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Abstract 
 

This paper discussed the derivation of two-stage explicit Stochastic Rational Runge-Kutta (SRRK) 
methods for the solution of stochastic first order ordinary differential equations. The derivation is based 
on the use of Taylor series expansion for the deterministic and stochastic parts of the stochastic 
differential equation. Efforts were made to analyse the stability of the methods and also applied the 
methods to test some numerical problems to solve Stochastic Differential Equations (SDE). From the 
results obtained it is obvious that the methods derived performed better than the ones with which we 
compared our results. 

 

Keywords: Stochastic differential equations; Runge-Kutta methods; explicit rational Runge-Kutta methods.   
 
2010 AMS subject classification: 65L05, 65L06, 65D30. 
 

1 Introduction 
 
Many physical and biological systems are modelled by stochastic differential equations (SDEs), which were 
obtained by including random effects into the ordinary differential equations. Models of this type offer a 
more realistic representation of the real physical systems than the deterministic models. However, most of 
the (SDEs) cannot usually be solved analytically, so numerical methods are needed [1]. Whereas there is a 
rich theory for designing effective numerical methods for solving ordinary differential equations, the 
stochastic counterpart are less well developed. Interesting enough, Runge-Kutta methods prove effective in 
handling stochastic differential equation theories that fits or handle stochastic processes, over some of the 
analytic methods, or even some numerical schemes [2,3]. Therefore, there is a high need to develop 
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stochastic schemes for solving and implementation of Runge-Kutta numerical methods for solving stochastic 
differential equations [4].  
 
In this paper, two-stage explicit Stochastic Rational Runge-Kutta method is derived based on the modified 
approach of stochastic Runge-Kutta methods to solve stochastic ordinary differential equation. Consider the 
non-autonomous, one Wiener SDE of Stratonovich type: 
 

tdWtytgdttytftdy o))(,())(,()( +=
                                                                                          (1) 

 
The general form of an s-stages explicit Stochastic Rational Runge-Kutta (SRRK) methods is given by [5] 
as. 
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where sjiallforbsandbaasavsc ijijijiiiii ,...,2,1,,,,,,,,, =  are constants to be determined.  

 
We can classify SRRK methods, as follows: 
 

If ,,0 jibsab ijijij <∀===  then the method is called semi-implicit. 

 



 
 
 

Odekunle et al.; BJMCS, 12(3): 1-11, 2016; Article no.BJMCS.18893 
 
 
 

3 
 
 

If ,,0 jibsab ijijij ≤∀===  then the method is called explicit. 

 
Otherwise it is called implicit. 
 

2 Derivation of the Methods 
 
In order to derive the two-stage explicit SRRK methods, consider the general form of the explicit SRRK 
methods, which we shall denote by JAk2. 
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where, hand lJ  are as in  (3). 

 
When 2=s  in (3) we obtain two-stage explicit SRRK given by 
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are to ensure consistency of the schemes and the constants, 22212121 ,,,,,,, bassvvcc and 2as  are to be 
determined. 
 
Expanding the RHS of (5) binomially and simplify to get 
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Expanding 2K  using Taylor series about, ),( nn yt we have: 
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Similarly, expanding 2H  and 2Ks  about ),( nn zt  and ),( nn yt  respectively and substituting the 

expansions in (7) to obtain 
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We denote solution of the stochastic part by ys and adopt the following notations  

 
),(),,(),,( ystgsyytpqytfy =′=′=′
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with local truncation error of order ., 33 Jh    
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where 1212211 ,,,,,,, JhKsKsHKHK  are as defined in (4) 
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where 1212211 ,,,,,,, JhKsKsHKHK  are as defined in (7) 
 

3 Stability Analysis of the Two-Stage Schemes 
 
Theorem 1: (Convergence, [6]) 
 

(i)  Let the function ),,( hyxφ  be continuously jointly as a function of its three arguments, in the 

region F   defined by [ ] [ ] 0,0),,(,, 00 >∈∞−∞∈∈ hhhybaX  

(ii)  Let ),,( hyhφ  satisfy a Lipchitz condition of the form yyMhyxhyx −≤− ** ),,(),,( φφ   

for all points inhyxhyx ),,(),,,( *  F  . 

 

Then the method ),,(1 hyxhyy nnnn φ=−+  is convergent if and only if it is consistent. 

 
For the stability analysis of the derived schemes, we shall adopt the principles of [8,9,10,11,12]. Since the 
stability analysis of the deterministic method corresponds with the stability of the corresponding stochastic 
method [6,7]. Therefore, for the stability of the stochastic methods, it is sufficient to analyse the stability of 
the corresponding deterministic methods.   
 
From (19) the corresponding deterministic method can be written as 
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If we expand (22) using binomial expansion, simplify and truncate h after the powers of two we have 
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Truncating terms in h of power three and higher, simplify and rearrange the expression in ascending powers 
of hλ , we get 
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be the characteristic equation, for the absolute stability region, we require 1≤ξ  where 0<λ therefore, 
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Hence the interval of the absolute stability of the two-stage (20) is (-4.44, 0). 
 
The interval of absolute stability of the two-stage (20) is (-3, 0) while that of (22) is (-12, 0).  
 

4 Numerical Examples and Results 
 
Problem 1 
 
Consider the SDE [3]. 
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with the exact solution given by: 
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Consider the SDE [13]. 
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Therefore, the numerical solution of the explicit SRRK methods for the two-stage schemes as obtained in 
this work with absolute errors are given in the Tables 1 and 2. The following notations will be used to 
represents results in the tables below RAe1-3: Results obtained by [3] Logmani: Results obtained by [13] 
JAk 2: Results obtained by our new methods.  
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Table 1. Numerical results of two-stage JAk 2 explicit SRRK in comparison with [3] for Problem 1 
 

it  iW
 

Exact 
solution 

PL Absolute 
error 

RAe1 
(Pa) 

Absolute 
error 

RAe2 
 

Absolute 
error 

RAE3 Absolute  
error 

JAk 2 
 

Absolute 
error 

0 0 0 0 0 0 0 0 0 0 0 0 0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

-0.0439 
-0.0679 
-0.0473 
-0.0951 
-0.1686 
0.0044 
-0.0121 
0.0556 
0.2192 
0.0809 

-0.0219 
-0.034 
-0.0237 
-0.0475 
-0.0841 
0.0022 
-0.006 
0.0278 
0.1092 
0.0404 

-0.0219 
-0.0334 
-0.0223 
-0.0456 
-0.081 
0.0072 
-0.0012 
0.0327 
0.113 
0.0416 

0 
0.0006 
0.0014 
0.0019 
0.0031 
0.0005 
0.0048 
0.0048 
0.0039 
0.0012 

-0.0219 
-0.0334 
-0.0223 
-0.0456 
-0.0811 
0.0072 
-0.0012 
0.0327 
0.1132 
0.0417 

0 
0.0005 
0.0014 
0.0019 
0.003 
0.005 
0.0049 
0.0049 
0.004 
0.0013 

-0,0219 
-0.0334 
-0.0223 
-0.0456 
-0.081 
0.0071 
-0.0013 
0.0326 
0.113 
0.0416 

0 
0.0005 
0.0014 
0.0019 
0.003 
0.0049 
0.0048 
0.0048 
0.0038 
0.0012 

-0.0219 
-0.0334 
-0.0223 
-0.0456 
-0.0811 
0.0072 
-0.0012 
0.0327 
0.1132 
0.0417 

0 
0.0005 
0.0014 
0.0019 
0.003 
0.005 
0.0049 
0.0049 
0.004 
0.0013 

-0.0219 
-0.034 
-0.0237 
-0.0475 
-0.0843 
0.0022 
-0.006 
0.0278 
0.1096 
0.0405 

0.0000 
0.0000 
0.0000 
0.0000 
0.0002 
0.0000 
0.0000 
0.0000 
0.0004 
0.0000 

 
Table 2. Numerical results of two-stage JAk 2 explicit SRRK in comparison with [13] for Problem 2 

 
 PL  R2  SIM  IM  SIM3  JAK 2  
h Error Error Error Error Error Error 
0.040       0.007381        0.000111       0.000007      0.000003        0.000000      0.000011 
0.020       0.003666        0.000027       0.000001      0.000000        0.000000      0.000000 
0.010       0.001827        0.000007       0.000000      0.000000        0.000000      0.000000 
0.005       0.000912 0.000001       0.000000     .0.000000        0. 000000     0.000000         

 



 
 
 

Odekunle et al.; BJMCS, 12(3): 1-11, 2016; Article no.BJMCS.18893 
 
 
 

10 
 
 

5 Discussion of Results 
 
With the derived two-stage explicit Stochastic Rational Runge-Kutta schemes (SRRK) denoted JAk in the 
numerical results tables. Some of the family schemes were tested on the numerical Problems 1 from [3] and 
problem 2 from [13]. Matlab software (version 2010) was employed to run the simulations, based on normal 
distributed random numbers with mean zero and variance (standard deviation) one, i.e N(0,1). From Tables 
1and 2, we can see the performance of our family of two-stage schemes with  the existing schemes, [3] and 
[13 ]. Also detail analysis of each family of the two-stages developed were carried out using Schur method, 
in line with what we call mean and mean square stability principles in stochastic stability analysis discussed 
by some authors in section 3.0, of which the stability analysis of each family of two- stage are bounded by 
the intervals (-4.44), (-3.0,0) and (-12.0, 0) respectively, which are better than counter part deterministic 
explicit Runge-Kutta methods. 
 

6 Conclusions  
 
Clearly family of two-stage schemes performs better in terms of convergence and accuracy, therefore the 
SRRK schemes are alternative methods to solve this class of these problems. 
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