Generalized Hyers-Ulam Stability of a Mixed Type Additive-quadratic Functional Equation in non-Archimedean Fields

K. Ravi ${ }^{1 *}$, J. M. Rassias ${ }^{2}$ and S. Sabarinathan ${ }^{3}$
${ }^{1}$ Department of Mathematics, Sacred Heart College, Tirupattur-635 601, TamilNadu, India.
${ }^{2}$ Pedagogical Dept. E.E., Section of Mathematics and Informatics, National and Capodistrian University of Athens, 4, Agamemnonos Str., Aghia Paraskevi, Athens, Attikis 15342, Greece.
${ }^{3}$ Department of Mathematics, Sacred Heart College, Tirupattur-635 601, TamilNadu, India.

Article Information
DOI: 10.9734/BJMCS/2016/21874
Editor(s):
(1) Andrej V. Plotnikov, Department of Applied and Calculus Mathematics and CAD, Odessa State Academy of Civil Engineering and Architecture, Ukraine.

Reviewers:
(1) Choonkil Park, Hanyang University, Korea.
(2) Jung Rye Lee, Daejin University, South Korea.

Complete Peer review History: http://sciencedomain.org/review-history/11859

Original Research Article

Received: 07 September 2015
Accepted: 23 September 2015
Published: 17 October 2015

Abstract

In this paper, we investigate the generalized Hyers-Ulam stability of the functional equation

$$
\begin{array}{rl}
4[f(x+3 y)+f(3 x+y)]-9 & f(x+y)+15 f(x-y) \\
& =4 f(3 x)+10 f(x)+9 f(3 y)-35 f(y)
\end{array}
$$

in non-Archimedean fields.
Keywords: Additive functional equation; quadratic functional equation; hyers-ulam stability; nonArchimedean field.

2010 Mathematics Subject Classification: 39B82; 39B72.

[^0]
1 Introduction

In 1940, S. M. Ulam [1] raised the following question concerning the stability of group homomorphisms:
"Let G be a group and H be a metric group with metric $d(.,$.$) . Given \epsilon>0$, does there exist a $\delta>0$ such that if a function $f: G \rightarrow H$ satisfies

$$
d(f(x y), f(x) f(y))<\delta
$$

for all $x, y \in G$, then there exists a homomorphism $a: G \rightarrow H$ with $d(f(x), a(x))<\epsilon$ for all $x \in G$?"
In 1941, D. H. Hyers [2] gave an answer to the Ulam's stability problem. In 1950, T. Aoki [3] generalized the Hyers theorem for additive mappings. In 1978, Th.M. Rassias [4] provided a generalized version of the theorem of Hyers which permitted the cauchy difference to become unbounded. The stability phenomenon that was presented by Th.M. Rassias is called the generalized Hyers-Ulam stability.

The functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. M.S. Moslehian and Th.M. Rassias [5] proved the Hyers-Ulam-Rassias stability of the Cauchy functional equation and the quadratic functional equation in non-Archimedean spaces.

The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem ([6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24]).

In this paper, we consider the following functional equation deriving from additive and quadratic functions

$$
\begin{array}{rl}
4[f(x+3 y)+f(3 x+y)]-9 & f(x+y)+15 f(x-y) \\
& =4 f(3 x)+10 f(x)+9 f(3 y)-35 f(y) . \tag{1.1}
\end{array}
$$

It is easy to see that the function $f(x)=a x+b x^{2}$ is a solution of the functional equation (1.1). In this paper, we obtain the general solution and the generalized Hyers-Ulam stability of the functional equation (1.1) in non-Archimedean fields.

2 Preliminaries

By a non-Archimedean field we mean a field K equipped with a function (valuation) |.| from K into $[0, \infty)$ such that $|r|=0$ if and only if $r=0,|r s|=|r||s|$ and $|r+s| \leq \max \{|r|,|s|\}$ for all $r, s \in K$. Clearly $|1|=|-1|=1$ and $|n| \leq 1$ for all $n \in \mathbb{N}$.

Let X be a vector space over a scalar field \mathbb{K} with a non-Archimedean non-trivial valuation |.|. A function $\|\|:. X \rightarrow \mathbb{R}$ is a non-Archimedean norm (valuation) if it satisfies the following conditions:
(i) $\|x\|=0$ if and only if $x=0$;
(ii) $\|r x\|=|r|\|x\| \quad(r \in \mathbb{K}, x \in X)$;
(iii) the strong triangle inequality (ultrametric); namely,

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\} \quad(x, y \in X)
$$

Then $(X,\|\|$.$) is called a non-Archimedean space. Due to the fact that$

$$
\left\|x_{n}-x_{m}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\|: m \leq j \leq n-1\right\} \quad(n>m)
$$

a sequence $\left\{x_{n}\right\}$ is Cauchy if and only if $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in a non-Archimedean space. By a complete non-Archimedean space we mean one in which every Cauchy sequence is convergent.

An example of a non-Archimedean valuation is the mapping |.| taking everything but 0 into 1 and $|0|=0$. This valuation is called trivial. Another example of a non-Archimedean valuation on a field \mathbb{K} is the mapping

$$
\|x\|= \begin{cases}0 & \text { if } x=0 \\ \frac{1}{x} & \text { if } x>0 \\ -\frac{1}{x} & \text { if } x<0\end{cases}
$$

for any $x \in \mathbb{K}$.

3 General Solution of the Functional Equation (1.1)

In this section, we obtain the general solution of functional equation (1.1).
Theorem 3.1. Let X, Y be vector spaces. An even function $f: X \rightarrow Y$ satisfies the functional equation (1.1) if and only if f is quadratic.

Proof. Let f be an even function. Letting (x, y) by $(0,0)$ in the functional equation (1.1), we get $f(0)=0$. Putting $x=0$ in the functional equation (1.1), we find that $f(3 y)=9 f(y)$, for all $y \in X$. Now, setting (x, y) as $(x-y, x+y)$ in the functional equation (1.1), we have

$$
\begin{equation*}
8[f(2 x+y)+f(2 x-y)]-18 f(x)+30 f(y)=23[f(x+y)+f(x-y)] \tag{3.1}
\end{equation*}
$$

for all $x, y \in X$. Replacing (x, y) by $(x, 0)$ in (3.1), we obtain $f(2 x)=4 f(x)$, for all $x \in X$. Switching (x, y) to $(x, 2 y)$ in (3.1) and then multiplying by 8 , we get

$$
\begin{equation*}
8 f(x+2 y)+8 f(x-2 y)=\frac{256}{23}[f(x+y)+f(x-y)]-\frac{144}{23} f(x)+\frac{960}{23} f(y) \tag{3.2}
\end{equation*}
$$

for all $x, y \in X$. Interchanging x with y in (3.2), we have

$$
\begin{equation*}
8[f(2 x+y)+f(2 x-y)]=\frac{256}{23}[f(x+y)+f(x-y)]-\frac{144}{23} f(y)+\frac{960}{23} f(x) \tag{3.3}
\end{equation*}
$$

for all $x, y \in X$. Using (3.1) in (3.3), multiplying by $\frac{23}{273}$ and further simplification gives,

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{3.4}
\end{equation*}
$$

for all $x, y \in X$, which implies that f is quadratic function.
Conversely, suppose that f is quadratic function. Then f satisfies (3.4). Replacing (x, y) by $(3 x, x)$ in (3.4) and simplifying further, we get $f(3 x)=9 f(x)$, for all $x \in X$. Switching (x, y) to $(2 x, x+y)$ in (3.4), we obtain

$$
\begin{equation*}
f(3 x+y)+f(x-y)=8 f(x)+2 f(x+y) \tag{3.5}
\end{equation*}
$$

for all $x, y \in X$. Interchanging x with y in (3.5), we get

$$
\begin{equation*}
f(x+3 y)+f(x-y)=8 f(y)+2 f(x+y) \tag{3.6}
\end{equation*}
$$

for all $x, y \in X$. Now, adding (3.5) with (3.6) and then multiplying the resulting equation by 4 , we obtain

$$
\begin{equation*}
4[f(3 x+y)+f(x+3 y)]=32 f(y)+32 f(x)+16 f(x+y)-8 f(x-y) \tag{3.7}
\end{equation*}
$$

for all $x, y \in X$. Multiplying equation (3.4) by 7 gives,

$$
\begin{equation*}
7 f(x+y)+7 f(x-y)=14 f(x)+14 f(y) \tag{3.8}
\end{equation*}
$$

for all $x, y \in X$. Summing (3.7) with (3.8) and further simplification yields the functional equation (1.1), which completes the proof.

Theorem 3.2. Let X, Y be vector spaces. An odd function $f: X \rightarrow Y$ satisfies the functional equation (1.1) if and only if f is additive.

Proof. Let f be an odd function. Replacing (x, y) by $(0, y)$ in the functional equation (1.1) and further simplification yields $f(3 y)=3 f(y)$, for all $y \in X$. Substituting $(x, y)=(x-y, x+y)$ in the functional equation (1.1) and then dividing by 2 , we get

$$
\begin{equation*}
4[f(2 x+y)+f(2 x-y)]-9 f(x)-15 f(y)=11 f(x-y)-4 f(x+y) \tag{3.9}
\end{equation*}
$$

for all $x, y \in X$. Switching (x, y) to $\left(\frac{x}{2}, 0\right)$ in (3.9) and simplifying further, we obtain $f\left(\frac{x}{2}\right)=\frac{1}{2} f(x)$, for all $x \in X$. Putting $y=0$ in (3.9) and on further simplification, we have $f(2 x)=2 f(x)$, for all $x \in X$. Replacing (x, y) by $\left(\frac{x}{2}, y\right)$ in (3.9) and multiplying by 2 , we get

$$
\begin{equation*}
8[f(x+y)+f(x-y)]-9 f(x)-30 f(y)=11 f(x-2 y)-4 f(x+2 y) \tag{3.10}
\end{equation*}
$$

for all $x, y \in X$. Interchaning x with y in (3.10), we obtain

$$
\begin{equation*}
8[f(x+y)-f(x-y)]-9 f(y)-30 f(x)=-11 f(2 x-y)-4 f(2 x+y) \tag{3.11}
\end{equation*}
$$

for all $x, y \in X$. Now, replacing y by $-y$ in (3.11), we get

$$
\begin{equation*}
8[f(x-y)-f(x+y)]+9 f(y)-30 f(x)=-11 f(2 x+y)-4 f(2 x-y) \tag{3.12}
\end{equation*}
$$

for all $x, y \in X$. Adding (3.11) with (3.12) and further simplification, yields

$$
\begin{equation*}
4 f(x)=f(2 x+y)+f(2 x-y) \tag{3.13}
\end{equation*}
$$

for all $x, y \in X$. Now, replacing (x, y) by $\left(\frac{x}{2}, y\right)$ in (3.13), we obtain

$$
\begin{equation*}
2 f(x)=f(x+y)+f(x-y) \tag{3.14}
\end{equation*}
$$

for all $x, y \in X$. Interchaning x with y in (3.14), we get

$$
\begin{equation*}
2 f(y)=f(x+y)-f(x-y) \tag{3.15}
\end{equation*}
$$

for all $x, y \in X$. Adding (3.14) and (3.15), we obtain

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \tag{3.16}
\end{equation*}
$$

for all $x, y \in X$, which shows that f is additive.
Conversely, suppose f satisfies (3.16). Replacing x by $3 x$ in (3.16) gives

$$
\begin{equation*}
f(3 x+y)=f(3 x)+f(y) \tag{3.17}
\end{equation*}
$$

for all $x, y \in X$. Now, replacing y by $3 y$ in (3.16), we get

$$
\begin{equation*}
f(x+3 y)=f(x)+f(3 y) \tag{3.18}
\end{equation*}
$$

for all $x, y \in X$. Summing (3.17) with (3.18) and then multiplying the resulting equation by 4 , we obtain

$$
\begin{equation*}
4[f(3 x+y)+f(x+3 y)]=4 f(3 x)+4 f(3 y)+4 f(x)+4 f(y) \tag{3.19}
\end{equation*}
$$

for all $x, y \in X$. Putting $y=3 y$ in (3.16) and simplifying further, we get

$$
\begin{equation*}
15 f(y)=5 f(3 y) \tag{3.20}
\end{equation*}
$$

for all $y \in X$. Multiplying (3.16) by -9 , we obtain

$$
\begin{equation*}
-9 f(x+y)=-9 f(x)-9 f(y) \tag{3.21}
\end{equation*}
$$

for all $x, y \in X$. Multiplying (3.16) by 15 , we get

$$
\begin{equation*}
15 f(x-y)=15 f(x)-15 f(y) \tag{3.22}
\end{equation*}
$$

for all $x, y \in X$. Now, summing (3.19), (3.20), (3.21) and (3.22), we arrive at the functional equation (1.1), which completes the proof of theorem.

Theorem 3.3. Let X, Y be vector spaces, and let $f: X \rightarrow Y$ be a function. Then f satisfies the functional equation (1.1) if and only if there exists a unique additive function $A: X \rightarrow Y$ and a unique quadratic function $Q: X \rightarrow Y$ such that $f(x)=A(x)+Q(x)$ for all $x \in X$.
Proof. Define the mappings $A, Q: X \rightarrow Y$ by

$$
\begin{equation*}
A(x)=\frac{f(x)-f(-x)}{2} \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
Q(x)=\frac{f(x)+f(-x)}{2} \tag{3.24}
\end{equation*}
$$

for all $x \in X$. Substituting x by $-x$ in (3.23) and (3.24), we get respectively

$$
\begin{equation*}
A(-x)=-A(x) \quad \text { and } \quad Q(-x)=Q(x) \tag{3.25}
\end{equation*}
$$

for all $x \in X$. Using (3.23) and (3.24) in the functional equation (1.1), we get

$$
\begin{align*}
4 A(x+3 y)+4 A(3 x+y)- & 9 A(x+y)+15 A(x-y) \\
= & 4 A(3 x)+9 A(3 y)+10 A(x)-35 A(y) \tag{3.26}
\end{align*}
$$

and

$$
\begin{align*}
4 Q(x+3 y)+4 Q(3 x+y)- & 9 Q(x+y)+15 Q(x-y) \\
& =4 Q(3 x)+9 Q(3 y)+10 Q(x)-35 Q(y) \tag{3.27}
\end{align*}
$$

for all $x, y \in X$.
First, we claim that A is additive. Putting $x=y=0$ in (3.26), we get $A(0)=0$. Putting $y=x$ in (3.26) and using (3.25), we get

$$
\begin{equation*}
A(3 x)=3 A(x) \tag{3.28}
\end{equation*}
$$

for all $x \in X$. Using (3.28) in (3.26), we get

$$
4 A(x+3 y)+4 A(3 x+y)-9 A(x+y)+15 A(x-y)=22 A(x)-8 A(y)
$$

for all $x, y \in X$. By Theorem 3.2, A is addiitive. Next, we claim that Q is quadratic. Putting $x=y=0$ in (3.27), we get $Q(0)=0$. Putting $y=x$ and using (3.25), we get

$$
\begin{equation*}
Q(3 x)=3 Q(x) \tag{3.29}
\end{equation*}
$$

for all $x \in X$. Using (3.29) and (3.27), we obtain

$$
4 Q(3 x+y)+4 Q(x+3 y)-9 Q(x+y)+15 Q(x-y)=46 Q(x)+46 Q(y)
$$

for all $x, y \in X$. By Theorem 3.1, Q is quadratic. Therefore, we have $f(x)=A(x)+Q(x)$, for all $x \in X$.

Conversely, suppose there exist additive mapping $A: X \rightarrow Y$ and a quadratic mapping $Q: X \rightarrow Y$ such that $f(x)=A(x)+Q(x)$, for all $x \in X$, then using Theorem 3.1, Theorem 3.2 and (3.25), we arrive at the functional equaiton (1.1).

4 Generalized Hyers-Ulam Stability of Functional Equation (1.1) in non-Archimedean Fields

Throughout this section, X and Y will be a non-Archimedean field and a complete non-Archimedean field, respectively. Define $D_{f}: X \times X \rightarrow Y$ by

$$
\begin{gathered}
D_{f}(x, y)=4[f(x+3 y)+f(3 x+y)]-9 f(x+y)+15 f(x-y) \\
-4 f(3 x)-10 f(x)-9 f(3 y)+35 f(y)
\end{gathered}
$$

for all $x, y \in X$.

Theorem 4.1. Let $\varphi: X \times X \rightarrow Y$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\frac{1}{9}\right|^{n} \varphi\left(3^{n} x, 3^{n} y\right)=0 \tag{4.1}
\end{equation*}
$$

for all $x, y \in X$. Suppose that $f: X \rightarrow Y$ is an even mapping satisfying the inequality

$$
\begin{equation*}
\left\|D_{f}(x, y)\right\| \leq \varphi(x, y) \tag{4.2}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \max \left\{\left|\frac{1}{9}\right|^{j} \varphi\left(0,3^{j} x\right): j \in \mathbb{N} \cup\{0\}\right\} \tag{4.3}
\end{equation*}
$$

for all $x \in X$.
Proof. Replacing (x, y) by $(0, x)$ in (4.2) and dividing by 9 , we get

$$
\begin{equation*}
\left\|f(3 x)-\frac{1}{9} f(x)\right\| \leq\left|\frac{1}{9}\right| \varphi(0, x) \tag{4.4}
\end{equation*}
$$

for all $x \in X$. Substituting x by $\left(\frac{1}{9}\right)^{n} x$ in (4.4) and multiplying by $\left|\frac{1}{9}\right|^{n}$, we have

$$
\begin{equation*}
\left\|\frac{1}{9^{n}} f\left(3^{n} x\right)-\frac{1}{9^{n+1}} f\left(3^{n+1} x\right)\right\| \leq\left|\frac{1}{9}\right|^{n} \varphi\left(0,3^{n} x\right) \tag{4.5}
\end{equation*}
$$

for all $x \in X$. Thus the sequence $\left\{\frac{1}{9^{j}} f\left(3^{j} x\right)\right\}$ is Cauchy by (4.1) and (4.5). Completeness of the non-Archimedean space Y allows us to assume that there exists a mapping Q so that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{9^{n}} f\left(3^{n} x\right)=Q(x) \tag{4.6}
\end{equation*}
$$

For each $x \in X$ and non-negative integers n, we have

$$
\begin{align*}
\left\|\frac{1}{9^{n}} f\left(3^{n} x\right)-f(x)\right\| & =\left\|\sum_{j=0}^{n-1}\left\{\frac{1}{9^{j+1}} f\left(3^{j+1} x\right)-\frac{1}{9^{j}} f\left(3^{j} x\right)\right\}\right\| \\
& \leq \max \left\{\left\|\frac{1}{9^{j+1}} f\left(3^{j+1} x\right)-\frac{1}{9^{j}} f\left(3^{j} x\right)\right\|: 0 \leq j<n\right\} \\
& \leq \max \left\{\left|\frac{1}{9}\right|^{j} \varphi\left(0,3^{j} x\right): 0 \leq j \leq n\right\} \tag{4.7}
\end{align*}
$$

Applying (4.6) and letting n to infinity, we find that the inequality (4.3) holds. From (4.1), (4.2) and (4.6), we have for all $x, y \in X$

$$
\begin{aligned}
\left\|D_{Q}(x, y)\right\| & =\lim _{n \rightarrow \infty}\left|\frac{1}{9}\right|^{n}\left\|D_{f}\left(3^{n} x, 3^{n} y\right)\right\| \\
& \leq \lim _{n \rightarrow \infty}\left|\frac{1}{9}\right|^{n} \varphi\left(3^{n} x, 3^{n} y\right)=0 .
\end{aligned}
$$

Hence the mapping Q satisfies the functional equation (1.1). By Theorem 3.1, the mapping Q is quadratic. Now, let $Q^{\prime}: X \rightarrow Y$ be another quadratic mapping satisfying (4.3). Then we have

$$
\begin{aligned}
\left\|Q^{\prime}(x)-Q(x)\right\| & =\lim _{m \rightarrow \infty}\left|\frac{1}{9}\right|^{m}\left\|Q^{\prime}\left(3^{m} x\right)-Q\left(3^{m} x\right)\right\| \\
& \leq \lim _{m \rightarrow \infty}\left|\frac{1}{9}\right|^{m} \max \left\{\left\|Q^{\prime}\left(3^{m} x\right)-f\left(3^{m} x\right)\right\|,\left\|f\left(3^{m} x\right)-Q\left(3^{m} x\right)\right\|\right\} \\
& \leq \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\max \left\{\left|\frac{1}{9}\right|^{j+m} \varphi\left(0,3^{j+m} x\right): m \leq j \leq n+m\right\}\right\} \\
& =0
\end{aligned}
$$

for all $x \in X$, which proves that Q is unique. Hence the proof is complete.

Theorem 4.2. Let $\varphi: X \times X \rightarrow Y$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\frac{1}{3}\right|^{n} \varphi\left(3^{n} x, 3^{n} y\right)=0 \tag{4.8}
\end{equation*}
$$

for all $x, y \in X$. Suppose that $f: X \rightarrow Y$ is an odd mapping satisfying the inequality

$$
\begin{equation*}
\left\|D_{f}(x, y)\right\| \leq \varphi(x, y) \tag{4.9}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \max \left\{\left|\frac{1}{3}\right|^{j} \varphi\left(0,3^{j} x\right): j \in \mathbb{N} \cup\{0\}\right\} \tag{4.10}
\end{equation*}
$$

for all $x \in X$.
Proof. Replacing (x, y) by $(0, x)$ in (4.9) and dividing by 15 , we get

$$
\begin{equation*}
\left\|f(3 x)-\frac{1}{3} f(x)\right\| \leq \varphi(0, x) \tag{4.11}
\end{equation*}
$$

for all $x \in X$. Substituting x by $\left(\frac{1}{3}\right)^{n} x$ in (4.11) and multiplying by $\left|\frac{1}{3}\right|^{n}$, we have

$$
\begin{equation*}
\left\|\frac{1}{3^{n}} f\left(3^{n} x\right)-\frac{1}{3^{n+1}} f\left(3^{n} x\right)\right\| \leq\left|\frac{1}{3}\right|^{n} \varphi\left(0,3^{n} x\right) \tag{4.12}
\end{equation*}
$$

for all $x \in X$. Thus the sequence $\left\{\frac{1}{3^{j}} f\left(3^{j} x\right)\right\}$ is Cauchy by (4.8) and (4.12). Completeness of the non-Archimedean space Y allows us to assume that there exists a mapping A so that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{3^{n}} f\left(3^{n} x\right)=A(x) . \tag{4.13}
\end{equation*}
$$

For each $x \in X$ and non-negative integers n, we have

$$
\begin{align*}
\left\|\frac{1}{3^{n}} f\left(3^{n} x\right)-f(x)\right\| & =\left\|\sum_{j=0}^{n-1}\left\{\frac{1}{3^{j+1}} f\left(3^{j+1} x\right)-\frac{1}{3^{j}} f\left(3^{j} x\right)\right\}\right\| \\
& \leq \max \left\{\left\|\frac{1}{3^{j+1}} f\left(3^{j+1} x\right)-\frac{1}{3^{j}} f\left(3^{j} x\right)\right\|: 0 \leq j<n\right\} \\
& \leq \max \left\{\left|\frac{1}{3}\right|^{j} \varphi\left(0,3^{j} x\right): 0 \leq j \leq n\right\} . \tag{4.14}
\end{align*}
$$

Applying (4.13) and letting n to infinity, we find that the inequality (4.10) holds. From (4.8), (4.9) and (4.14), we have for all $x, y \in X$

$$
\begin{aligned}
\left\|D_{A}(x, y)\right\| & =\lim _{n \rightarrow \infty}\left|\frac{1}{3}\right|^{n}\left\|D_{f}\left(3^{n} x, 3^{n} y\right)\right\| \\
& \leq \lim _{n \rightarrow \infty}\left|\frac{1}{3}\right|^{n} \varphi\left(3^{n} x, 3^{n} y\right)=0 .
\end{aligned}
$$

Hence the mapping A satisfies the functional equation (1.1). By Theorem 3.2, the mapping A is additive. Now, let $A^{\prime}: X \rightarrow Y$ be another additive mapping satisfying (4.10). Then we have

$$
\begin{aligned}
\left\|A^{\prime}(x)-A(x)\right\| & =\lim _{m \rightarrow \infty}\left|\frac{1}{3}\right|^{m}\left\|A^{\prime}\left(3^{m} x\right)-A\left(3^{m} x\right)\right\| \\
& \leq \lim _{m \rightarrow \infty}\left|\frac{1}{3}\right|^{m} \max \left\{\left\|A^{\prime}\left(3^{m} x\right)-f\left(3^{m} x\right)\right\|,\left\|f\left(3^{m} x\right)-A\left(3^{m} x\right)\right\|\right\} \\
& \leq \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\max \left\{\left|\frac{1}{3}\right|^{j+m} \varphi\left(0,3^{j+m} x\right): m \leq j \leq n+m\right\}\right\} \\
& =0
\end{aligned}
$$

for all $x \in X$, which proves that A is unique. Hence the proof is complete.
Theorem 4.3. Let $\varphi: X \times X \rightarrow Y$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\frac{1}{9}\right|^{n} \varphi\left(3^{n} x, 3^{n} y\right)=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left|\frac{1}{3}\right|^{n} \varphi\left(3^{n} x, 3^{n} y\right)=0 \tag{4.15}
\end{equation*}
$$

for all $x, y \in X$. Suppose that $f: X \rightarrow Y$ is a mapping satisfying the inequality

$$
\begin{equation*}
\left\|D_{f}(x, y)\right\| \leq \varphi(x, y) \tag{4.16}
\end{equation*}
$$

for all $x, y \in X$. Then there exist a unique quadratic mapping $Q: X \rightarrow Y$ and a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{align*}
& \|f(x)-Q(x)-A(x)\| \\
& \quad \leq \max \left\{\left|\frac{1}{9}\right|^{j} \varphi\left(0,3^{j} x\right),\left|\frac{1}{3}\right|^{j} \varphi\left(0,3^{j} x\right): j \in \mathbb{N} \cup\{0\}\right\} \tag{4.17}
\end{align*}
$$

for all $x \in X$.
Proof. Using Theorem 4.1 and Theorem 4.2, we obtain the required results of the theorem.

Corollary 4.4. Let $\epsilon \geq 0$ be a constant. Suppose that $f: X \rightarrow Y$ is a mapping satisfying the inequality

$$
\begin{equation*}
\left\|D_{f}(x, y)\right\| \leq \epsilon \tag{4.18}
\end{equation*}
$$

for all $x, y \in X$. Then there exist a unique quadratic mapping $Q: X \rightarrow Y$ and a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)-A(x)\| \leq \epsilon \tag{4.19}
\end{equation*}
$$

for all $x \in X$.
Proof. The proof is obtained by taking $\varphi(x, y)=\epsilon$, for all $x, y \in X$. Then we have $\varphi\left(0,3^{j} x\right)=\epsilon$, for all $x \in X$ and $j \in \mathbb{N} \cup\{0\}$

$$
\begin{aligned}
\|f(x)-Q(x)-A(x)\| & \leq \max \left\{\left|\frac{1}{9}\right|^{j} \epsilon,\left|\frac{1}{3}\right|^{j} \epsilon: j \in \mathbb{N} \cup\{0\}\right\} \\
& \leq \epsilon
\end{aligned}
$$

for all $x \in X$.

Corollary 4.5. Let $\theta \geq 0$ and $p<1$ be constants. Suppose that $f: X \rightarrow Y$ is a mapping satisfying the inequality

$$
\begin{equation*}
\left\|D_{f}(x, y)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{4.20}
\end{equation*}
$$

for all $x, y \in X$. Then there exist a unique quadratic mapping $Q: X \rightarrow Y$ and a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)-A(x)\| \leq 3^{p-1} \theta\|x\|^{p} \tag{4.21}
\end{equation*}
$$

for all $x \in X$.
Proof. The required results are obtained by taking $\varphi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$, for all $x, y \in X$. Then we have $\varphi\left(0,3^{j} x\right)=3^{j p} \theta\|x\|^{p}$, for all $x \in X$ and $j \in \mathbb{N} \cup\{0\}$

$$
\begin{aligned}
\|f(x)-Q(x)-A(x)\| & \leq \max \left\{\left|\frac{1}{9}\right|^{j} 3^{j p} \theta\|x\|^{p},\left|\frac{1}{3}\right|^{j} 3^{j p} \theta\|x\|^{p}: j \in \mathbb{N} \cup\{0\}\right\} \\
& \leq \max \left\{3^{(p-2) j} \theta\|x\|^{p}, 3^{(p-1) j} \theta\|x\|^{p}: j \in \mathbb{N} \cup\{0\}\right\} \\
& \leq 3^{p-1} \theta\|x\|^{p}
\end{aligned}
$$

for all $x \in X$.

5 Conclusion

Thus, we have obtained the general solution of the mixed type functional equation (1.1) and proved that the generalized Hyers-Ulam stability of the functional equation (1.1) is also stable in nonArchimedean fields.

Competing Interests

The authors declare that no competing interests exist.

References

[1] Ulam SM. A collection of mathematical problems. Interscience Publishers, Inc. New York; 1960.
[2] Hyers DH. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A. 1941;27:222-224.
[3] Aoki T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan. 1950; 2:64-66 .
[4] Th. M. Rassias. On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 1978;72:297-300.
[5] Moslehian MS, Th.M. Rassias. Stability of functional equations in non-Archimedean spaces. Applicable Analysis and Discrete Mathematics. 2007;1:325-334.
[6] Adam M. On the stability of some quadratic functional equation. J. Nonlinear Sci. Appl. 2011;4(1):50-59.
[7] Chang IS, Jung YS. Stability of functional equations deriving from cubic and quadratic functions. J. Math. Anal. Appl. 2003;283:491-500.
[8] Czerwik S. The stability of the quadratic functional equation. T. M. Rassias, J. Tabor (Eds.), Stability of Mappings of Hyers-Ulam Type, Hadronic Press, Florida. 1994;81-91.
[9] Gordji ME, Abbaszadeh S, Park C. On the stability of a generalized quadratic and quartic type functional equation in quasi-Banach spaces. J. Inequal. Appl. 2009;Article ID 153084, 26 pages.
[10] Gordji ME, Kaboli GS, Rassias JM, Zolfaghari S. Solution and stability of a mixed type additive, quadratic and cubic functional equation, Adv. Difference Equ. 2009;Art ID 826130, 17 pages.
[11] Gordji ME, Khodaei H. On the generalized Hyers-Ulam-Rassias stability of quadratic functional equations. Abs. Appl. Anal.; 2009. Art. ID 923476, 11 pages.
[12] Gordji ME, Khodaei H. Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces. Nonlinear Analysis. 2009;71;5629-5643.
[13] Jung SM. On the Hyers-Ulam-Rassias stability of a quadratic functional equation. J. Math. Anal. Appl. 1999;232:384-393.
[14] Kannappan PL. Quadratic functional equation and inner product spaces. Results Math. 1995;27(3-4):368-372.
[15] Lee J, An JS, Park C. On the stability of quadratic functional equations. Abs. Appl. Anal. 2008;Art. ID 628178, 8 pages.
[16] Lee YS, Na J, Woo H. On the stability of a mixed type quadratic-additive functional equation. Adv. Difference Equ. 2013;198:10.
[17] Liguang W, Jing L. On the stability of a functional equation deriving from additive and quadratic functions. Adv. in Difference Equ. 2012;98.
[18] Moradlou F, Vaezi H, Eskandani GZ. Hyers-Ulam-Rassias stability of a quadratic and additive functional equation in quasi-Banach spaces. Mediterr. J. Math. 2009;6;233-248.
[19] Movahednia E. Fixed point and generalized Hyers-Ulam-Rassias stability of a quadratic functional equation. J. Math. Comp. Sci. 2013;6:72-78.
[20] Park C, Jo SW, Kho DY. On the stability of AQCQ-functional equation. J. Chungcheon Math. Soc. 2009;22(4):757-770.
[21] Park C, Fuzzy stability of an additive-quadratic-quartic functional equation. J. Inequ. Appl. 2010;Art. ID 253040, 22 pages.
[22] Ch. Park, Gordji ME, Najati A. Generalized Hyers-Ulam stability of an AQCQ-functional equation in non-Archimedean Banach spaces. J. Nonlinear Sci. Appl. 2010;3(4):272-281.
[23] Park C, Azadi Kenary H, Th.M. Rassias. Hyers-Ulam-Rassias stability of the additivequadratic mappings in non-Archimedean Banach spaces. J. Inequ. Appl. 2012;174:18.
[24] Ravi K, Rassias JM, Arunkumar M, Kodandan R. Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation. J. Ineq. Pure \& Appl. Math. 2009;10(4):1-29.

[^1][^2]
[^0]: *Corresponding author: E-mail: shckravi@yahoo.co.in

[^1]: (C) 2016 Ravi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^2]: Peer-review history:
 The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
 http://sciencedomain.org/review-history/11859

