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1 Introduction

In 1940, S. M. Ulam [1] raised the following question concerning the stability of group homomorphisms:

“Let G be a group and H be a metric group with metric d(., .). Given ϵ > 0, does there exist
a δ > 0 such that if a function f : G → H satisfies

d(f(xy), f(x)f(y)) < δ

for all x, y ∈ G, then there exists a homomorphism a : G → H with d(f(x), a(x)) < ϵ for all x ∈ G?”

In 1941, D. H. Hyers [2] gave an answer to the Ulam’s stability problem. In 1950, T. Aoki
[3] generalized the Hyers theorem for additive mappings. In 1978, Th.M. Rassias [4] provided
a generalized version of the theorem of Hyers which permitted the cauchy difference to become
unbounded. The stability phenomenon that was presented by Th.M. Rassias is called the generalized
Hyers-Ulam stability.

The functional equation
f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic mapping. M.S. Moslehian and Th.M. Rassias [5] proved the Hyers-
Ulam-Rassias stability of the Cauchy functional equation and the quadratic functional equation in
non-Archimedean spaces.

The stability problems of several functional equations have been extensively investigated by a
number of authors and there are many interesting results concerning this problem ([6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24]).

In this paper, we consider the following functional equation deriving from additive and quadratic
functions

4[f(x+ 3y) + f(3x+ y)]− 9f(x+ y) + 15f(x− y)

= 4f(3x) + 10f(x) + 9f(3y)− 35f(y). (1.1)

It is easy to see that the function f(x) = ax+ bx2 is a solution of the functional equation (1.1). In
this paper, we obtain the general solution and the generalized Hyers-Ulam stability of the functional
equation (1.1) in non-Archimedean fields.

2 Preliminaries

By a non-Archimedean field we mean a field K equipped with a function (valuation) |.| from K into
[0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r||s| and |r + s| ≤ max{|r|, |s|} for all r, s ∈ K.
Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N.

Let X be a vector space over a scalar field K with a non-Archimedean non-trivial valuation |.|. A
function ||.|| : X → R is a non-Archimedean norm (valuation) if it satisfies the following conditions:

(i) ||x|| = 0 if and only if x = 0;

(ii) ||rx|| = |r|||x|| (r ∈ K, x ∈ X);

(iii) the strong triangle inequality (ultrametric); namely,

||x+ y|| ≤ max{||x||, ||y||} (x, y ∈ X).

Then (X, ||.||) is called a non-Archimedean space. Due to the fact that

∥xn − xm∥ ≤ max {∥xj+1 − xj∥ : m ≤ j ≤ n− 1} (n > m)

2



Ravi et al.; BJMCS, 12(3), 1-10, 2016; Article no.BJMCS.21874

a sequence {xn} is Cauchy if and only if {xn+1−xn} converges to zero in a non-Archimedean space.
By a complete non-Archimedean space we mean one in which every Cauchy sequence is convergent.

An example of a non-Archimedean valuation is the mapping |.| taking everything but 0 into 1 and
|0| = 0. This valuation is called trivial. Another example of a non-Archimedean valuation on a field
K is the mapping

∥x∥ =


0 if x = 0
1
x

if x > 0

− 1
x

if x < 0

for any x ∈ K.

3 General Solution of the Functional Equation (1.1)

In this section, we obtain the general solution of functional equation (1.1).

Theorem 3.1. Let X,Y be vector spaces. An even function f : X → Y satisfies the functional
equation (1.1) if and only if f is quadratic.

Proof. Let f be an even function. Letting (x, y) by (0, 0) in the functional equation (1.1), we get
f(0) = 0. Putting x = 0 in the functional equation (1.1), we find that f(3y) = 9f(y), for all y ∈ X.
Now, setting (x, y) as (x− y, x+ y) in the functional equation (1.1), we have

8[f(2x+ y) + f(2x− y)]− 18f(x) + 30f(y) = 23[f(x+ y) + f(x− y)] (3.1)

for all x, y ∈ X. Replacing (x, y) by (x, 0) in (3.1), we obtain f(2x) = 4f(x), for all x ∈ X.
Switching (x, y) to (x, 2y) in (3.1) and then multiplying by 8, we get

8f(x+ 2y) + 8f(x− 2y) =
256

23
[f(x+ y) + f(x− y)]− 144

23
f(x) +

960

23
f(y) (3.2)

for all x, y ∈ X. Interchanging x with y in (3.2), we have

8[f(2x+ y) + f(2x− y)] =
256

23
[f(x+ y) + f(x− y)]− 144

23
f(y) +

960

23
f(x) (3.3)

for all x, y ∈ X. Using (3.1) in (3.3), multiplying by 23
273

and further simplification gives,

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (3.4)

for all x, y ∈ X, which implies that f is quadratic function.

Conversely, suppose that f is quadratic function. Then f satisfies (3.4). Replacing (x, y) by (3x, x)
in (3.4) and simplifying further, we get f(3x) = 9f(x), for all x ∈ X. Switching (x, y) to (2x, x+ y)
in (3.4), we obtain

f(3x+ y) + f(x− y) = 8f(x) + 2f(x+ y) (3.5)

for all x, y ∈ X. Interchanging x with y in (3.5), we get

f(x+ 3y) + f(x− y) = 8f(y) + 2f(x+ y) (3.6)

for all x, y ∈ X. Now, adding (3.5) with (3.6) and then multiplying the resulting equation by 4, we
obtain

4[f(3x+ y) + f(x+ 3y)] = 32f(y) + 32f(x) + 16f(x+ y)− 8f(x− y) (3.7)

for all x, y ∈ X. Multiplying equation (3.4) by 7 gives,

7f(x+ y) + 7f(x− y) = 14f(x) + 14f(y) (3.8)

for all x, y ∈ X. Summing (3.7) with (3.8) and further simplification yields the functional equation
(1.1), which completes the proof.
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Theorem 3.2. Let X,Y be vector spaces. An odd function f : X → Y satisfies the functional
equation (1.1) if and only if f is additive.

Proof. Let f be an odd function. Replacing (x, y) by (0, y) in the functional equation (1.1) and
further simplification yields f(3y) = 3f(y), for all y ∈ X. Substituting (x, y) = (x− y, x+ y) in the
functional equation (1.1) and then dividing by 2, we get

4[f(2x+ y) + f(2x− y)]− 9f(x)− 15f(y) = 11f(x− y)− 4f(x+ y) (3.9)

for all x, y ∈ X. Switching (x, y) to
(
x
2
, 0
)
in (3.9) and simplifying further, we obtain f

(
x
2

)
= 1

2
f(x),

for all x ∈ X. Putting y = 0 in (3.9) and on further simplification, we have f(2x) = 2f(x), for all
x ∈ X. Replacing (x, y) by

(
x
2
, y
)
in (3.9) and multiplying by 2, we get

8[f(x+ y) + f(x− y)]− 9f(x)− 30f(y) = 11f(x− 2y)− 4f(x+ 2y) (3.10)

for all x, y ∈ X. Interchaning x with y in (3.10), we obtain

8[f(x+ y)− f(x− y)]− 9f(y)− 30f(x) = −11f(2x− y)− 4f(2x+ y) (3.11)

for all x, y ∈ X. Now, replacing y by −y in (3.11), we get

8[f(x− y)− f(x+ y)] + 9f(y)− 30f(x) = −11f(2x+ y)− 4f(2x− y) (3.12)

for all x, y ∈ X. Adding (3.11) with (3.12) and further simplification, yields

4f(x) = f(2x+ y) + f(2x− y) (3.13)

for all x, y ∈ X. Now, replacing (x, y) by
(
x
2
, y
)
in (3.13), we obtain

2f(x) = f(x+ y) + f(x− y) (3.14)

for all x, y ∈ X. Interchaning x with y in (3.14), we get

2f(y) = f(x+ y)− f(x− y) (3.15)

for all x, y ∈ X. Adding (3.14) and (3.15), we obtain

f(x+ y) = f(x) + f(y) (3.16)

for all x, y ∈ X, which shows that f is additive.

Conversely, suppose f satisfies (3.16). Replacing x by 3x in (3.16) gives

f(3x+ y) = f(3x) + f(y) (3.17)

for all x, y ∈ X. Now, replacing y by 3y in (3.16), we get

f(x+ 3y) = f(x) + f(3y) (3.18)

for all x, y ∈ X. Summing (3.17) with (3.18) and then multiplying the resulting equation by 4, we
obtain

4[f(3x+ y) + f(x+ 3y)] = 4f(3x) + 4f(3y) + 4f(x) + 4f(y) (3.19)

for all x, y ∈ X. Putting y = 3y in (3.16) and simplifying further, we get

15f(y) = 5f(3y) (3.20)

for all y ∈ X. Multiplying (3.16) by −9, we obtain

− 9f(x+ y) = −9f(x)− 9f(y) (3.21)

for all x, y ∈ X. Multiplying (3.16) by 15, we get

15f(x− y) = 15f(x)− 15f(y) (3.22)

for all x, y ∈ X. Now, summing (3.19), (3.20), (3.21) and (3.22), we arrive at the functional equation
(1.1), which completes the proof of theorem.
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Theorem 3.3. Let X,Y be vector spaces, and let f : X → Y be a function. Then f satisfies the
functional equation (1.1) if and only if there exists a unique additive function A : X → Y and a
unique quadratic function Q : X → Y such that f(x) = A(x) +Q(x) for all x ∈ X.

Proof. Define the mappings A,Q : X → Y by

A(x) =
f(x)− f(−x)

2
(3.23)

and

Q(x) =
f(x) + f(−x)

2
(3.24)

for all x ∈ X. Substituting x by −x in (3.23) and (3.24), we get respectively

A(−x) = −A(x) and Q(−x) = Q(x) (3.25)

for all x ∈ X. Using (3.23) and (3.24) in the functional equation (1.1), we get

4A(x+ 3y) + 4A(3x+ y)− 9A(x+ y) + 15A(x− y)

= 4A(3x) + 9A(3y) + 10A(x)− 35A(y) (3.26)

and

4Q(x+ 3y) + 4Q(3x+ y)− 9Q(x+ y) + 15Q(x− y)

= 4Q(3x) + 9Q(3y) + 10Q(x)− 35Q(y) (3.27)

for all x, y ∈ X.

First, we claim that A is additive. Putting x = y = 0 in (3.26), we get A(0) = 0. Putting y = x in
(3.26) and using (3.25), we get

A(3x) = 3A(x) (3.28)

for all x ∈ X. Using (3.28) in (3.26), we get

4A(x+ 3y) + 4A(3x+ y)− 9A(x+ y) + 15A(x− y) = 22A(x)− 8A(y)

for all x, y ∈ X. By Theorem 3.2, A is addiitive. Next, we claim that Q is quadratic. Putting
x = y = 0 in (3.27), we get Q(0) = 0. Putting y = x and using (3.25), we get

Q(3x) = 3Q(x) (3.29)

for all x ∈ X. Using (3.29) and (3.27), we obtain

4Q(3x+ y) + 4Q(x+ 3y)− 9Q(x+ y) + 15Q(x− y) = 46Q(x) + 46Q(y)

for all x, y ∈ X. By Theorem 3.1, Q is quadratic. Therefore, we have f(x) = A(x) +Q(x), for all
x ∈ X.

Conversely, suppose there exist additive mapping A : X → Y and a quadratic mapping
Q : X → Y such that f(x) = A(x)+Q(x), for all x ∈ X, then using Theorem 3.1, Theorem 3.2 and
(3.25), we arrive at the functional equaiton (1.1).

4 Generalized Hyers-Ulam Stability of Functional Equa-
tion (1.1) in non-Archimedean Fields

Throughout this section, X and Y will be a non-Archimedean field and a complete non-Archimedean
field, respectively. Define Df : X ×X → Y by

Df (x, y) = 4[f(x+ 3y) + f(3x+ y)]− 9f(x+ y) + 15f(x− y)

− 4f(3x)− 10f(x)− 9f(3y) + 35f(y)

for all x, y ∈ X.
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Theorem 4.1. Let φ : X ×X → Y be a function such that

lim
n→∞

∣∣∣∣19
∣∣∣∣n φ (3nx, 3ny) = 0 (4.1)

for all x, y ∈ X. Suppose that f : X → Y is an even mapping satisfying the inequality

∥Df (x, y)∥ ≤ φ(x, y) (4.2)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

∥f(x)−Q(x)∥ ≤ max

{∣∣∣∣19
∣∣∣∣j φ(

0, 3jx
)
: j ∈ N ∪ {0}

}
(4.3)

for all x ∈ X.

Proof. Replacing (x, y) by (0, x) in (4.2) and dividing by 9, we get∥∥∥∥f(3x)− 1

9
f(x)

∥∥∥∥ ≤
∣∣∣∣19

∣∣∣∣φ(0, x) (4.4)

for all x ∈ X. Substituting x by
(
1
9

)n
x in (4.4) and multiplying by

∣∣ 1
9

∣∣n, we have∥∥∥∥ 1

9n
f (3nx)− 1

9n+1
f
(
3n+1x

)∥∥∥∥ ≤
∣∣∣∣19

∣∣∣∣n φ (0, 3nx) (4.5)

for all x ∈ X. Thus the sequence
{

1
9j
f
(
3jx

)}
is Cauchy by (4.1) and (4.5). Completeness of the

non-Archimedean space Y allows us to assume that there exists a mapping Q so that

lim
n→∞

1

9n
f (3nx) = Q(x). (4.6)

For each x ∈ X and non-negative integers n, we have∥∥∥∥ 1

9n
f (3nx)− f(x)

∥∥∥∥ =

∥∥∥∥∥
n−1∑
j=0

{
1

9j+1
f
(
3j+1x

)
− 1

9j
f
(
3jx

)}∥∥∥∥∥
≤ max

{∥∥∥∥ 1

9j+1
f
(
3j+1x

)
− 1

9j
f
(
3jx

)∥∥∥∥ : 0 ≤ j < n

}
≤ max

{∣∣∣∣19
∣∣∣∣j φ(

0, 3jx
)
: 0 ≤ j ≤ n

}
. (4.7)

Applying (4.6) and letting n to infinity, we find that the inequality (4.3) holds. From (4.1), (4.2)
and (4.6), we have for all x, y ∈ X

∥DQ(x, y)∥ = lim
n→∞

∣∣∣∣19
∣∣∣∣n ∥Df (3

nx, 3ny)∥

≤ lim
n→∞

∣∣∣∣19
∣∣∣∣n φ (3nx, 3ny) = 0.

Hence the mapping Q satisfies the functional equation (1.1). By Theorem 3.1, the mapping Q is
quadratic. Now, let Q′ : X → Y be another quadratic mapping satisfying (4.3). Then we have∥∥Q′(x)−Q(x)

∥∥ = lim
m→∞

∣∣∣∣19
∣∣∣∣m ∥∥Q′ (3mx)−Q (3mx)

∥∥
≤ lim

m→∞

∣∣∣∣19
∣∣∣∣m max

{∥∥Q′ (3mx)− f (3mx)
∥∥ , ∥f (3mx)−Q (3mx)∥

}
≤ lim

m→∞
lim

n→∞
max

{
max

{ ∣∣∣∣19
∣∣∣∣j+m

φ
(
0, 3j+mx

)
: m ≤ j ≤ n+m

}}
= 0
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for all x ∈ X, which proves that Q is unique. Hence the proof is complete.

Theorem 4.2. Let φ : X ×X → Y be a function such that

lim
n→∞

∣∣∣∣13
∣∣∣∣n φ (3nx, 3ny) = 0 (4.8)

for all x, y ∈ X. Suppose that f : X → Y is an odd mapping satisfying the inequality

∥Df (x, y)∥ ≤ φ(x, y) (4.9)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)−A(x)∥ ≤ max

{∣∣∣∣13
∣∣∣∣j φ(

0, 3jx
)
: j ∈ N ∪ {0}

}
(4.10)

for all x ∈ X.

Proof. Replacing (x, y) by (0, x) in (4.9) and dividing by 15, we get∥∥∥∥f(3x)− 1

3
f(x)

∥∥∥∥ ≤ φ(0, x) (4.11)

for all x ∈ X. Substituting x by
(
1
3

)n
x in (4.11) and multiplying by

∣∣ 1
3

∣∣n, we have∥∥∥∥ 1

3n
f (3nx)− 1

3n+1
f (3nx)

∥∥∥∥ ≤
∣∣∣∣13

∣∣∣∣n φ (0, 3nx) (4.12)

for all x ∈ X. Thus the sequence
{

1
3j
f
(
3jx

)}
is Cauchy by (4.8) and (4.12). Completeness of the

non-Archimedean space Y allows us to assume that there exists a mapping A so that

lim
n→∞

1

3n
f (3nx) = A(x). (4.13)

For each x ∈ X and non-negative integers n, we have∥∥∥∥ 1

3n
f (3nx)− f(x)

∥∥∥∥ =

∥∥∥∥∥
n−1∑
j=0

{
1

3j+1
f
(
3j+1x

)
− 1

3j
f
(
3jx

)}∥∥∥∥∥
≤ max

{∥∥∥∥ 1

3j+1
f
(
3j+1x

)
− 1

3j
f
(
3jx

)∥∥∥∥ : 0 ≤ j < n

}
≤ max

{∣∣∣∣13
∣∣∣∣j φ(

0, 3jx
)
: 0 ≤ j ≤ n

}
. (4.14)

Applying (4.13) and letting n to infinity, we find that the inequality (4.10) holds. From (4.8), (4.9)
and (4.14), we have for all x, y ∈ X

∥DA(x, y)∥ = lim
n→∞

∣∣∣∣13
∣∣∣∣n ∥Df (3

nx, 3ny)∥

≤ lim
n→∞

∣∣∣∣13
∣∣∣∣n φ (3nx, 3ny) = 0.

7
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Hence the mapping A satisfies the functional equation (1.1). By Theorem 3.2, the mapping A is
additive. Now, let A′ : X → Y be another additive mapping satisfying (4.10). Then we have

∥∥A′(x)−A(x)
∥∥ = lim

m→∞

∣∣∣∣13
∣∣∣∣m ∥∥A′ (3mx)−A (3mx)

∥∥
≤ lim

m→∞

∣∣∣∣13
∣∣∣∣m max

{∥∥A′ (3mx)− f (3mx)
∥∥ , ∥f (3mx)−A (3mx)∥

}
≤ lim

m→∞
lim

n→∞
max

{
max

{ ∣∣∣∣13
∣∣∣∣j+m

φ
(
0, 3j+mx

)
: m ≤ j ≤ n+m

}}
= 0

for all x ∈ X, which proves that A is unique. Hence the proof is complete.

Theorem 4.3. Let φ : X ×X → Y be a function such that

lim
n→∞

∣∣∣∣19
∣∣∣∣n φ (3nx, 3ny) = 0 and lim

n→∞

∣∣∣∣13
∣∣∣∣n φ (3nx, 3ny) = 0 (4.15)

for all x, y ∈ X. Suppose that f : X → Y is a mapping satisfying the inequality

∥Df (x, y)∥ ≤ φ(x, y) (4.16)

for all x, y ∈ X. Then there exist a unique quadratic mapping Q : X → Y and a unique additive
mapping A : X → Y such that

∥f(x)−Q(x)−A(x)∥

≤ max

{∣∣∣∣19
∣∣∣∣j φ(

0, 3jx
)
,

∣∣∣∣13
∣∣∣∣j φ(

0, 3jx
)
: j ∈ N ∪ {0}

}
(4.17)

for all x ∈ X.

Proof. Using Theorem 4.1 and Theorem 4.2, we obtain the required results of the theorem.

Corollary 4.4. Let ϵ ≥ 0 be a constant. Suppose that f : X → Y is a mapping satisfying the
inequality

∥Df (x, y)∥ ≤ ϵ (4.18)

for all x, y ∈ X. Then there exist a unique quadratic mapping Q : X → Y and a unique additive
mapping A : X → Y such that

∥f(x)−Q(x)−A(x)∥ ≤ ϵ (4.19)

for all x ∈ X.

Proof. The proof is obtained by taking φ(x, y) = ϵ, for all x, y ∈ X. Then we have φ
(
0, 3jx

)
= ϵ,

for all x ∈ X and j ∈ N ∪ {0}

∥f(x)−Q(x)−A(x)∥ ≤ max

{∣∣∣∣19
∣∣∣∣j ϵ, ∣∣∣∣13

∣∣∣∣j ϵ : j ∈ N ∪ {0}

}
≤ ϵ

for all x ∈ X.

8
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Corollary 4.5. Let θ ≥ 0 and p < 1 be constants. Suppose that f : X → Y is a mapping satisfying
the inequality

∥Df (x, y)∥ ≤ θ (∥x∥p + ∥y∥p) (4.20)

for all x, y ∈ X. Then there exist a unique quadratic mapping Q : X → Y and a unique additive
mapping A : X → Y such that

∥f(x)−Q(x)−A(x)∥ ≤ 3p−1θ ∥x∥p (4.21)

for all x ∈ X.

Proof. The required results are obtained by taking φ(x, y) = θ (∥x∥p + ∥y∥p), for all x, y ∈ X. Then
we have φ

(
0, 3jx

)
= 3jpθ ∥x∥p, for all x ∈ X and j ∈ N ∪ {0}

∥f(x)−Q(x)−A(x)∥ ≤ max

{∣∣∣∣19
∣∣∣∣j 3jpθ ∥x∥p , ∣∣∣∣13

∣∣∣∣j 3jpθ ∥x∥p : j ∈ N ∪ {0}

}
≤ max

{
3(p−2)jθ ∥x∥p , 3(p−1)jθ ∥x∥p : j ∈ N ∪ {0}

}
≤ 3p−1θ ∥x∥p

for all x ∈ X.

5 Conclusion

Thus, we have obtained the general solution of the mixed type functional equation (1.1) and proved
that the generalized Hyers-Ulam stability of the functional equation (1.1) is also stable in non-
Archimedean fields.
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