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Abstract

A system of four super-Jupiter planets around HR8799 is the first multiplanet configuration discovered via the
direct imaging technique. Despite over a decade of research, the system’s architecture is still not fully resolved.
The main difficulty comes from a still narrow observing window of ∼20yr that covers small arcs of orbits with
periods from roughly 50 to 500yr. Soon after the discovery, it became clear that unconstrained best-fitting
astrometric configurations self-disrupt rapidly due to strong mutual gravitational interactions between the
companions of ;10 Jupiter mass. Recently, we showed that the HR8799 system may be long-term stable when
locked in a generalized Laplace 8:4:2:1 mean-motion resonance (MMR) chain, and we constrained its orbits
through the planetary migration. Here we qualitatively improve this approach by considering the MMR in terms of
an exactly periodic configuration. This assumption enables us to construct for the first time the self-consistent N-
body model of the long-term stable orbital architecture using only available astrometric positions of the planets
relative to the star. We independently determine the planetary masses, which are consistent with thermodynamic
evolution, and the parallax overlapping to 1σ with the most recent Gaia DR2 value. We also determine the global
structure of the inner and outer debris disks in the [8, 600]au range, consistent with the updated orbital solution.

Unified Astronomy Thesaurus concepts: Exoplanet dynamics (490); Exoplanet systems (484); Exoplanet detection
methods (489)

1. Introduction

Several approaches are being used to detect extrasolar
planets. Indirect methods, such as radial velocity (Mayor &
Queloz 1995), transits (Henry et al. 2000), timing (Wolszczan
& Frail 1992), and classic astrometry (Muterspaugh et al.
2010), rely on studying the radiation of the central star, while
the planets themselves are not observed. The imaging
technique detects the planets directly, given their own infrared
(IR) radiation. This method, limited by the contrast, stability,
and resolution of the images, is sensitive for massive and young
planets in wide orbits. Therefore, even for the nearby star
HR8799, located ∼40pc from the Sun (Gaia Collaboration
et al. 2018), it is only possible to detect the planets with long
periods of 102–103 yr, as discovered by Marois et al.
(2008, 2010). This makes the orbit determination a very
difficult task. The measured astrometric positions of the planets
relative to the star are typically uncertain to a few 0 001 (mas),
but this is still not sufficient to uniquely constrain the orbits.
Qualitatively different architectures are consistent with the
present observations (e.g., Wertz et al. 2017). Astrometric
(purely geometric) orbital models are strongly unstable (e.g.,
Konopacky et al. 2016; Wang et al. 2018); however, there are
also reported dynamically tuned configurations which, though
hardly chaotic in the Lyapunov exponent sense, can survive for
hundreds of Myr (Götberg et al. 2016), comparable with the
age of HR8799 of ;30–60Myr (Marois et al. 2010; Wilner
et al. 2018).

On the other hand, a resonant or near-resonant system resulting
from the convergent migration was shown to explain the
observations as well (Goździewski & Migaszewski 2014, 2018,
hereafter GM14 and GM18, respectively). We justified a
rigorously stable 8:4:2:1 mean-motion resonance (MMR) as the
most likely architecture on dynamical grounds, consistent with the
recent studies in Konopacky et al. (2016) and Wang et al. (2018).
They independently found, by imposing Markov Chain Monte

Carlo (MCMC) dynamical priors, that coplanar orbits near the
8:4:2:1 MMR result in orders of magnitude more stable orbits
than any other scenario and provide adequate fits to the
measurements. In the present work, we extend the MMR
hypothesis by linking the putative resonance chain with the
planetary N-body periodic solutions (Hadjidemetriou 1976;
Hadjidemetriou & Michalodimitrakis 1981; see also citations
therein). In the later paper, they computed families of periodic
orbits (POs) for the four-body planetary system and applied the
results to the Galilean moons of Jupiter. This follows de Sitter’s
mathematical theory of the Laplace resonance in a Newtonian
framework. De Sitter found a family of stable POs as the Poincaré
orbits of the second kind (Broer & Hanßmann 2016). These
authors also proposed that librations (quasiperiodic solutions) near
these POs may provide a realistic explanation of the observations.
We apply a similar reasoning to the HR8799 system.
Because the 8:4:2:1 MMR chain in the HR8799 system

generalizes the Laplace resonance (Papaloizou 2015), there is a
fairly obvious link of this prior resonant model found in GM14
and GM18, with a PO interpreted as the MMR center. Here,
similar to Hadjidemetriou & Michalodimitrakis (1981), we
consider a planetary system as a PO when the osculating orbital
elements of the orbits are periodic in time with regard to a
nonuniformly rotating reference frame tied to the osculating
apsidal line of a selected planet. The present study is inspired
by our finding that the 8:4:2:1 MMR configurations fitting the
observations of HR8799 are in fact very close to an exact PO
of the five-body system.
Periodic configurations are known to result from smooth

convergent migration in systems of two or more planets (e.g.,
Beaugé et al. 2006; Migaszewski 2015). In our numerical
simulations of convergent migration (see GM14 and GM18),
three- and four-planet MMR chains of the Laplace resonance
appear naturally, in wide ranges of the migration timescales and
planet masses. The migration quickly drives planets to long-
term stable systems, typically in a few Myr timescale. This
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indicates that the 8:4:2:1 MMR capture may be an efficient
process, weakly dependent on physical conditions in the
protoplanetary disk. Simultaneously, stable systems are con-
fined to tiny, isolated islands in the orbital parameter space, as
narrow as ;0.5 au in semimajor axes and ;0.05 in eccentricity
(GM14 and GM18), and that reflects the deterministic character
of the migration. Also, the increased eccentricities of the
innermost planets observed in the best-fitting, stable solutions
and our simulations are consistent with an early evolutionary
period of convergent inward migration of all four planets,
trapping them pairwise in 2:1MMRs and pumping the orbital
eccentricities while in resonance lock (Yu & Tremaine 2001;
Wang et al. 2018).

Our new method improving the migration-constrained
optimization (MCOA) in GM14 and GM18 relies on two
attributes of periodic configurations. When modeling the data
with a stable PO, the long-term dynamical stability is
guaranteed per se. Also, similar to MCOA, instead of exploring
large, n-dimensional parameter space, where the number of
free parameters n=23 for a coplanar system of four planets,
including their masses and the parallax, we may limit the
optimization to a p-dimensional manifold embedded in this
space; here, as explained below, p=11, or, if the masses and
parallax are fixed (given a priori), n=18 versus p=6.
Therefore, the MMR (periodic) constraint makes it possible to
substantially reduce the number of free parameters characteriz-
ing the orbital configuration and avoid degeneracy caused by a
small ratio of the data points to the degrees of freedom.

But the advantage of the PO-constrained method over the
standard orbital fitting does not lie only in the reduction of the
parameter space. In modeling a generic planetary configuration,
the orbital elements, as well as the planetary masses, must all
be free parameters, independent of one another. Therefore, the
masses cannot be determined from the astrometric observa-
tions, unless they sufficiently map the orbits or are sufficiently
precise to make it possible to detect mutual gravitational
perturbations. In turn, the orbital elements of a periodic
(exactly resonant) solution strongly depend on the planet
masses and total angular momentum of the system, assuming
that the linear scale of the system and the central star’s mass are
given (Hadjidemetriou 1976; Hadjidemetriou & Michalodimi-
trakis 1981). Therefore, these critical parameters may be
derived with relatively short orbital arcs and independently of
the planets’ cooling theory. As we also show below, because
the POs impose tight timing on the orbital evolution, it is
already possible to indirectly measure the system parallax. The
planet masses and parallax determined from the relative
astrometry that are self-consistent with the astrophysically
fixed stellar mass establish a test bed and benchmark for our
hypothesis.

We describe the results of the PO model of the HR8799
system in Section 2, the global structure of debris disks in
Section 3, and the main conclusions in Section 4. The details
and supplementary material are given in Appendices A–C.

2. Fitting the Exact Laplace Resonance

In order to test the PO hypothesis, we used the earliest
Hubble Space Telescope (HST) observations in Lafrenière
et al. (2009) and Soummer et al. (2011); the homogeneous,
uniformly reduced data in Konopacky et al. (2016); the most
recent refined Gemini Planet Imager (GPI) observations in De
Rosa et al. (2020); and the most accurate detection of

HR8799e in GRAVITY Collaboration et al. (2019) with the
GRAVITY instrument. This primary set does not contain all
observations available in the literature, and we limited the data
in order to reduce possible observational biases due to different
instruments and pipelines but extend the observational window
as much as possible. This approach follows our earlier
work GM18 and also Wang et al. (2018). The data set 
consists of =N 65obs astrometric planet positions (R.A.i≡αi,
decl.i≡δi, i=1, K, Nobs) relative to the star with a mean
uncertainty ;8 mas. However, there is a particular datum from
GRAVITY with (α, δ) errors as small as 0.07 and 0.2mas,
respectively. This precision detection with the optical inter-
ferometry seems to be critical for constraining the best-fitting
solutions. As the epoch t0 of the osculating initial condition, we
chose the date of the first HST observation, t0=1998.829, in
Lafrenière et al. (2009) and Soummer et al. (2011). We also
tested the PO model against all =N 127obs measurements
available in the literature, as listed in Wertz et al. (2017), and
updated with newer or rereduced Keck, GPI, and GRAVITY
points (Appendix A.2). In both cases, the fitting results and
conclusions closely overlap.
Fitting a PO to the astrometric data is similar to our approach

in GM14 and GM18, in which a migration-constrained
coplanar solution is appropriately transformed to be consistent
with the observations. Here the optimization process is
essentially deterministic (fully reproducible), better con-
strained, regarding the masses and parallax as free parameters
of the dynamical model, and CPU-efficient; computations may
be performed on a single workstation. Instead of simulating
the migration, for given masses m m m m, , ,e d c b, and C, or,
equivalently, the period ratio k = P Pd e of the inner pair of
planets, we find a strictly periodic, coplanar resonant solution
(see Appendix A for details) but with some arbitrary relative
phases of the planets. Then, using the N-body dynamics scale
invariance, the inferred “raw” semimajor axes are linearly
rescaled with the factor ρ, the orbital plane rotated to the sky
plane by three Euler angles ( )wWI , , rot , and the planets
propagated along the PO with the N-body integrator to epoch
tphase equivalent to the first observation epoch t0. For the given
observation epochs ti, = ¼i N1, , obs, the Cartesian coordinates
of the planets are rescaled by the parallax Π in order to obtain
the angular positions (αi, δi). Then the ephemeris may be
compared with the observations. To quantify that, we construct
the merit function, e.g., the common χ2 or other goodness-of-fit
measure, such as the maximum-likelihood function  or the
Bayesian posterior  . In the most general settings, the merit
function depends on 11 free parameters, (ºx m m m m, , , ,e d c b
k r wW PI t, , , , , ,phase ), i.e., masses of the planets, period ratio
of the two inner planets, linear scale factor, Euler angles,
epoch, and parallax. At this point, the data modeling becomes
almost the standard optimization—almost, and not really
trivial, since we now must seek the best-fitting x constrained
to a manifold of a stable PO family, representing the particular
MMR chain. One needs to find an extremum of the merit
function, as well as estimate the uncertainties of the best-fitting
parameters (e.g., Gregory 2010).
Details and variants of our experiments regarding optim-

ization on the PO manifold are described in Appendix A. Here
we quote the final best-fitting parameters in Table 1. The
top part of this table shows the primary fit parameters x, and
the bottom part is for the derived, osculating astrocentric
Keplerian elements at the epoch t0=1998.829. Uncertainties
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are estimated with the help of the differential evolution Markov
chain (DE-MC) method (Ter Braak 2006). The astrometric data
together with the best-fitting model are illustrated in Figure 1.
The left panel shows the (R.A., decl.) diagram with a close-up
of the GRAVITY datum (GRAVITY Collaboration et al.
2019). In this zoom, 200 randomly chosen synthetic orbits
are shown with gray curves, while black points denote the
positions of the synthetic solutions in the epoch of the
observation. Gray oval contours mark 1σ, 2σ, and 3σ
confidence intervals stemming from the DE-MC sampling.
The right panel illustrates the R.A. and decl. of the model and
observations as functions of the epoch. The PO described
in Table 1 yields the reduced χ2

ν ; 1.24 for p=11 free
parameters, =N 65obs , ν=119, and the rms 6.7 mas
compares to the mean uncertainty of the measurements
;8 mas. It adequately explains the data in a statistic sense. In
particular, the time and sky-plane synchronization of the model
with the GRAVITY data (left panel in Figure 1) is apparently
perfect.

The orbital evolution of this best-fitting system, integrated
for 1Gyr, is presented in Figure 2. This figure shows orbits of
HR8799e, HR8799d, andHR8799c in a reference frame

corotating with HR8799b. All trajectories are closed, con-
sistent with the periodic evolution of the system. The positions
of the planets are shown only in epochs of conjunctions
between HR8799b and HR8799c (big filled circles), as well
as their oppositions (small circles). Both the conjunctions and
the oppositions repeat in the same pattern. The system is then
an exact 8:4:2:1 MMR chain consisting of triple two-body
2:1MMRs of subsequent pairs of planets, with librations
of the critical angle of the zeroth-order four-body MMR
f l l l l= - - +2 28:4:2:1 e d c b (where λb,c,d,e are the mean
longitudes of the planets) with a small amplitude ;4°
(Figure A7). It is worth noting that while the mean orbital
osculating period ratios are ;2.03, ;2.08, and ;2.17 for
the innermost to outermost pairs of planets, respectively, the
canonical (proper) mean-motion frequency (Morbidelli 2002)
ratios are equal to 1/2, indicating exact two-body 2:1 MMRs.
Therefore, the MMR chain is understood as the generalized
Laplace resonance. In order to illustrate the long-term stability
of the model, we computed dynamical maps in terms of the
mean exponential growth factor of nearby orbits (MEGNO, aka
á ñY ; Cincotta et al. 2003) for each planet. The integration
interval of 10Myr translates to ;20,000 outermost orbits,

Table 1
The Best-fitting, Strictly Periodic Model of the HR8799 Planetary System

Parameter/Planet HR8799e HR8799d HR8799c HR8799b

Planet mass, ( )m mJup 7.4±0.6 9.1±0.2 7.8±0.5 5.7±0.4

7.34688506 8.97059370 7.78986828 5.85290522

Longitude of ascending node, Ω (deg) 61.85±0.45
62.02658660

Inclination, I (deg) 26.4±0.3
26.55235715

Parallax, Π (mas) 24.3±0.1
24.36337601

Period ratio, P Pd e 1.985±0.002
1.983096

Scale factor, ρ 1.054±0.002
1.05177401

Relative phase, tphase (yr) 331.42±0.13

331.39813970

Rotation angle, wrot (deg) 157±1
156.38496284

Semimajor axis, ( )a au 16.25±0.04 26.67±0.08 41.39±0.11 71.6±0.2
16.21068245 26.59727940 41.27484337 71.42244964

Eccentricity, e 0.1445±0.0013 0.1134±0.0011 0.0519±0.0022 0.016±0.001
0.14421803 0.11377309 0.05273512 0.01587597

Argument of pericenter, ω (deg) 111.2±0.6 29±1 92.7±0.7 42.0±2.2
111.05649395 28.35795849 92.75709369 41.35621703

Mean anomaly, (deg) −23.5±0.7 60.8±0.8 145.3±0.9 −48.2±2.1
−23.88996589 60.75229572 144.93313134 −47.73005711

Note. Median values and the 1σ uncertainties resulting from the DE-MC sampling are given in the top row of each parameter, while values in the bottom row with
more significant digits, in order to closely reproduce the PO solution, correspond to the best-fitting parameters in terms of the χ2 statistics. Gaussian planet mass priors
from the hot-start evolutionary models are ( ) m5.8 0.5 Jup for HR8799b and ( ) m7.2 0.7 Jup for all other planets (Wang et al. 2018), and the parallax prior is
( )24.22 0.09 mas (Gaia Collaboration et al. 2018). The first part of the table is for the primary fit parameters x, and the last four rows are for the inferred osculating,
astrocentric Keplerian elements at the epoch of t0=1998.829, the first measurement in Lafrenière et al. (2009) and Soummer et al. (2011). The mass of the parent star
( )  M1.52 0.15 (Konopacky et al. 2016) is fixed at its nominal value in order to avoid the mass–orbital scale correlation. For the model with º =xp dim 11 free
parameters, χ2=142.93 and rms;6.7 mas.
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sufficient to detect short-term, MMR-induced instability.
Remarkably, the maps (Figure A8) are similar to our earlier
Figure A5 in GM14, illustrating the MCOA model built upon a

much narrower data window, and still consistent with the
updated periodic model of the system.
The uncertainties of the parameters are illustrated in Figure 3

(also Figures A5 and A6 in Appendix A). The top panels are
for the mass–mass diagrams. Red points with shaded ellipses
indicate Gaussian priors imposed on the masses consistent with
the hot-start cooling theory (Wang et al. 2018), while gray
filled contours denote 1σ, 2σ, and 3σ confidence intervals of
the posterior probability distributions. Apart from the
HR8799d mass, the posterior closely fits with the astrophy-
sical constraints. The bottom left panel shows the posterior
distribution of the orbital inclination and the longitude of the
ascending node. These parameters exhibit substantial correla-
tions yet are much reduced thanks to the priors. The bottom
right panel is for the parallax, nominally agreeing to ;0.3%
with the Gaia DR2 value. The Gaussian prior on the Gaia
parallax (Gaia Collaboration et al. 2018; red curve) closely
overlaps with the DE-MC posterior.

3. Resonant Structure of Debris Disks

The orbits of the planets likely share a common plane with
the outer debris disk (Matthews et al. 2014; Booth et al. 2016;
Read et al. 2018; Wilner et al. 2018). Determination of the
debris disk structure with the IR and millimeter observations is
still not fully conclusive in terms of both the orientation and the
inner edge rinner of the disk (Booth et al. 2016). They argued
that the structure of the disk might be a footprint of a fifth, as
yet unseen planet beyond HR8799b. Read et al. (2018)

Figure 1. Astrometric observations (red, green, blue, and magenta points for planets HR8799e, d, c, and b, respectively) in the set used for the analysis. The thick
gray curves illustrate the best-fitting orbits (Table 1). The light gray curves in the left panel mark the referencing circular orbits of radii 10, 20, 30, ..., 80 auin the
orbital plane of the system. The red, blue, green, and magenta arrows point to the periastron of each orbit. The close-up of the GRAVITY data is illustrated in the inset
in the top right corner of the left panel. Gray curves represent 200 randomly chosen orbits from the DE-MC sampling, and black dots mark positions at the orbits in the
epoch of the GRAVITY observation (2018.656). The graph is centered at the datum, and the axes are expressed in milliarcseconds. Black curves are for 1σ, 2σ, and 3σ
confidence intervals for the model position at the R.A.–decl. plane at the epoch of 2018.656, derived from the DE-MC sampling. The right panel illustrates the
observations and model orbits as the time functions of R.A. and decl.

Figure 2. Astrocentric positions of the HR8799 planets over 1 Gyr N-body
integration presented in the orbital plane corotating with HR8799b. The red,
green, and blue curves illustrate the orbits of HR8799e,d, and c, respectively.
Big red, green, blue, andmagenta symbols mark the positions of planets e, d, c,
andb during the conjunction of planets b andc, while smaller symbols denote
the positions during their opposition. The yellow symbol at the origin marks
the parent star.
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proposed such an additional planet, HR8799f, with a mass and
semimajor axis of m0.1 Jup and 138au that could predict the
outer belt’s edge and explain the Atacama Large Millimeter/
submillimeter Array (ALMA) observations. Later, Wilner et al.
(2018), with observations at the Submillimeter Array at 1340
μm, detected the inner edge of the debris disk at 104 (+8,
−12) au and the disk extending to ;500 au. They also
constrained the mass of outer planet HR8799b to  m6 Jup.
Remarkably, it is close to our best-fitting value. Furthermore,
Geiler et al. (2019) found that a single, wide planetesimal disk
does not reproduce the observed emissions and proposed a two-
population model, comprising a Kuiper Belt–like structure of
low-eccentricity planetesimals and a scattered disk composed
of a high-eccentricity population of comets.

With the new, strictly resonant configuration of the four
planets, including their updated masses and the parallax, we
conducted preliminary N-body simulations resulting in
3.3×106 small-mass asteroids that reveal the global dynami-
cal structure of the debris disks (see Appendix C for details).

The inner border of the outer disk (Figures 4 and C2) is
significantly nonsymmetric, with a nonuniform density of
asteroids, which may bias the disk orientation angles derived
from simple models assuming the axial symmetry. The inner
edge from our simulations agrees with the observational model
of Wilner et al. (2018). Moreover, we found a ring of high-
eccentricity asteroids at ;140–160 au(Figure C2), close to the
inner edge reported in Booth et al. (2016) and Read et al.
(2018), which results in locally increased velocity dispersion.
The velocity dispersion could impose a higher dust production
rate and stronger emission, making the disk radial intensity
profile no longer consistent with a simple power law.

4. Discussion and Future Research

Under the PO hypothesis, which is justified on dynamical
and system formation grounds, the present astrometric data of
the HR8799 planets make it possible to determine not only the
parallax but also the masses, independently of the cooling

Figure 3. Posterior probability distributions of the planets’ masses, inclination, longitude of the ascending node, and parallax. The shades of gray indicate the 1σ, 2σ,
and3σ confidence ranges of the parameters. Red symbols with circle/ellipse contours in the top panels show the astrophysical mass constraints (Wang et al. 2018),
which are the priors in the DE-MC sampling. The red curve in the bottom right panel is the prior put on the parallax according to the Gaia DR2 catalog (Gaia
Collaboration et al. 2018). See also Table 1 and its notes.
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theory. In order to illustrate this prediction, we simulated new
synthetic observations around the best-fitting model in Table 1
with fixed =m m7e Jup and Gaussian noise equal to the
GRAVITY data uncertainty. We performed the χ2 minimiza-
tion without the planets’ mass priors, adding new synthetic
measurements after the last epoch of each planet. The resulting
time series of the best-fitting me and its 1σ range indicate
(Figure 5) that with merely one more epoch, ;2020.5, all
masses become meaningfully constrained without prior infor-
mation. If the HR8799 system is indeed represented by a PO
or a nearby stable resonant configuration, then it may be
possible to determine the planets’ masses based solely on the
relative astrometry. This could be a test bed for the cooling
theory of HR 8799 system–like massive planets, and (possibly)
such planets in other multiple systems discovered via direct
imaging. The deterministic PO model may serve as a reference
configuration useful for the astrometric and physical character-
ization of such resonant or close-to-resonant systems.

The PO hypothesis may be naturally confronted with
compact multiple Kepler and super-Earth systems that are
predominately close to but not actually inside of MMRs (e.g.,
Fabrycky et al. 2014). The planetary migration might easily
generate resonant states but does not preferentially retain small
planets in such states. From this perspective, the PO of
HR8799 might not be necessarily preferred over near-MMR
(possibly weakly chaotic) configuration, with the Lagrangian
(geometric) stability timescale exceeding the age of the system.
But the tight observational constraints invoked here seem to
contradict that. Moreover, Ramos et al. (2017) argued that
2:1MMR systems relatively distant from the star, such as HD
82943and HR8799, are characterized by very small resonant
offsets, while higher offsets are typical of short-period Kepler
systems. Achieving an exact MMR versus near-MMR state

likely depends on the differing efficacy of resonant retention of
four enormous giant planets versus much smaller Kepler
planets and different formation of such systems. Wide-orbit
systems require long formation timescales that are furthermore
inconsistent with type II migration characteristic of massive
planets. Alternatively, pebble accretion initially accompanying
type I migration (Johansen & Lambrechts 2017) or new
paradigms of type II migration (Ida et al. 2018) may explain the
putative MMR chain. Therefore, the confirmed PO of the
HR8799 planets could be the border condition and a footprint
of the system migration, shedding more light on its uncertain
origin.
As the bottom line, we note that the self-consistent model of

the HR8799 system and our predictions may be verified
shortly, during the next few years.

We are very grateful to the anonymous reviewer whose
comments improved the manuscript. We thank the staff of the
Poznań Supercomputer and Network Centre (PCSS, Poland)
for the generous long-term support and computing resources
(grant No. 313).

Appendix A
Numerical Setup and Algorithms

A.1. Searching for Periodic Configurations

A coplanar orbital configuration of a planetary system is
determined by a vector containing the positions and velocities
of the planets {xi, yi, ui, vi} or, equivalently, consisting of
astrocentric Keplerian elements of the orbits { }v a e, , ,i i i i ,
i.e., the semimajor axis, eccentricity, pericenter longitude, and
mean anomaly, respectively, where i=e,d,c,b or, equiva-
lently, 1, 2, 3, and 4. Both state vectors are given at a particular
epoch, and the state of the system at another epoch may be
obtained through propagating the initial condition with the
numerical integration of the N-body equations of motion. A
configuration of the planetary N-body problem is called
periodic if, after time interval T (called the period of PO), it
returns to its initial state in the reference frame rotating
nonuniformly with the temporal (osculating) pericenter of a
selected planet (Hadjidemetriou 1976). For the Keplerian
representation of orbits, we have the boundary conditions:
ai(T)=ai(0), ei(T)=ei(0), and ( ) ( )= T 0i i for all orbits.
Since the angular momentum C of the system must be
conserved, the pericenter longitudes ( ) ( )v v¹T 0i i . However,

Figure 4. Inner part of the outer debris disk revealed by ´ á ñY3.3 106 stable
orbits found in the whole debris disk simulation, illustrated as a snapshot of
astrocentric coordinates (x, y) and osculating orbital eccentricities e0 of these
orbits at the initial epoch, color-coded and labeled in the top bar. The initial
positions of planets are marked with filled circles. Gray rings illustrate their
orbits integrated in a separate run for 10Myr.

Figure 5. Best-fitting value of the innermost planet with 1σ uncertainty for the
data set with additional synthetic measurements given in subsequent epochs up
to 2030. See the main text (Section 4) for details.
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( )v v vD º - ¹i ji j i j, must be the same after T,
( ) ( )v vD = DT 0i j i j, , . This means that the relative configura-

tion of the planets remains fixed after the period, while the
whole system rotates by a certain angle around its angular
momentum vector aligned with the z-axis (e.g., Lithwick et al.
2012).

Here we consider the evolution of the Keplerian elements to be
periodic in a reference frame corotating with the apsidal line of the
innermost orbit; the reference orbit can be chosen freely.
Equivalently, when considering the Cartesian coordinates, one
needs to search for configurations whose positions and velocities
expressed in a reference frame corotating with one of the planets
(x̄, ȳ , ū, v̄) fulfill the periodicity conditions ¯ ( ) ¯ ( )=x T x 0i i ,
¯ ( ) ¯ ( )=y T v 0i x i, , and ¯ ( ) ¯ ( )=v T v 0y i y i, , (Hadjidemetriou 1976). We
used this Cartesian representation, common in the literature, only
for an illustration (see Figure 2); note that in this case, we chose
the outermost planet as the reference one.

For the given planet masses, there exist families of periodic
configurations parameterized by total angular momentum or a
value of the osculating period ratios of one of the planet pairs in
a chosen phase of the evolution (Hadjidemetriou 1976;
Hadjidemetriou & Michalodimitrakis 1981). To select a
particular family, we fix the period ratio of the innermost pair
at the epoch in which the innermost planet resides in its
pericenter. We denote this period ratio as parameter

( )∣k = =P Pd e 0e . Formally, for a chain of the 8:4:2:1 MMR,
there are eight different epochs in which the innermost planet is
in the pericenter. We select one of them and keep this choice
when continuing a given family with regard to other parameters
of the solution, denoted as a generic parameter vector x.

After testing various parameterizations of the PO in terms of
numerical efficiency and reliability, we decided to use the
following set of components of the state vector X , each of which
is a function of the astrocentric, osculating Keplerian elements:

=X elog1 10 e, =X elog2 10 d, =X elog3 10 c, =X elog4 10 b, =X5
( )-P P P Pc d c d nom, ( )= -X P P P P6 b c b c nom, v= -X7 e

vd, v v= -X8 d c, v v= -X9 c b, = X10 d, = X11 c,
= X12 b, where

( ) [ { ( )}]
( ) [ { ( ) }]

( )

( )
( )

= + -
= + -

=
+

=
+

-

-

P P C P P

P P C P P

C
j q

i p j

C
k p

j r k

1 1 ,

1 1 ,

,

. A1

c d nom 0 d e
1

b c nom 1 c d nom
1

0

1

The nominal values of the period ratios ( )P Pc d nom and
( )P Pb b nom correspond to a chain of exact MMRs (Delisle 2017),

( )» +P P q i qd e , ( )» +P P p j pc d , ( )» +P P r k rb c .
Therefore, for the case of the 2:1, 2:1, and 2:1 MMR chain, both
the factors = =C C 1 20 1 . Although the relations given above
were designed for weakly interacting systems whose evolution is
well described with the averaging approach (Delisle 2017), we
found that such a representation enables appropriately control-
ling the period ratios.

For a fixed period ratio κ and masses m m m, ,e d c, and mb
parameterizing a given family of POs, a member of the PO
family is being searched for with the Newton method for
nonlinear equations (Press et al. 2002) in 12-dimensional X
space. Since ( ) ( )D º -X X T X 0i i i , where T is fixed so the
innermost planet completes exactly eight full revolutions

(counted from its pericenter to pericenter), the set of nonlinear
equations to be solved reads as ( )D =X X X X, , ..., 0i 1 2 12 ,
where i=1, ..., 12. At first, the starting point is drawn
randomly, yet around X5, X6 ; 0 (or close to an approximate
solution, which we already know, such as the 8:4:2:1 MMR fits
found in GM14 and GM18) until the algorithm finds a solution
withΔXi≈0. Next, this solution can be continued for changed
κ and the planet masses. In general settings, the continuation of
the PO is a complex problem, since many stable and unstable
families may exist in different parameter ranges (Hadjidemetriou
& Michalodimitrakis 1981, and references therein).

A.2. Data Fitting on the Parametric Grid of the PO

At the first attempt, we performed the optimization similarly to
the MCOA variant in GM18. Here, instead of CPU-demanding
migration simulations, which result in resonant but not
necessarily periodic systems, we continued POs in a five-
dimensional Z grid ( = =Z m Z m,1 e 2 d, = =Z m Z m,3 c 4 b,

k=Z5 ), and we found ∼107 configurations covering the
interesting region of the 8:4:2:1 MMR chain. In this sense, we
obtained the exactly resonant (periodic) configurations that might
fit the observations as well, each being the 8:4:2:1 MMR center
for different masses and the inner orbit period ratio. From this
point, the analysis is essentially similar to GM18. In order to fit a
given PO to the measurements, one needs to find a minimum of
χ2 in a few-dimensional space of model parameters. We
performed the optimization experiments using the same para-
meters as in GM18: the scale parameter ρ, the phase of a periodic
configuration corresponding to the reference epoch tphase, and the
3-1-3 Euler angles ( )wWI , , rot , fixing the orientation of the
orbital plane with regard to the sky (observer) frame. In such
settings, χ2 (equivalently, the maximum likelihood ) depends
on Y , whose components are Y1=ρ, =Y t2 phase, Y3=Π,
Y4=I, Y5=Ω, and w=Y6 rot. We also updated the parameter
vector Y by the system parallax Π and the so-called “error floor”
sa d, , rescaling the nominal uncertainties, in order to account for
possibly underestimated errors and biases of the observations.
The merit function ( ) Y is defined for this variant of

parameterization as follows:

( ) ( ) [ ]

( )
( )åc q q

p

= - - +

-

a d
=

 Y Y

N

ln
1

2
ln ln

ln 2 ,

A2
i

N

i i
2

1
, ,

obs

obs

( ) [ ( )] [ ( )] ( )
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥åc

a a
q

d d
q

=
-

+
-

a d=

Y
Y Yt t, ,

, A3
i

N
i i

i

i i

i

2

1

2

,
2

2

,
2

obs

where ( )a d,i i are the measurements at time ti; ( ) ( )a dY Yt t, , ,i i

are the ephemeris values; s ai,
2 and s di,

2 are the nominal
measurement uncertainties in R.A. and decl. scaled in quadrature
with the error floor, ( )q s s= +a a a di i,

2
,
2

,
2 or ( )q s s= +d d a di i,

2
,
2

,
2 ,

for each datum, respectively; and Nobs is the number of
observations. Also, N=2Nobs, since R.A. and decl. are
measured in a single detection. The ln function in
Equation (A2) is defined in such a way that assuming the
uncertainties are Gaussian and uncorrelated, the resulting best-
fitting models should yield the reduced cn 12 . The merit
function was optimized with the help of genetic and evolutionary
algorithms (Izzo et al. 2012).
In order to illustrate the results of the PO-grid approach, we

invoke a particular experiment in which we fitted the ln
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function in Equation (A2) to all measurements available at the
moment in the literature: the early HST data in Lafrenière et al.
(2009) and Soummer et al. (2011), a homogeneous data set in
Konopacky et al. (2016), GPI data in Wang et al. (2018), and
the GRAVITY measurement in De Rosa et al. (2020), updated
with mostly VLT/SPHERE, Subaru, and LBT data collected in
Wertz et al. (2017) from Metchev et al. (2009), Hinz et al.
(2010), Bergfors et al. (2011), Galicher et al. (2011), Currie
et al. (2011, 2012, 2014), Esposito et al. (2013), Maire et al.
(2015), Pueyo et al. (2015), and Zurlo et al. (2016). This set
consists of Nobs=127 (R.A., decl.) observations, some of
them clearly deviating from any astrometric model. Because
preliminary PO and MCOA fits indicated the reduced cn 2.52

for the best-fitting models, we introduced the error floor sa d, in
order to account for possible data biases and unmodeled errors.

The results are illustrated in Figure A1, which shows
selected fitted parameters that are gathered on the precomputed
PO grid and plotted versusD º -  ln ln lnmax , relative to
the best-fitting value ln max found in the search. Most of the
primary Y parameters, such as the masses of HR8799d (top
left panel) and HR8799b (not shown), the error floor σα,δ

(bottom right panel), and the system parallax (bottom left
panel) exhibit clear extrema. Also, the PO-constrained
eccentricities (such as for HR8799e; top right panel) are
quasi-parabolically bounded. We found it particularly surpris-
ing that the masses of HR8799d and HR8799b could be
potentially constrained, although the ln extremum is
apparently shallow. That also regards the parallax Π, which,
as the free parameter of the astrometric model, overlaps with
the Gaia DR2 trigonometric parallax Π ; (24.22±0.09) mas
within its formal 1σ uncertainty; our best-fitting value Π ;
24.25 mas is accurate to the fourth significant digit (;0.1%, in
other fits up to ;0.3%). We consider this as a meaningful
benchmark of the self-consistency of the astrometric model, the
parallax, and the physical characteristics of the system: the
derived masses of the planets and the adopted stellar mass of

M1.52 (Konopacky et al. 2016). We note that the stellar mass
must be fixed or tightly constrained, since otherwise it would
introduce a strong mass–period (linear scale) correlation
through the Keplerian law (actually, the N-body dynamics
scaling).

Figure A1. Plots illustrating the PO-grid search for the best-fitting parameters to astrometric measurements of the HR8799 system. In this experiment, we fitted seven
free parameters, including the orbit scale ρ, three Euler angles, the initial epoch, the system parallax Π, and the error floor σα, β, to all measurements gathered in the
literature, Nobs=127 data points. We optimized the likelihood function ln with the error floor term and without any priors. The extremum of  -ln 834.4, and
the error floor ;4.8 mas. Fitted systems in two Monte Carlo sampling runs on the PO grid are marked with filled circles and different colors. Top left panel: mass of
HR8799d with a clear extremum. Top right panel: inferred eccentricity of HR8799e from the PO models. Bottom left panel: system parallax, with the Gaia DR2
nominal value (red line) marked with its 1σ (gold rectangle) and 3σ (gray rectangle) confidence intervals. Bottom right plot: error floor σα,δ, as the global correction
factor of the measurement uncertainty, yielding the reduced cn 12 .
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The orbital geometry of the best-fitting models is illustrated
in Figure A2. Panels are for the close-ups of the sky plane for
subsequent planets, with all data points marked with symbols
for different subsets and gray curves for 250 random solutions
drawn within ;1 mas range around the best-fitting models
(illustrated with the red curves) and yielding ln marginally
worse than the extremum value. The orbits are plotted for the
time interval between t0=1998.829 and the last GRAVITY
epoch. TheD ln range in Figure A1 translates to a substantial
spread of the models, which is most visible for HR8799d.
Although we did not compute formal confidence intervals, the
spread indicates sensitivity of D ln to a variation of the
parameters.

The orbits plotted globally (Figure A3) for the osculating
orbital period of each planet separately appear well bounded,
and this is particularly apparent for the innermost, fast-moving
planets. The model might predict their geometric positions
close to the best-fitting PO motion for a long time, in spite of
the parameter uncertainties.

The bad message received from the PO-grid fitting is a
strong anticorrelation between the masses of HR8799c and e

(mc, me); moreover, the best-fitting configurations exhibit a
very small innermost mass, m m0.1e Jup. The grid method
also depends on the resolution, which should be individually
tuned for each parameter in five-dimensional space, as
illustrated in the HR8799d mass scan (top left panel in
Figure A1). We found that the error floor does not help in
eliminating or even reducing the mass correlation.
These preliminary PO-grid experiments provide interesting

and useful hints for the final approach, described below
(Appendix A.3), yet we could not consider them as fully
conclusive. Unfortunately, the parametric grid approach is
tedious and introduces large CPU overhead. The PO continua-
tion and sampling must be multidimensional, and that implies
not only the need for computing huge sets of solutions but also
optimizing the initial conditions one by one—although we
instead performed the Monte Carlo search on the grid.
Determining the best-fitting model to the present observations
is also difficult due to the (mc, me) anticorrelation. Getting rid
of that degeneracy needs additional prior information, such as
the planet masses estimated on the grounds of the thermo-
dynamical evolution and cooling tracks.

Figure A2. A PO model of all HR8799 observations in the literature (see the text for details). Big gray diamonds are for the earliest HST data in Lafrenière et al.
(2009) and Soummer et al. (2011), circles are for the uniformly reduced data set in Konopacky et al. (2016), the star symbol is for the GRAVITY measurement in De
Rosa et al. (2020), pentagons are for GPI data in Wang et al. (2018), and diamonds are for the VLT/SPHERE, Subaru, and LBT data collected in Wertz et al. (2017).
Black curves illustrate synthetic orbits in the sky plane, derived from the PO-grid search and plotted between epochs t0=1998.829 and t=2018.654 of the
GRAVITY data for < -ln 825.0, and the red curves are for solutions providing < -ln 834.0; see Figure A1. Subsequent panels are for close-ups of the data and
orbital arcs for each planet. Note that ΔR.A. is labeled negative with regard to the R.A. direction.
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In order to address these issues, we improved the grid MMR-
constrained optimization in ways that made it CPU-efficient
and independent of the grid resolution, described below. In the
final experiments, we examined the reduced data set (hereafter
) comprised of HST data in Lafrenière et al. (2009) and
Soummer et al. (2011), a homogeneously reduced data set in
Konopacky et al. (2016), and GPI data in Wang et al. (2018)
derived with a similar instrument, as well as the GRAVITY
data in De Rosa et al. (2020). We used the HST and GRAVITY
data to extend the time window of the observations. For this
set, we did not consider the error floor, since the PO models
with the basic p=11 free parameters yield cn 1.252 and rms
; 7 mas, consistent with the mean uncertainty of the
measurements in the reduced set, ;8 mas.

A.3. Optimization on a Manifold of Periodic Configurations

From a mathematical point of view, our goal is to find the
best-fitting PO in the space of vectors ( )k=Z m m m m, , , ,e d c b .
We note that the single κ period ratio of the innermost pair of
planets is sufficient to identify the required PO, since we seek the
PO in a small range around the nominal remaining period ratios,
X5 and X6, with fixed MMR factors C0 and C1. As explained
before, in the MCOA-like optimization, the space of vector Z is
explored in a grid of precomputed POs. Unfortunately, even in
the five-dimensional space of Z, the number of solutions to be
data-fitted becomes huge. Moreover, the mass anticorrelation
with me tending toward very small and nonrealistic values
implies a difficulty in estimating the parameter ranges of the
grid, as well as its resolution. Even if we reach the neighborhood
of the merit function’s extremum, it is difficult to find and tune
the proper grid resolution for all parameters of the model, and
the five-dimensional PO grid must be updated in subsequent
iterations. Still, the method is useful in investigating the
parameter space in wide ranges and provides a good starting
point (solutions) for a more refined and accurate method.

Clearly, a mathematically correct algorithm must explore the
model parameter subspace (a manifold) fixed by the require-
ment of a PO. In order to implement this manifold fitting, for a
given (prescribed) Z, a coplanar PO is searched for, resulting in
the Cartesian state vector X . Next, we select the best-fitting
parameters as a vector Y in the orbital and geometric element
space. In this way, for the given Z, the objective function, such
as χ2=χ2(Z1, Z2, Z3, Z4, Z5), is optimized under the
assumptions that (i) the model orbits are periodic and (ii) the
POs are optimized through the linear scaling, time-phasing,
distance (parallax), and spatial orientation (Y ). We closed the
whole algorithm in a single procedure, being a numerical
implementation of the merit function for the optimization of Z.
Both steps that consist of continuing the PO and its final fitting
to the data in the Y and Z spaces equivalent to the 11-
dimensional vector of sampled parameters (=x Z1, Z Z Z, ,2 3 4,
Z Y Y Y, , ,5 1 2 3, )Y Y Y, ,4 5 6 , explicitly ( k=x m m m m, , , , ,e d c b

)r wW PI t, , , , ,rot phase , are being done with the help of the
Levenberg–Marquardt (LM) algorithm (Press et al. 2002). The
iterative scheme enables us to find the best-fitting PO in a small
number of steps, typically a few tens of iterations.

A.4. DE-MC Sampling and Uncertainties of the Best-fitting
Parameters

In order to assess realistic uncertainties and investigate
possible parameter correlations, we performed the DE-MC
sampling (Ter Braak 2006). Recalling some well-known
elements of the Bayesian statistics and the MCMC sampling
(e.g., Gregory 2010), we consider the posterior probability
distribution ( ∣ ) ( ∣ ) ( )~   x x xP , where  denotes the data
set, ( ∣ )  x represents a probability that parameters x explain
the data set , and ( )xP is the prior information imposed on x.
We define the ln function the same as in Equation (A2),

( ∣ ) ( ) [ ]

( ) ( ) ( )

åc s s

p c

=- - +

- º - +

a d
=

  x x

xN
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ln ln

ln 2
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2
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2
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2
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but skipping the error floor, since we performed the MCMC
sampling on the reduced data set  described in Section 2, and
for these measurements, the best-fitting models yield c ~n 12 —

there is no need to account for the uncertainty correction.
The DE-MC sampling, which is a variant of the canonical

Metropolis–Hastings algorithm, occurs according to the
probability of moving from a starting point ( )x i

1 to a new point
( )x i
2 in the parameter space, ( ∣ )( ) ( )p x xi i

2 1 , which is a product of
( ∣ )( ) ( )q x xi i

2 1 and ( )( ) ( )a x x,i i
1 2 , where ( ∣ )( ) ( )q x xi i

2 1 is the probability
of choosing a candidate point ( )x i

2 when starting from ( )x i
1 . The

superscript denotes the ith chain from a population of n=100
chains that are evolved in parallel. The candidate point of the
ith chain is chosen according to

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )g= + - + -D +Dx x x x Uniform , , A5i i j k i i
2 1 1 2

where the chains j and k ( ¹j k and ¹j k i, ) are chosen
randomly, while Δ(i) is chosen individually for each parameter.
In order to obtain an ;50% acceptance rate, we chose γ=0.3,
and Δ(i) was ( - m10 4

Jup, ´ - m1.7 10 4
Jup, ´ - m1.5 10 4

Jup,
´ - m7 10 4

Jup, ´ -5 10 7, ´ -5 10 yr5 , ´ -1.2 10 6, 10−4 mas,

Figure A3. Global view of the HR8799 system geometry in the plane of the
sky for all data in the literature and the astrometric model derived in the PO-
grid search; see caption of Figure A2.
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´ -1.2 10 deg5 , ´ -5 10 deg6 , )´ -5 10 deg6 for subsequent
components of x (see the previous subsection). The second
term in Equation (A5) is the Metropolis–Hastings ratio,

( )
( )
( )

( )( ) ( )
( )

( )

⎡
⎣⎢

⎤
⎦⎥a =




x x

x

x
, min 1, , A6i i

i

i1 2
2

1

which denotes the acceptance probability of ( )x i
2 when starting

from ( )x i
1 . Importantly, the DE-MC algorithm propagates a

number of Markov chains in parallel, starting from different
initial positions in the parameters space, and introduces mixing
of the solutions in the chains through the differential evolution
(Price et al. 2005). That makes this algorithm both simple and
computationally efficient. We also note that the DE-MC
approach is crucial for our optimization problem, given the
need of computationally complex PO continuation with regard
to model parameters, since the PO cannot be updated
sufficiently freely, as required by the Markov chain
propagation.

Priors ( )xP for the masses were set as Gaussian with mean
values and standard deviations according to Wang et al. (2018),
from the hot-start evolutionary models, to ( ) m5.8 0.5 Jup for
HR8799b, and ( ) m7.2 0.7 Jup for all other planets. Similarly,
the parallax Gaussian prior is Π=(24.22±0.09)mas (Gaia
Collaboration et al. 2018). For the six remaining parameters,
the prior distributions were uniform in sufficiently wide ranges.

We initiated the DE-MC sampling by choosing 100 solutions
from the vicinity of the best-fitting model in Table 1. The
evolution of the whole population of Markov chains is
illustrated in Figure A4 with black curves, while one selected
example chain is depicted with red curves. At the beginning
(first ∼100 iteration steps), all of the chains evolve close to the
initial condition. Since the differences ( ) ( )-x xj k

1 2 increase, the
sampling begins to occur over a wider part of the parameter
space. After ∼200 steps, the chain is already burned out. Those
first 200 steps were not included in the final statistics of
solutions obtained after 10,000 iterations. In this DE-MC
experiment, we did not estimate the autocorrelation time for the
Markov chains, since clearly, the relatively small number of
iterations already leads to a smooth approximation of the
posterior. Also, as illustrated in Figure A4, each of the chains
quickly reaches the random-walk state and explores the whole
parameter space. Remarkably, this behavior is much different
from the MCMC sampling with the full Keplerian or even N-
body models (e.g., Konopacky et al. 2016; Wertz et al. 2017;
Wang et al. 2018, GM18, and references therein), which
notoriously exhibit parameter correlations and long autocorre-
lation times ∼105, due to multimodal posteriors and ill-
constrained optimization problems implied by a small ratio of
the measurements to the number of free parameters and narrow
time window of the data.
According to the final results of the DE-MC sampling, as

well as the scans of χ2 function, the best-fitting configuration is
meaningfully constrained with regard to all parameters. In

Figure A4. The DE-MC sampling for the mass of HR8799e. Black curves indicate the evolution of all 100 individual chains, while the red curves illustrate the
behavior of one chosen chain. The first 200 steps are treated as burn-in steps. The total number of iterations is 10,000; in the top panel, the first 500 steps are shown for
clarity.
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particular, the bottom right panel in Figure 3 (also Figure A5)
illustrates the Gaussian prior as a Gaia parallax (Gaia
Collaboration et al. 2018; red curve) overplotted with the
DE-MC posterior. The distributions closely overlap. We also
recall the grid-based experiments indicating that the best-fitting
parallax may be determined independently of the Gaia
measurements. The one-dimensional posterior probability

distributions of all of the free parameters determined with the
DE-MC sampling are shown in Figure A5, while two-
dimensional contour plots of the posteriors for the Keplerian
elements are illustrated in Figure A6. The parameter uncer-
tainties derived from the sampling are listed in Table 1. The
dynamical analysis of this solution in terms of the orbital
evolution and stability is illustrated in Figures A7 and A8.

Figure A5. Posterior probability distributions for the free parameters of the PO model of the HR8799 system (gray curves). The shades of gray are for 1σ, 2σ, and 3σ
confidence intervals. Red curves mark the Gaussian priors set for five out of 11 model parameters. The red areas under the curves indicate 1σ ranges of each parameter.
The remaining six parameters of the model have the uniform (noninformative) priors, not shown in the plot. See Table 1 and the text in Appendix A.
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Figure A6. Posterior probability distributions presented in diagrams of semimajor axis vs. eccentricity (left four panels), as well as the argument of pericenter vs. the
mean anomaly (right four panels). The shades of gray, from darkest to lightest, represent 1σ, 2σ, and3σ confidence levels.

Figure A7. Temporal evolution, for the first 10Kyr, of the canonical, osculating orbital elements, expressed in the Jacobian reference frame, for the PO configuration
in Table 1. Top left panel: osculating period ratios for a subsequent pair of planets and their mean values (horizontal red lines), from top to bottom, P P 2.170b c ,

P P 2.081c d , and P P 2.035d e . We note that the proper orbital periods, in the sense of the mean motions as fundamental frequencies (Morbidelli 2002) expressed
in Julian years of 365.25days, are 52.36995, 104.73989, 209.47987, and 418.96324 for planets HR8799e, d, c, and b, respectively, forming an exact 2:1, 2:1, 2:1
MMR chain. Top right panel: eccentricities of the planets HR8799e, d, c, and b from top to bottom. Bottom left panel: one of the elements vºx e cosi i i

(i=HR8799b, c, d, and e) used to compute the secular frequency of the apsides rotation. The second component of the quasiperiodic signal (not shown) is
vºy e sini i i. Bottom right panel: critical argument of the zeroth-order, four-body generalized Laplace resonance for the same initial condition that librates

around ;12°.
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Appendix B
Masses with Regard to Data Biases

With the improved PO algorithm described in Appendix A.3,
we systematically explored the c2 minimum in two-dimen-
sional planet mass planes, without (Figure B1) and with
independently determined astrophysical priors (Figure B2),
regarding the measurement set  with Nobs=65 observations
and also reducing it by particular GPI points (hereafter data set
1), as explained below. For a given fixed point in a selected
two-dimensional mass plane, the remaining two masses and the
κ period ratio are optimized in terms of the best-fitting χ2. In
the χ2 optimization, the mass priors may be included
as additional terms in the χ2 function (Equation (A3)):
( ) ( )s-m mi i i,cooling

2
,cooling

2, where i=e, d, c,and b and
mi,cooling denotes the planet i mass constraint (prior), while
si,cooling is its 1σ uncertainty. We set the mass priors after Wang
et al. (2018), the same as in the DE-MC experiments. The χ2

scans in the mass planes for this enhanced model are shown in
Figure B2. We note that in the χ2 experiments, the parallax was
treated as a free parameter with no prior.

In the first experiment for data set and without considering
mass priors, we found the best-fitting m m0.1e Jup. Also, the
best-fitting and astrophysical masses are significantly different,
as marked in the top row of Figure B1, particularly for
HR8799d. In this figure, the mass estimates from the cooling
theory are shown for reference. The masses of HR8799e and
HR8799c are strongly anticorrelated and not bounded at all,
since the best-fitting me converges toward very small and
nonrealistic values. When fixing the inner planet’s mass at

m7 Jup, the anticorrelation disappears, and masses md and mb
become much better constrained, but their values are still
significantly shifted with respect to the astrophysical priors
(Figure B2, top row).
In order to explain the discrepancy between the prior and

posterior estimates, especially significant for the mass of
HR8799d and also revealed by the MCMC sampling, we
searched for possible data biases. The left panel of Figure B3
illustrates the R.A. and decl. residuals of the best-fitting model
in Table 1 derived for the  set; rows from top to bottom are
for subsequent planets. While the most precise GRAVITY
datum is modeled apparently perfectly, there are precision GPI

Figure A8. Dynamical maps in the semimajor axis–eccentricity plane in terms of the MEGNO fast indicator. Each point in the maps was integrated for 10Myr,
equivalent to more than 20,000 orbits of planet HR8799b. Stable systems are confined to á ñY 2 (blue), and yellow marks strongly unstable configurations that are
typically self-disrupting in less than 1Myr. The star symbols mark the nominal osculating elements in the initial condition in Table 1 for each planet in subsequent
panels. The resolution of each map is 800×480 pixels.
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observations (Wang et al. 2018) significantly deviating from
the astrometric model, compared to the uncertainties. In the
next experiment, we temporarily removed these points from the
data set, and we found a new best-fitting model for this
modified set 1, with residuals shown in the right panel of
Figure B3. The GPI points, overplotted with bigger gray

symbols, reveal systematic shifts with regard to this best-fitting
model.
Figure B4 illustrates the residuals in the (R.A., decl.) plane.

All of the GPI points exhibit a systematic positive R.A. shift
with respect to the model, and apart from one point, all of them
have negative decl. deviations (top left panel). Moreover, most

Figure B1. A χ2 scan of PO models in the plane of masses HR8799e andHR8799c (left panels) and HR8799d andHR8799b (right panels) for the data set with
(top row; ) and without (bottom row; 1) the GPI measurements. The red filled symbols and circles/ellipses reference astrophysical masses ( )= m m7.2 0.7e Jup

and ( )= m m7.2 0.7c Jup (left panels) and ( )= m m7.2 0.7d Jup and ( )= m m5.8 0.5b Jup (right panels) following Wang et al. (2018). The green filled point
denotes the position of the minimum of χ2 function, while the green contour denotes the level of c +min 12 . The white and black curves denote the levels of

c + +min 2, ..., 62 , apart from the bottom left panel, in which the white contours denote the confidence levels of c + + +min 0.1, 0.3, 0.52 .
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of the data points deviate from the model by more than 3σ
(bottom left panel in Figure B4). Observations 1, without the
GPI data, are distributed uniformly in the (R.A., decl.)–
residuals plane, as expected for a statistically valid solution
(right column). This may suggest a bias in the GPI data with

regard to the other measurements, yet the bias is of an unknown
origin.
The obtained χ2 minima with mass priors for data set ,

presented in the top row of Figure B2, overlap with the results
of the DE-MC sampling around the best-fitting model

Figure B2. A χ2 scan of PO models in the mass plane of HR8799e andHR8799c (left panels) and HR8799d andHR8799b (right panels) for the data set with (top
row;) and without (bottom row;1) the GPI measurements, as well as with the hot-start cooling theory priors. The red filled symbols and circles/ellipses correspond
to ( )= m m7.2 0.7e Jup and ( )= m m7.2 0.7c Jup (left panels) and ( )= m m7.2 0.7d Jup and ( )= m m5.8 0.5b Jup (right panels) following Wang et al. (2018).
The green filled point denotes the position of the minimum of χ2 function, while the green contour denotes the level of c +min 12 . The white and black curves denote
the confidence levels of c + +min 2, ..., 62 .
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illustrated in Figures A5 and A6. As noted above, the best-
fitting mass of planet HR8799d is the only one significantly
inconsistent with the priors from thermodynamical tracks by
 m2 Jup (top row of Figure B2). However, when the GPI
measurements are excluded from the data set, the difference
reduces by factor of ;2, making the astrometric model results
marginally consistent with the HR8799d mass determined
from the cooling theory (bottom row of Figure B2). All masses

become constrained much better for the reduced data set 1

than  and are marginally consistent with the astrophysical
values, although their uncertainties are still significant. This
experiment demonstrates the sensitivity of the astrometric
model to the most accurate data points. We also recall that, with
just one added GRAVITY-like measurement for each planet
close to the present epoch, the astrometric data alone might
fully constrain the masses (see the main text and Figure 5).

Figure B3. Residuals of the best-fitting model to the data set with (left panel; ) and without (right panel; 1) the GPI observations. In the right panel, the GPI data
not included in the fitted data set are marked with big gray symbols without error bars. The GRAVITY datum for HR8799e is additionally enlarged in the top row
(gray rectangles).
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Appendix C
The Debris Disk Simulation

C.1. The N-body Model of the Debris Disks

Given the ongoing discussion in the literature, as summar-
ized in the main text, we aim to resolve the dynamical structure
of the debris disks composed of small Kuiper Belt–like objects.
Such a structure may reflect unique characteristics implied by
the strictly resonant motion of the planets. Here we essentially
follow the approach in GM18. The numerical model relies on
determining the orbital stability of small-mass particles in the
HR8799 system through resolving the chaotic or regular
character of their motion with the MEGNO á ñY fast indicator

(Cincotta et al. 2003). We dubbed it the á ñY -model. As we
found in GM18 with the long-term, direct N-body integrations,
the á ñY -model closely reproduces the dynamical structure of the
debris disks found with the direct integrations but in a much
shorter computation time.
Here we conducted an extensive á ñY -model simulation of the

debris disks coplanar with the planets involved in the exact
Laplace resonance (Table 1). We considered three mixed
fractions of asteroids with masses of - m10 15

Jup, similar to
GM18, as well as 10–10 and - m10 6

Jup. As the initial Keplerian
osculating elements, we randomly draw the semimajor axis
a0 ä [10, 400] au, the pericenter longitude, and the mean
anomaly [ )v Î  , 0 , 3600 0 . For the inner part of the disk

Figure B4. Residuals of the best-fitting model without the mass priors and GPI data. The top panels show the residuals together with their uncertainties, while the
bottom panels show the residuals weighted with the uncertainties. Circles of radii equal to 1 and 3 mark 1σ and 3σ deviations of a given data point from the model. In
the right panels, the fitted astrometric measurements are illustrated. Deviations of the GPI data from the model are presented in the left panels.
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(a0<100 au), we selected e0 ä [0, 0.9], and for the outer part,
beyond planetHR8799b, ( )( )< - +e a a e1 10 0 b b , i.e., under
the collision curve of asteroids with HR8799b in the (a0,
e0)-plane. We integrated the equations of motion and the
variational equations for the whole N-body system of the observed
planets (Table 1, primaries), updated by a test particle, with the
Bulirsh–Stoer–Gragg (BGS) integrator. The local and absolute
accuracy of the integrator set to ò=10−13 provided a relative
energy error as small as 10−9 for the total integration time of
10Myr. The BGS algorithm has been proven reliable for
collisional and chaotic dynamics, which may be anticipated on
the basis of previous works (GM18).

Concerning the appropriate integration time required to
reliably characterize the orbits of asteroids, we note that the
four massive planets are locked deeply in the Laplace
resonance (Figure A7), and each planet is located in the center
of the stability zone (Figure A8). The system stability is robust
to perturbations of quite massive additional companions (see
also simulations in GM18 for “asteroid” masses as large as
– m1 2 Jup). Therefore, the á ñY integrations of the best-fitting
initial condition extended by the elements of a test asteroid
reveal the dynamical character of its motion, and the orbits of
the primaries are not affected.

The geometric structure of the debris disks is illustrated in
Figures 4, C1 and C2. In the numerical experiment, we
collected ;3.3×106 á ñY -stable orbits. The astrocentric
positions of the asteroids are marked at the end of the
integration time (top left panel of Figure C2) and at the initial
epoch (top right panel of Figure C2) and color-coded according
to their osculating eccentricity. Such snapshots represent a
population of quasiperiodic and resonant orbits of the asteroids
with various orbital phases and eccentricity, while their
semimajor axes may overlap. We note, following GM18, that
the orbits might be potentially present in the real system, but
the actual population of asteroids may depend on the formation
history of the whole system, its migration history, and a locally
variable density of asteroids.

In regions interior to and beyond the orbit of planet
HR8799b, the majority of the test orbits are extremely chaotic,
except of particular resonant solutions. Such á ñY -unstable orbits
are also strongly unstable in the Lagrangian (geometric) sense;
particles are ejected or collide with the primaries on a timescale
of afew Myr only. We found this after testing the semimajor
axis–eccentricity evolution in time for orbits selected in a strip

of 1000 initial conditions marked with red filled points in the
right panel of Figure C1. It shows the proper (canonical)
elements (Morbidelli 2002) of dynamically stable asteroids in
the semimajor axis–eccentricity plane (a0, e0); see the right
panel. In order to study unstable motions, test particles were
randomly placed under the collision curve with planet
HR8799b. The initial eccentricity of their orbits is slightly
larger than the respective limit of á ñY -stable motions, and the
initial semimajor axes a0 ä [100, 400] au, as well as initial
phases, are also random. We closely investigated the orbits of
all of these test asteroids by integrating them for 10Myr. In
this set, 466 asteroids collided with planet HR8799b, 128
objects collided with the star, and 351 asteroids were ejected
from the system beyond 5000au, leaving the radius of 800 au
typically in a fewMyr and less than the maximum interval of
10Myr. Only ;50 objects located in stable, resonant regions
survived for the maximum integration interval.
Moreover, with the modified Fourier transform or funda-

mental frequency analysis (Šidlichovský & Nesvorný 1996) of
the canonical Jacobi elements ( )v v= + -z e cos 1 sini i i i ,
( =i b, c, d, e), illustrated in the bottom left panel in
Figure A7, we computed the frequency spectrum of planet
pericenter rotation ( )v t . Since the motion of the planets is
strictly periodic, the zi(t) signals involve a common leading
frequency fϖ=−440 418 yr−1, equivalent to the retrograde
rotation of the system with a period Pϖ ; 2942.66 yr, i.e., only
;six orbits of planet HR8799b. Besides the leading frequency,
there are afew even larger, with periods smaller than 1000yr.
Since the dynamics is governed by short-term MMRs and,

possibly, secular resonances, we could fix the same integration
time of 10Myr across the whole disk. That integration time
corresponds to ;20,000 orbital periods of the outermost planet
and roughly 12,000 orbits at ;100 au, which is sufficient to
resolve the dynamical character of asteroid orbits. Particles
marked as á ñY -stable for that interval of time should persist for
a more than 10times longer interval in Lagrange-stable orbits,
roughly 100–160Myr (see GM14; GM18), which is much
longer than typical estimates of the parent star lifetime, ;42
Myr (Wang et al. 2018), in the 30–60Myr range earlier
adopted in Marois et al. (2010). At the outer edge of the disk,
;430 au, as determined by Booth et al. (2016), the integration
interval translates to afew thousand orbital periods, which is
still meaningful to determine the stability border in the (a0,
e0)-plane, as we justified above. Moreover, given the strong

Figure C1. Canonical Poincaré elements ( )a e,0 0 of á ñY -stable solutions at the end of the integration interval of 10Myr. Gray lines are for the collision curve of orbits
with planet HR8799b. Approximate positions of a few low-order MMRs with planets HR8799b and HR8799c are labeled. The left panel is for the inner part of the
disk, and the right panel is for the whole simulation. Red filled circles in the right panel illustrate 1000 initial conditions of test orbits, analyzed in order to explain the
wide instability zone below the collision curve.
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instability generated by the short-term interactions, the á ñY
integrations may be stopped as soon as á ñ >Y 5, sufficiently
different from á ñY 2 for stable systems. That makes it
possible to examine large sets of a few 107 test orbits, orders of

magnitude larger than they could be sampled with the direct
N-body integrations. The most complex and interesting parts
of the debris disks may then be mapped in detail with the
á ñY -model.

Figure C2. Top left panel: global view of the debris disk revealed by ´ á ñY3.3 106 -stable orbits of the whole simulation illustrated as a snapshot of the astrocentric
coordinates (x, y) of the asteroids at the end of the integration interval of 10Myr. The osculating orbital eccentricities e0 of these orbits are color-coded and labeled in
the top bar. The initial positions of the planets are marked with filled circles. Gray rings illustrate their orbits integrated for 10Myr. Top right panel: similar to Figure 4
and the top left panel, but the initial astrocentric (x, y)-coordinates of asteroids in á ñY -stable orbits are rotated by the inclination and nodal angles of the initial condition
in Table 1. Gray ellipses illustrate the disk boundaries =r 145 auin and =r 429 auout fitted in Booth et al. (2016) and rotated by inclination I=41° and nodal angle
Ω=50° derived in this paper. Bottom left panel: velocity dispersion in the debris disks evaluated at ´2 au 2 au bins and color-coded over the initial astrocentric
(x,y)-coordinates of asteroids in á ñY -stable orbits. Bottom right panel: relative Planck intensity of the outer disk, ( )~ Sn

-I K r r 1 2, as in Read et al. (2018), where ( )S r
is proportional to the number of asteroids in ´2 au 2 au bins, the same as calculated in the velocity dispersion plot in the bottom left panel.
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C.2. Dynamical Structure and Features of the Debris Disks

Regarding the inner part of the system, we found the same
irregular inner boundary of the outer disk, similar to
simulations in GM18. In order to understand this feature, we
analyze the (a0, e0) diagram, shown in Figure C1. Comparing
the left panel of Figure C1 with the disk structure illustrated in
Figure 4, we find that the inner edge of the outer disk is
significantly asymmetric due to low- and moderate-eccentricity
orbits in the 1:1 and 3:2MMR with planet HR8799b. The low
density of asteroids around ;110 au appears due to an unstable
2:1MMR and higher-order resonances forming akind of
thickening “comb” with increasing semimajor axis. It forms a
border of stable orbits shifted below the collision curve with
planet HR8799b by a substantial value of ∼0.1. We can now
understand and interpret the strongly unstable orbital evolution
of the tested asteroids in this zone (Figure C1, right panel). The
strong instability is caused by overlapping two-body MMRs,
multibody MMRs, and (possibly) mixed secular MMRs. The
pericenter frequency of the system is commensurate with
the mean motion of asteroids n0 in this zone; for instance,
regarding absolute values of the frequencies, vf n1 : 1 0 at
;235 au, 3fϖ: 2n0 at ;310 au, 2fϖ : 1n0 at ;375 au, and

vf n3 : 1 0 at ; 490 au. However, the resonances are retrograde
for the disk rotating with the same spin direction as the planets;
therefore, we did not observe their direct or clear dynamical
influence on the asteroids. A streaking feature of the stable
zone beyond HR8799b is the presence of low-density rings,
which could be identified with higher-order resonances with
this outermost planet, such as 2:1, 3:2, 3:1, and 5:2, extending
up to ;200 au (Figures C1 and 4).

A stable 1:1MMR with planet HR8799b forms huge,
symmetric Lagrangian areas of low-eccentricity objects
extending for 70–80 au and ;10 au across. The Lagrangian
1:1 MMRs governed by inner planets are nonsymmetric in
respective pairs. There are also islands of the 2:1and
3:2MMRs with HR8799d and HR8799e. In these islands,
the eccentricity of the asteroids reaches e0 ; 0.8 (yellow in
Figure 4). The outer continuous edge of the inner debris disk
appears at ;8 au. (The dynamical structure of the inner disk
was investigated in more detail in GM18.)

In the top panels of Figure C2, we present the global view of
the debris disks revealed by ´ á ñY3.3 106 -stable orbits in the
whole simulation. Similarly to Figure 4, the panels represent
snapshots of the astrocentric coordinates (x, y) of the asteroids
and their osculating orbital eccentricities e0 (color-coded and
labeled in the top bar) at the initial epoch (right panel) and at
the end of the integration interval of 10Myr (left panel). We
selected the end epoch in order to illustrate a saturation of
asteroids after a substantial interval of thousands of orbital
periods. The initial positions of the planets are marked with
filled circles. For reference, gray rings illustrate their orbits
integrated for the same interval of 10Myr, with the initial
conditions in Table 1, independently of the disk integrations.

The top left panel of Figure C2 shows the debris disks in the
orbital plane at the final epoch t=10Myr, and the top right
panel is for the sky view of the disks at the initial epoch t0,
rotated by the inclination and nodal angle in the initial
condition (Table 1). These global representations for the outer
disk reveal a ring of highly eccentric orbits between ;140 and
;200 au and a broad outer ring forming a diffuse outer edge of
the disk. We note that the inner ring is substantially shifted with
respect to the inner edge of the disk found at ;90 au. The

dynamical structure of the whole disk is also illustrated in the
(a0, e0)-plane of the canonical Poincaré elements in the right
panel of Figure C1. In the top right panel of Figure C2, we also
marked the inner and outer boundary of the disk model in
Booth et al. (2016), according to their estimate of the
inclination I=41° and nodal angle Ω=50°. These values
appear substantially different from the inclination and nodal
angle of the best-fitting elements of the planetary system orbital
plane (Table 1).
In order to interpret the ring structure around ;150 au, we

plotted (not shown here) the canonical osculating eccentricity
e0 versus the astrocentric radius of particles at the epoch t0, and
also at t0+10Myr. They reveal that the excess of particles
with high eccentricity seems to be a real feature, unlikely to be
due to a particular sampling or plotting order of the particles. It
is also clear that e0 is a very steep function of the radius r0 at
the innermost part of the outer disk.
Given the variation of eccentricity across the disk, we

computed the Keplerian velocity dispersion of the particles. We
binned asteroids in the region covering the whole disk, x, y ä
[−480, 480] au in square bins of 2 au×2 au. In each box with a
nonzero number of particles, we computed ( )s = å -v v n,v i

n
i

2 2

where vi is the velocity module of a particle i in the given bin, n is
the counted number of particles in this bin, and v is the mean
velocity module. The results are illustrated in the bottom left panel
of Figure C2. The ring structure associated with high-eccentricity
asteroids and the gradient of e0(r0) implies a velocity dispersion σv
a few times larger than in the inner parts of the disk. It could imply
more intense dust production due to both a locally larger density
of objects and higher velocity during their collisions. We may
note that the inner disk boundary fitted by Booth et al. (2016)
seems to overlap with the eccentricity ring edge, which could
suggest a systematic shift of the detected emission with regard to
the actual dynamical border of the disk at ;100 au. It might
actually confirm the results of Wilner et al. (2018) in their more
recent model of the disk also predicting the inner edge at;100 au.
Such a border is more consistent with our updated orbital model
of the HR8799 system regarding the present parallax estimate in
the Gaia DR2 catalog and the resulting true linear dimensions of
the system.
Finally, we simulated the relative intensity image of the disk.

The relative intensity is defined the same as in Read et al.
(2018), ( )( ) ~ Sn

-I K r r ,r
1 2 where Σ(r) is the surface density

and K is the scaling factor. In order to estimate Σ(r), we used
the counts of asteroids in the same 2×2 au bins used for
computing the velocity dispersion. The results are illustrated in
the bottom right panel of Figure C2. The bright rings are
associated with fractions of stable asteroids in the 3:2and
2:1MMRs with planet HR8799b.
While interpretation of the results needs more work, we

might briefly conclude that the disk simulation reveals features
related to the resonant character of the system. They consist of
asymmetry of the inner edge of the outer debris disk and a
highly variable density of asteroids in its inner part due to low-
order MMRs with planet HR8799b, including large Lagran-
gian clouds. There are also two possible rings of high-
eccentricity asteroids around 140–160 au and at the outer edge
;430 au. These features may influence the intensity images
used for modeling the emission in different wavelengths, and
they should likely be accounted for in order to avoid biases in
the emission models.
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