system with No solutions

To solve Bx = ψ, where B =

2 −1 −1
0 4 3
1 2 0

, X =

x1x2
x3

, and b =
55
7



6
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The discrepancy matrix: DB.ψ =

3 6 6
5 1 2
6 5 7


Which gives the solution of x′ = (3, 1, 2)T .
x′ is verified to see that it is not a solution.2 −1 −1

0 4 3
1 2 0

31
2

 =

max(5, 0, 1)max(3, 5, 5)
max(4, 3, 2)

 =

55
4

 ̸= b =

55
7


It can be noticed that the underlined entry is not in congruous with the entry of ψ. However, a
solution x must satisfy x1 ≤ 3, x2 ≤ 1, and x3 ≤ 2 because the components of x′ are the upper
bounds. It can be seen from the third row that max(x1 + 1, x2 + 2, x3 + 0) ≤ 4 < 7.

A reduced discrepancy matrix RB.ψ is use to predict the number of solutions to the matrix equation
Bx = ψ. The table below shows the various examples and their DB.ψ and RB.ψ. Where the
minimum occurs in each column of DB.ψ has been underlined for each entries. Note that they are
the ‘one’ entries of each correspond RB.ψ.

Table 1. Example of the Various solutions and their minimum entries underligned

Example DB.ψ RB.ψ

One Solution

 0 10 −3
−2 −24 2
−5 −4 1

 0 0 1
0 1 0
1 0 0



Infinite Solutions

 5 5 3
1 44 3
−2 2 3

 0 0 1
0 0 1
1 1 1



No Solutions

3 6 6
5 1 2
6 5 7

 1 0 0
0 1 1
0 0 0



The minimum entry of the column, j, in the DB.ψ matrix is the maximum solution to the system
of inequalities for xj . To alter this system of inequalities to a system of equalities, there must be
an equality in each row inequality, thus, there must be at least one minimum in each row of DB.ψ
there must be at least one in each row of RB.ψ for a solution to exist.

‘1’ in the jth column of RB.ψ signifies the minimum of the upper bounds for xj . If there are no
other ‘1s’ in the row where a ‘1’ occurs, the only way that the equation corresponding to that row
can be solved is to have xj achieve the bound. This causes the value of xj to be fixed at a specific
value, making it a variable-fixing entry. This can be illustrated by underlining the variable-fixing
entries for the examples in the table below:
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Table 2. Variable-fixing entries

Example RB.ψ

One Solution

0 0 1
0 1 0
1 0 0



Infinite Solutions

0 0 1
0 0 1
1 1 1



No Solutions

1 0 0
0 1 1
0 0 0



From the table above, to consider the RB.ψ for one Solution, all the non-zero entries are variable-
fixing entries. The first row equation fixes the x3 component where x3 = −3. The second row
equation fixes the x2 component where x2 = −24. Finally, the third row equation fixes the x1
component where x1 = −5 making all the components of x to be fixed.

There are slack entries in RB.ψ for Infinite Solutions. The first row equation fixes the x3 component,
x3 = 3. The component solution to the second row equation has already been fixed by the first row
equation. In the third row equation, there are three possible ways for equality to be achieved, is
either x1 = −2, x2 = 2 or x3 = 3. But x3 which is 3, has already been fixed. As long as x1 ≤ −2
and x2 ≤ 2, no problem can be caused.

For RB.ψ in the example of No Solution, because there exist a third row of RB.ψ containing zeros
(or no 1’s), there is No solution for the system of equations which does not fulfil the condition that
there must be at least one minimum in each row of DB.ψ, thus there must be at least a ‘1’ in each
row of RB.ψ for a solution to exist.

The above analysis explain that the method used works for all n× n system of equations.

Example 4.4. Max-plus system with only One solution

To solve Bx = ψ, where B =


5 −1 −1 −1
−1 4 −1 −1
−1 −1 3 −1
−1 −1 −1 4

, x =


x1
x2
x3
x4

, and ψ =


1
1
1
1



The discrepancy matrix: DB.ψ =


−4 2 2 2
2 −3 2 2
2 2 −2 2
2 2 2 −3


Taking the minimum of each column of DB.ψ gives the solution

x′1 = min(−4, 2, 2, 2) = −4
x′2 = min(2,−3, 2, 2) = −3
x′3 = min(2, 2,−2, 2) = −2

8
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x′4 = min(2, 2, 2,−3) = −3

The candidate solution to Bx = ψ becomes x′ = (−4,−3,−2,−3)T .

This solution can be verified by substituting it back in
5 −1 −1 −1
−1 4 −1 −1
−1 −1 3 −1
−1 −1 −1 4



−4
−3
−2
−3

 =


max(1,−4,−3,−4)
max(−5, 1,−3,−4)
max(−5,−4, 1,−4)
max(−5,−4,−3, 1)

 =


1
1
1
1


This will be the only solution to the matrix equation which we will show later by the reduced
discrepancy (RB.ψ).

Example 4.5. Max-plus system with Infinitely many solutions

To solve Bx = ψ, where B =


4 −1 1 1
−1 3 −1 −1
−1 0 −3 −1
1 1 0 −2

, x =


x1
x2
x3
x4

, and ψ =


1
0
−1
0



Calculate the discrepancy matrix: DA.b =


−3 2 0 0
1 −3 1 1
0 −1 2 0
−1 −1 0 2


which gives the solution of x′ = (−3,−3, 0, 0)T . This solution can be verified by substituting it
back in 

4 −1 1 1
−1 3 −1 −1
−1 0 −3 −1
1 1 0 −2



−3
−3
0
0

 =


max(1,−4,−2,−2)
max(−4, 0,−4,−4)
max(−4,−3,−3,−1)
max(−2,−2, 0,−2)

 =


1
0
−1
0


x′ is therefore a solution to the given matrix equation. There are other solutions that also work.
Any x of the form {x : x = (u,−3, 0, 0)T , where u ≤ −3} is also a solution to the given matrix
equation.

Example 4.6. Max-plus system with No solutions

To solve Bx = ψ, where B =


1 1 1 1
1 2 2 4
−1 1 −1 −1
−1 3 1 −1

, x =


x1
x2
x3
x4

, and b =


2
1
−6
−2



The discrepancy matrix: DB.ψ =


1 1 1 1
0 −1 −1 −3
−5 −7 −5 −5
−1 −5 −3 −1

 which gives the solution of x′ =

(−5,−7,−5,−5)T .
x′ is verified to see that it is not a solution

1 1 1 1
1 2 2 4
−1 1 −1 −1
−1 3 1 −1



−5
−7
−5
−5

 =


max(−4,−6,−4,−4)
max(−4,−5,−3,−1)
max(−6,−6,−6,−6)
max(−6,−4,−4,−6)

 =


−1
−1
−6
−4

 ̸= b =


2
1
−6
−2


It is noticed that the underlined entries congruos with the entry of ψ. A solution X must satisfy
x1 ≤ −5, x2 ≤ −7, x3 ≤ −5 and x4 ≤ −5 because the components of X ′ are the upper bounds.
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It is seen from the first, second and fourth row that max(x1 + 1, x2 + 1, x3 + 1, x4 + 1) ≤ −1 < 2,
max(x1 + 1, x2 + 2, x3 + 2, x4 + 4) ≤ −1 < 1, and max(x1 − 1, x2 + 3, x3 + 1, x4 − 1) ≤ −4 < −2
respectively. The matrix equation therefore has No solution.

The table below shows the various examples and their DB.ψ and RB.ψ.

Table 3. Max-plus system with One, Infinite and No solutions, and their
corresponding DB.ψ and RB.ψ.

Example DB.ψ RB.ψ

One Solution


−4 2 2 2
2 −3 2 2
2 2 −2 2
2 2 2 −3



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Infinite Solutions


−3 2 0 0
1 −3 1 1
0 −1 2 0
−1 −1 0 2



1 0 1 1
0 1 0 0
0 0 0 1
0 0 1 0



No Solutions


1 1 1 1
0 −1 −1 −3
−5 −7 −5 −5
−1 −5 −3 −1



0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 0



To consider RB.ψ for One Solution, all the non-zero entries are variable-fixing entries. The first
row equation fixes the x1 component where x1 = −4. The second row equation also fixes x2, where
x2 = −3. The third row also fixes x3, where x3 = −2. Finally, the fourth row equation fixes x4,
where x4 = −3. This has made all the x components to be fixed.

There are slack entries in RB.ψ for Infinite solutions. The first row has three feasible solutions to
achieve equality, is either x1 = −3, x3 = 0 or x4 = 0. x3 component is chosen, where x3 = 0. The
second row fixes x2, where x2 = −3. The third row equation fixes the x4 component, where x4 = 0.
The component solution to the fourth row equation has already been fixed by the first row.

For the RB.ψ in No solutions, there are three rows, thus, the first, second and fourth containing
zeros ( no 1’s ). This does not fulfil the condition for a solution to exist. Therefore the system of
equations has No solutions.

We also applied this discrepancy method to a system of m×n equations where m < n. An example
of such a system that we used was a 3-by-4 systems of equations.

Example 4.7. Max-plus system with Infinite solutions

To solve Bx = ψ, where B =

0 −1 1 1
1 2 2 −1
1 3 1 0

, x =


x1
x2
x3
x4

, and ψ =

23
2


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The discrepancy matrix: DB.ψ =

2 3 1 1
2 1 1 4
1 −1 1 2

 which gives the solution of x′ = (1,−1, 1, 1)T .

X’ is therefore a solution to the given matrix equation.0 −1 1 1
1 2 2 −1
1 3 1 0




1
−1
1
1

 =

max(1,−2, 2, 2)
max(2, 1, 3, 0)
max(2, 2, 2, 1)

 =

23
2


It can be seen that there are other solutions that is also feasible. Any x of the form {x : x =
(u, v, 1, w)T , where u ≤ 1, v ≤ −1, and w ≤ 1} is also a solution to the given matrix equation.

Example 4.8. Max-plus system with No solutions

To solve Bx = ψ, where B =

−3 2 1 4
0 5 3 −1
−1 6 0 8

, X =


x1
x2
x3
x4

, and ψ =

1014
9



The discrepancy matrix: DB.ψ =

13 8 9 6
14 9 11 15
10 3 9 1

 which gives the solution of x′ = (10, 3, 9, 1)T .

x′ is verified to see that it is not a solution−3 2 1 4
0 5 3 −1
−1 6 0 8



10
3
9
1

 =

max(7, 5, 10, 5)max(10, 8, 12, 0)
max(9, 9, 9, 9)

 =

1012
9

 ̸= b =

1014
9


The underlined entry does not correspond the entry of ψ. A solution x must satisfy x1 ≤ 10,
x2 ≤ 3, x3 ≤ 9, and x4 ≤ 1 since the components of x′ are the upper bounds. From the second row
max(x1 + 0, x2 + 5, x3 + 3, x4 − 1) ≤ 12 < 14. This makes the matrix equation to have no solution.
The table below shows the various examples and their DB.ψ and RB.ψ.

Table 4. Max-plus system with Infinite and No solutions

Example DB.ψ RB.ψ

Infinite Solutions

2 3 1 1
2 1 1 4
1 −1 1 2

 0 0 1 1
0 0 1 0
1 1 1 0



No Solutions

13 8 9 6
14 9 11 15
10 3 9 1

 0 0 1 0
0 0 0 0
1 1 1 1



From the RB.ψ in the Infinite Solutions, there are slack entries. In the first row equation, there
are two possible ways for equality to be attained, is either x3 = 1 or x4 = 1. The x3 component is
fixed, where x3 = 1 for the first row. The second row has already been fixed by the first row. The
third row also has either x1 = 1, x2 = −1 or x3 = 1 for equality to be achieved. But x3 which is 1
has already been fixed. To consider RB.ψ in No solutions, there is the second row which is having
all zeros ( no 1’s ). Therefore the system of equations has no solution.
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4.2 Example on a System of Max-linear Program

Example 4.9. Given a system of max-linear program in which f = (9, 5, 2, 7)T for

B ⊗ x = ψ

C ⊗ x ≤ γ

where

B =

 0 −1 1 1
1 2 2 −1
1 3 1 0

 , ψ =

 2
3
2


C =

 −3 2 1 4
0 5 3 −1
−1 6 0 8

 , γ =

 10
14
9


This is the solution:

DB.ψ =

 2 3 1 1
2 1 1 4
1 −1 1 2



x̄(B,ψ) =


min (2, 2, 1)
min (3, 1,−1)
min (1, 1, 1)
min (1, 4, 2)

 =


1
−1
1
1


DC.γ =

 13 8 9 6
14 9 11 15
10 3 9 1



x̄(C, γ) =


min (13, 14, 10)
min (8, 9, 3)
min (9, 11, 9)
min (6, 15, 1)

 =


10
3
9
1


Compare x̄(A, b) and x̄(C, d), and pick the least corresponding elements to form x̂(B,C, ψ, γ)

x̂(B,C, ψ, γ) =


1
−1
1
1


We denote

x = x̂(B,C, ψ, γ) =


1
−1
1
1


Compare the corresponding elements of x̄(B,ψ) and x̄(C, γ) that satisfy x̄j(C, d) ≥ x̄j(B,ψ) and
pick their positions (in the row), making J = {1, 2, 3, 4}

From Kj , where j ∈ J

K1 = {3}, K2 = {3}, K3 = {1, 2, 3}, and K4 = {1}

f(x) = fj + xj

= ((9 + 1), (5 +−1), (2 + 1), (7 + 1))

= (10, 4, 3, 8)T
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H(x) = {1}
J : J \H(x) = {2, 3, 4}

K = {1, 2, 3}
K2 ∪K3 ∪K4 = {1, 2, 3} = K

set x1 = 10−5 (say), we get a new x = (10−5,−1, 1, 1)T

Going for a new H(x)

f(x) = fj + xj

= ((9 + 10−5), (5 +−1), (2 + 1), (7 + 1))

= (9.00001, 4, 3, 8)T

H(x) = {4}
J : J \H(x) = {2, 3}

K2 ∪K3 = {1, 2, 3} = K

set x4 = 10−5 (say), we get a new x = (10−5,−1, 1, 10−5)T

Going for a new H(x)

f(x) = fj + xj

= ((9 + 10−5), (5 + 10−5), (2 + 1), (7 + 10−5))

= (9.00001, 5.00001, 3, 7.00001)T

H(x) = {3}
J : J \H(x) = {2}

K2 ̸= K

We stop, the optimal solution is x = (10−5, 10−5, 1, 10−5)T

fmin = minf(x) = min(9.00001, 5.00001, 3, 7.00001)T

Therefore fmin = 3

5 Conclusion

From the examples illustrated in this paper, it is clear that for an n×n system of linear equations in
(Rmax,⊕,⊗), we had either One solution, an Infinite number of solutions or No solution. The same
applies to an n × n system of linear equations in (R,+, ·), where either One solution, an Infinite
number of solutions or No solution can be formed.

It is also interesting to note that an m× n system of linear equations (where m < n) has either an
Infinite number of solutions or No solution in (Rmax,⊕,⊗). The same applies to an m×n system of
linear equations in (R,+, ·) where m < n. Linear programming problem involving a linear equations
and inequalities has also been solved using max-plus.
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