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Abstract

The problem of pricing contingent claims has been extelysstadied for non-Gaussian models and in
particular, Black- Scholes formula has been derived folNilie asset pricing model. This approach was
originally studied in Insurance pricing where the distortfunction was defined in terms of the normal
distribution. It was also used to compare the standaadkBBcholes contingent pricing and distortion
based contingent pricing. So, in this paper, we aim at ussn@auchy simulation analysis via MATLA

to compare the Wang distortion and NIG distortion openattr their pricing model. The results shagw
that we can recuperate the Black-Scholes and NIGngriohodel using the simulation of Cauchy
distortion operator.

Keywords: Wang distortion operator; NIG; Cauchy distortiggerator and simulation analysis.

1 Introduction

Financial mathematics has over the years made a gnpati on the financial industry. The foundation of
financial mathematics as it is known today has its oiiigithe seminal paper by [1], where the Ito’s formula
has been used for deriving a compact pricing formuleafetandard European call option by formulating
explicitly the model on the risk neutral measure undet afsassumptions.
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Option valuation is one of the most important topics in firdnmathematics. The accurate modeling of
financial price series is of paramount importance for theingiof financial derivative such as option. To
price derivatives securities, it is crucial to haveg@d modeling of the probability distribution of the
underlying product. The most famous continuous time model issthe calibrated Black-Sholes model. It
uses the Normal distribution to fit the log-returns of tinelerlying; the price process of the underlying is
given by the geometric Brownian motion:

X = Xy exp ((u - %z)t + oBt)

where(B;, t = 0) is a standard Brownian motion, i follows a Normal distribution with mean 0 and
variance t. It is known, however, that the log-retushmost financial assets have an actual kurtosis that is
higher than that of the Normal distribution. Empirical enicee has shown that the Normal distribution is a
very poor model to fit log-returns of financial asset sashstocks. Several authors have proposed better
models. Notably, [2] used the Normal Inverse GaussialGNo price synthetic collateralized debt
obligations (CDO), [3] proposed the Normal Inverse GauséMiG) Levy process, [4] proposed the
Hyperbolic models and their generalization, [5] proposedran fof Insurance risk pricing based on a
Normal-based distribution operator, [6] proposed distortion opebgt@auchy distribution under a simple
transformation to price contingent claims. In this paperaim at using the simulation analysis of Cauchy
distortion operator under a simple transformation to coephe results of Wang and NIG distortion
operators. MATLAB was used in the simulation of the dat&able 1 and the results from Fig. 1 shows that
the Cauchy distortion operator recovers the result of NH&Etwis even a better model than the result of
Wang that uses a Normal distribution.

2 The Normal Inverse Gaussian Distribution and Nonsaussian Black
Scholes Contingent Pricing

The NIG distribution is a member of the wider classgeheralized hyperbolic distribution. This larger
family was introduced in [1]. It is a well-known fadtat the returns of most financial assets have semi-
heavy tails and the actual kurtosis is higher than that rafrenal distribution. It belongs to the infinitely
divisible class of distribution which allows for the ctostion of a non-Gaussian Black-Scholes option
pricing theory see also [7]. The NIG is one of the only twodabses being closed under convolutions. Its
density function is given in [8] as

@)

Sy /82 Z2 YePx-w
nig(c; a, f,8,u) = p 20 GO < x€R

V82 +(x—p)?

Wherek; is the modified Bessel function of the third kind with indegiven by
K (x) = fow UAt e U gy x>0,

and
y2 — CZZ _ ﬁZ.

The parameter domain &> 0, a = 0, a? > 2 and ueR. The parametes > 0 determines the shapg,
with 0 < |B| < a the skewness andR the location and > 0 is a scaling parameter.

NIG(x; @, B,6,1) = [, nig(y; a, B, 8, w)dy
The distribution has the survival functidiG given as

NIG(x; a, ,6,1) = [ nig(y; a, B, 8, 1)dy.
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The mean is given as

58
a5

E[X]=pu+

The variance is given as
Var (t,7) = e™V(t, 1) — u?(t, 7)

e"™"W(t,t) — 3u(t,1)e"V(t, 1) + 2u(t, 7)3

Skew(t, 1) = 3
lemV(r,T) — u(t, 7)%]2

e X(r,t) — 4ut, De"W(r, 1) + 6e"u((t, 7)) V(t, ) — 3u(t, 7)*
[emV(r,T) — u(t, 7)%]?

Kurt(t,7) =

Where

M C(t, 7, K)dK + f(ftw P n K)aK

K? K2

V(t,1) = f;:

wzﬁ—lﬁzc(,,)d =3 (n( ) p(e.rk) d
Wt =fst6n(st) 3( n(;tz)) t7,K)dK . fostén(st) 3(n(;tz)) P(t,tK) dK '

» 12In (E2)—a((In(£ ® i)
X p) = ) e

3
K.2y_ K
i o 12in(5)?) 4((ln5t)> (P(t,T,K)
K . -

and

u(t, 1) = e —1—e /@ r)/z — e W(t,1)/6— et X T)/24
Interestingly, the normal distribution is a limiting casetw NIG distribution. See [9,10,11] for details.
Remark 1.

A Normal distribution with meam and variance5? is obtained as a limiting case of the normal inverse
Gaussian distribution (NIG) fér— o andg - o2,

An interesting feature of the NIG density is that, kmlthe normal density, it is not symmetric and that its
asymmetry is determined by the paramgter

The Laplace transform of the NIG distribution [12], igemn as

L(Z) = e #8801 |p—Z|<a . 2)
Where

y? =a® - p*andy; = a® — (B - 2)°.

This form of the Laplace transform yields an expression the expectation of the exponential
transformation of a NIG random variable.

E[e*] = et 3[Ja2 — (B + 12 - [a? - p2].
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2.1 The Black-Scholes Type Formula for a NIG Distdron Distribution

For a European call with Strike K for a NIG distortiastdbution is given as
C(tISt) =
S¢NIG (lns% a,B+1,8(T—t),[u+9*](T—t)) —
Ke "T-ONIG (lnsﬁt; a,ﬁ,&(T—t),[p.+6*](T—t)). (3)

Where 8* =7 —pu+ 8[Ja2 — (B + D2 -\/a? - 2]

This implies that the price of a standard European pagwaffuated with the pricing kernel associated to the
NIG distortion with parametet™ is given by

e TTHIf(Sp,K); =01 = SoNIG (In&; aprisa-ousoir)-
—Ke "TNIG (lnsﬁt; a,ﬁ,sT,[u+9*]T) ) 4

2.2 Wang Distortion and Option Pricing

Let X be a random variable representing a financial (insuraigte@nd letF, andsS, be its distribution and
Survival function respectively. The premium (price) atsted with this position is

n(X) = [ g(Sx(x))dx (5)
where g is an increasing differentiable function viitkc g < 1 for all x.

Moreover, this function is such that(0) = 0 and g(1) = 1. Equation (5) shows that the premium
functionm can be seen as a corrected mean

n(X) = [xg (Sx(x))d Fx(x) = E*[X] (6)

where E* is the expectation under the density meagurgs] proposes the following class of distortion
function based on the normal distribution in order to pricerare and financial risks.

go) = (@71 (W) +a) Q)
where® is the standard normal cumulative distribution function. [18wshthat the distribution in (7) is

consistent with Black-Scholes formula. Let us considefdhewing price kernel associated with distortion
in (7).

H[X =h(2),a] = fga(SX(x)dx
where h is a continuous, positive and increasing functi@n.amormal random variable Z we have;
H[X = h(Z),a] = E[R(Z + a)].

In the Standard Black-Scholes model, asset prices follovomegeic Brownian motion with

ax(t) _
X0 udt + odw,
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So that

(k=)
U— > |T+ow
X, = Xpe\' 2 ¢

A standard European call option has pay-off at maturitpnd \ae can writef (Z) as, where Z is a standard
normal random variable

o2
(Z) =X e(u—T)T+m/TZ - K
0

Applying the relation (kernel), we obtain

H(C(T,K); —a) =E[f(Z +a)] = f_“"oox(,e(“—“z_z)““ﬁ aroTZ _ gy* ‘/%e_%zdz.
The values of Z for which

Xoe(u—"z—z)ﬂaﬁawﬁz >K

determines the region of integration.
This region i9Z,,in, ] where

K a?
_ lnx—o— () T—oVT «

Zmin - VT

Calibrating Wang’s discounted certainty equivalent to the unaerigiice using
-7,
o= (ﬂ - c) \/T

gives

X a2
el Sy el

— Tk (K ®)
oVT '

2
Xo, Gc+IT

InZ52.
e TH(C(T,K), —a) = X,® (—X p—t
which is the Black-Scholes price of the call optioriraetO.

3 The Cauchy Distortion Operator (under a Simple Tansformation)
and Option Prices

A transformation variable Y follows a Cauchy distriloati under a simple transformation of dividing
through a constant with parameter vediorb), in symbolic notatiorX ~ cauchy(a, b), if its pdf is given

by
(S b)——b9< ! ) 1<5 <1
S a T \b2+(S—a)?/’ ¢

Where 6 is the stabilization term and it is given by

0 s
- 1-a

2btan~1 (T)
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The pdf can therefore be written as

1
2tan~1(15% b2 +(S-a)?

f(S; a,b) = ,—1<S8;<1,a<1 ,b>0.

The characteristic function of the pdf is given by

— 6> Jibs___ 1 .. _ 8 ias-bs
(p(s) T [ bZ+(S-a)? ds= g e )

See [14,15], for more details and derivation of Cauchgridution under a simple transformation of dividing
by a constant.

The first four moment of this pdf are found in Appendix 2.

Consider the Cauchy distortion under a transformation defin¢tbin Let Z be the random variable with
distribution given byC (a,b) and letX = h(Z) be a transformation through a continuous, positive and
increasing functiorh.

We now have to study how this distortion affects an exporeln¢iey model for assets prices and in
particular if there is a valug such that discounted asset prices behave like risk-nguicak.

Let us consider the following exponential Cauchy (under tramsftion) asset price model.
X.= Xoe®t ,t>0

where Z, is a (3, ,p) Cauchy-Levy (under a transformation) process with patara(a, b). Then the
(3: ,p) - random variableX, is the price of the security at time T and it camiiéten as

Xy = h(Zp).

For a functiomh(U) = X, eV and a random variabl&, with distributionC(a, b), then we have,

H[X;y,—6] = E[f(Z + 8)] = (E(0)ePO1e+oVT 23t _ k)

+

Now, we need to choosé such that the discounted price process
{exp(—(r — Qt) X¢, t > 0}
is a martingale i.e
Xo = exp (=(r — It E°[X,]. )

Expectation is taken with respect to law with dengffyx) , q is the rate of yield of compound dividends
per annum and r the interest rate.

Let
@(U) = E[exp (U, X;]

denotes the characteristics functionXgfthen from (9) that in order to let the discounted pricegse be a
martingale, [17,18], we need to have;

B(-i(6+1)

exp(r - q) = 25 (10)
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It is easy to see that

u-r+q-2(a—b)

o X (11)
such that

Xp= W+ O (2
and so,

;295 —exp{2(a—b)X, —2(a —b)}.
Now,

E. = Eyexp{2(a — b)X, — 2(a — b)t — (r — u)t}.

The pay off of the contract will b&. = E; — K as a function ok gives (10) and so using thd,},s, is a
Q-Brownian motion gives the fair value of K as

K = EC[E;] = e WE,.

Hence calibrating Cauchy discounting certainty equivdtetite underlying security price using (11) gives

—reT _ ln(%)+p.—r+q+2(a—b)T _ —reT ln(%)irﬂ;—z(a—b)T
e CH(f(E(T).K))—E(O)C< T KCerel | =L — ———— (13)

which is the Black-Scholes price of the call optioriraetO.

3.1 The Tables of the Simulated Data of the Wang, I8 and Cauchy Pricing
Processes

Table 1 shows the numerical option prices from a sampéssdt prices simulated from various model viz:
Black-Scholes model, CEV model, Mertons model, NIG anccB®amodels.

3.2 The Graph of the Distortion Functions

The Strike prices of the distortion functions is plotteghiast the simulated prices of Wang, NIG and
Cauchy distortion function respectively.

3.3 Discussion

The data where simulated for different models at varsttilse prices between 16 and 25 for Wang, NIG and
Cauchy distortion functions respectively using MATLAB Paog. The graphs were also plotted using
MATLAB command for Fig. 1 (see Figs. 2, 3 and 4 are in appgehyl From the graph in Fig. 1, we
discover the behavior of the distortion functions at variotikesprices. The NIG and Cauchy distributions,
modeled the prices better than the Wang at various strigespMore so, the similarities of the graphs of
NIG and Cauchy distortion functions in Fig. 1 is a cleardation that Cauchy distortion function can
recover the results of NIG distortion function.
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Fig. 1. The graph of Strike price against Wang, NIG and Cauuty Prices

Table 1. Numerical option prices from a sample of asset wes simulated from a Black-Scholes, model,
CEV model, Merton’s model, NIG model and Cauchy model

Strike 16 17 18 19 20 21 22 23 24
price
Wang 4429946  3.520876 2.684585 1.943541 1.335626 0.869027 0.541156 0.320120 01181760
price 5.0011123 4.257994 8.55319 2.897782 2.300873 1.760999 1.287738 0.8940492 0.584315
3.82582 3.30389 2.859597 2.495561 2.190748 1.937706 1.729408 1.554798 1.406543
5.623651 5.040767 4'516208 4.044822 3.625175 3.253745 2.922809 2.634771 2.384961
0.052 0.1085  0.2478 0.494 0.8704 1.3917 2.0479 2.8016 3.6284
0.06029 0.8187 1.0805 1.4004 1.7791 2.2244 2.7341 3.3184 3.9862
0.0044 0.026 0.098 0.2739 0.5939 1.0898 1.7629 2.5702 3.4596
0.7663 1.2402 1.8105 2.2474 3.1651 3.9185 4.7137 5.5377 6.381
Nig price  4.429254 3.519726 2.683260 1.942495 1.335341 0.869695 0.542594 0.321952 0.183597
4794092 3.29805 3.254972 2.569042 1.954117 1.410764 0.952544 0.595426 0.340217
3.798796 3.250806 2.882139 2.693118 2.55961 2.45169 2.358794 2.275172 2.198198
6.241786 5.729932 5.265508 4.843516 4.462434 4.119352 3.80827 3.531309 3.28515
0.0473 0.1037  0.2438 0.492 0.8711 1.3949 2.0528 2.807 3.6336
0.3872 0.5599  0.7826 1.0721 1.4328 1.877 2.4033 3.0238 3.7454
0.0025 0.0225  0.0913 0.2633 0.5806 1.0764 1.752 2.563 3.4557
2.1017 2.774 3.4934 42503 5.0381 5.8509 6.6855 7.5378 7.4021
Cauchy 4.425713 3.512952 2.672740 1.921475 1.307166 0.838378 0.516315 0.301095 0.169034
price 4871829 4.10258 3.392299 2.73939 2.152196 1.614958 1.136832 0.741379 0.440127
3.7663106 3.124439 2.682044 2.458136 2.295305 2.160739 2.515896 1.938743 1.841157
5.982305 5.430645 4.930659 4.476909 4.069693 3.706596 3.3779344 3.0938 2.845882
0.0538 0.100633 0.237467 0.483733 0.862333 1.3919 2.060967 2.820267 3.646267
0.45667 0.649333 0.901167 1.223733 1.612367 2.070067 2.5821 3.165933 3.842733
0.001533  0.022333 0.094476 0.274233 0.593633 1.08267 1.760033 2.568733 3.45667
1.760033 2.40467 3.108367 3.861667 4.655167 5.479633 6.332367 7.09967 8.0914

4 Conclusion

The Cauchy distribution is well known example of a stable ibigion [19]. In fact, the Gaussian and
Cauchy distribution are the only two stable distributionvidnich closed form mathematical formula exist
and it is consistent with the behavior we observe in rgatatanarkets. Equation (11) demonstrates that
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Cauchy distortion function approach under a transformaticovegs the Black-Scholes price of a European
Call option with (13). Also, in this paper, we proposenausation analysis of Cauchy distortion operator via
MATLAB to compare the Wang distortion and NIG distontioperator with their pricing model complex.
Under the same conditions and in similar situation, theopgaricing method of Cauchy distortion operator
proposed reproduces the results of pricing methods of Ndnmaise Gaussian (NIG) fully established in
the literature and Black-Scholes Model.
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Appendix 1

Table 1. Numerical option prices from a sample ofsset prices simulated from a Block-Scholes model

Strike price 16 17 18 19 20 21 22 23 24

Wang price  4.429946 3.520876 2.684585 1.943541 5638 0.869027 0.541156 0.320120 01181760
Nig price 4.429254 3.519726 2.683260 1.942495 B335 0.869695 0.542594 0.321952 0.183597
Cauchy price  4.425713 3.512952 2.672740 1.92147307166 0.838378 0.516315 0.301095 0.169034

Table 2. Numerical option prices Merton from a sample ofsset prices simulated from Merton’s model

Strike price 16 17 18 19 20 21 22 23 24

Wang price  5.011123 4.257994 3.553190 2.897782 08A® 1.760999 1.287738 0.8940492 0.584315
Nig price 4.794092 3.298050 3.254972 2.569042 1984 1.410764 0.952544 0.595426 0.340217
Cauchy price  4.871829 4.102558 3.392299 2.73939 52296 1.614958 1.136832 0.741379 0.440127

Table 3. Numerical option prices from a sample of asserices simulated from a CEV model

Strike price 2 3 4 5 6 7 8 9 10

Wang price  3.825820 3.30389 20859597 2.495561 2Z4®01.937706 1.729408 1.554798 1.406543
Nig price 3.798796 3.250806 2.882139 2.693118 X569 2.451690 2.358794 2.275172 2.198198
Cauchy price  3.763106 3.124439 2.682044 2.45813B95305 2.160739 2.515896 1.938743 1.841157

Table 4. Numerical option prices from a sample of asserices simulated from a NIG model

Strike price 16 17 18 19 20 21 22 23 24

Wang price 5.623651 5.040767 4.516208 4.044822 5382 3.253745 2.922809 2.634771 2.384961
Nig price 6.241786 5.729932 5.265508 4.843516 41362 4.119352 3.80827 3.531309 3.285150
Cauchy price 5.982305 5.430645 4.930659 4.47690969693 3.706569 3.379344 3.0938 2.845882

Table 5. Numerical option prices from a sample of asseripes simulated from a Black-Scholes model

Strike price 16 17 18 19 20 21 22 23 24

Wang price ~ 0.052(  0.108¢ 0.247¢ 0.494( 0.870¢ 1.391°  2.047¢ 2.801¢ 3.628¢

Nig price 0.047:  0.103: 0.243¢ 0.492( 0.871: 1.394¢  2.052¢ 2.807( 3.633¢
Cauchy price  0.0538 0.100633 0.237467 0.483733 2685 1.3919 2.060967 2.820267 3.646267

Table 6. Numerical option prices from a sample of asset jwes simulated from a CEV model

Strike price 16 17 18 19 20 21 22 23 24
Wang price 0.6029 0.8187 1.0805 1.4004 1.7791 2224 2.7341 3.3184 3.9862
Nig price 0.3872  0.5599 0.7826 1.0721 1.4328 1.87702.4033 3.0238 3.7454

Cauchy price  0.45667 0.649333 0.901167 1.22373312Bf7 2.070067 2.5821 3.165933 3.842733

Table 7. Numerical option prices from a sample of asset pricesmulated from a Black-Scholes model

Strike price 16 17 18 19 20 21 22 23 24

Wang price 0.0044 0.0260 0.0980 0.2739 0.5939 8.0891.7629 2.5702 3.4596
NIG price 0.0025 0.0225 0.0913 0.2633 0.5806 1.0764.7520 2.5630 3.4557
Cauchy price  0.001533  0.022333 0.094467 0.27423393633 1.08267 1.760033 2.568733 3.45667

Table 8. Numerical option prices from a sample of assetipes simulated from a Black-Scholes model

Strike price 16 17 18 19 20 21 22 23 24
Wang price 0.7663 1.2402 1.8105 2.2474 3.1651 59184.7137 5.5377 6.3810
NIG price 2.1017 2.7740 3.4934 4.2503 5.0381 5.850%.6855 7.5378 8.4021
Cauchy price  1.762433  2.40467 3.108367 3.861667554&/ 5.479633 6.332367 7.205967 8.0914
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Fig. 1. The graph of Strike Price against Wang Price
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Fig. 2. The graph of strike Price against NIG Price
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The graph of Cauchy distortion function
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Fig. 3. The graph of Strike Price against Cauchy Price
Appendix 2

1
= [1 In(1+a?+b?-2a)-In(1+a%+ b?+2a)+3 [tan™1 _1(—)]

E@©S) = 2t

[tan‘l(—) tan~1 (—)]

1
ES) = —— [1+a In(1 + a? + b? — 2a) — In(a? +b2)+
tan‘l( b)

[4a+ [ln(1+a +b%? —2a) —In(1 + a? + b% + 2a)

E(S®) = 1-a
2tan‘1(T)

+@iz3ab [tan‘l(—) tan_l(—)]

and

E(S%)
) 2a (a%2-b2%(In(a?-b2)+b(b%-6)

1
—+a-b?+3a?+2a(a?-b?)In( 1+a +b2—2a)+b(b2—6[tan_1( b
tan_l(T )

From the above, we obtain the expression for the skewnddaugtosis as

@2%(a,b)+d2(a,b)

skew (a,b) = =
[p1(ab)+®l]2

where
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¢(a,b) =1 =In[1+a® +b? - 2a]*

a? — b? 1—a -
®'(a,b) = — [tan‘1 (T) +tan™! 1Ta)

3a2-b2

(1+a?+b?—-2a) 2
(14 a?+b?-2a)

¢%(a,b) = 4a + (In

3_ 2
®2(a,b) = L2 ran-12E )1 120,
and
Kurt(a,b) = ¢*(a,b) + ¢*(a,b)
' 9(a,b) + ®'(a,b)
with
2.2 2a(a?-b?
3 _1 (1+a*+b*-2a) 2
(0] (a,b) = §+a—b2+3a2+ln 52
and

@3(a,b) = b(b*> —6) [tan_l(%) + tan”1(9)].
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