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Abstract

The precise characterization of terrestrial atmospheres with the James Webb Space Telescope (JWST) is one of the
utmost goals of exoplanet astronomy in the next decade. With JWST’s impending launch, it is crucial that we are
well prepared to understand the subtleties of terrestrial atmospheres—particularly ones that we may have not
needed to consider before due to instrumentation limitations. In this work we show that patchy ice cloud variability
is present in the upper atmospheres of M-dwarf terrestrial planets, particularly along the limbs. Here we test
whether these variable clouds will introduce unexpected biases in the multi-epoch observations necessary to
constrain atmospheric abundances. Using 3D ExoCAM general circulation models of TRAPPIST-1e, we simulate
five different climates with varying pCO2 to explore the strength of this variability. These models are post-
processed using NASA Goddard’s Planetary Spectrum Generator and PandExo to generate simulated
observations with JWST’s NIRSpec PRISM mode at 365 different temporal outputs from each climate.
Assuming the need for 10 transits of TRAPPIST-1e to detect molecular features at great confidence, we then use
CHIMERA to retrieve on several randomly selected weighted averages of our simulated observations to explore the
effect of multi-epoch observations with variable cloud cover along the limb on retrieved abundances. We find that
the variable spectra do not affect retrieved abundances at detectable levels for our sample of TRAPPIST-1e models.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheres (487); Exoplanet atmospheric variability (2020);
Atmospheric variability (2119); Exoplanet atmospheric composition (2021)

1. Introduction

With the launch of the James Webb Space Telescope
(JWST) we will gain unprecedented ability to characterize the
atmospheres of terrestrial exoplanets. With this exciting
observational advancement comes a renewed focus on model
predictions for sub-Jovian atmospheres (e.g., Yang et al. 2013;
Kaspi & Showman 2015; Koll & Abbot 2016; Turbet et al.
2016; Fujii et al. 2017; Kang 2019; May & Rauscher 2020, see
Pierrehumbert & Hammond 2019; Shields 2019 for recent
reviews). Importantly, all of these works focus on time-
invariable phenomena and to date have largely considered only
the time-averaged planetary climate. Notably, the atmospheres
of hot gas giants may be time-variable at an observationally
detectable level (Rauscher et al. 2007; Komacek & Show-
man 2020; Menou 2020). As a result, it is important to consider
these time-dependent effects when moving to characterize a
new class of planets.

Clouds play an important role in atmospheric circulation,
providing radiative feedback that both cools the atmosphere by
blocking additional stellar radiation from penetrating deep into
the atmosphere, while also warming the lower atmosphere due
to the greenhouse effect of cloud decks. The temperature
gradients that arise from this spatially variable radiative forcing
can drive winds and shape the global circulation. While we
know them to be a key player in shaping the observable
properties of exoplanet atmospheres (e.g., Roman et al. 2021;
Parmentier et al. 2021), their complexity often results in clouds
being “under-modeled” compared to the rest of the atmosphere.
Because of the important feedback roles of clouds, it is
imperative that we use accurate (within computational limits)
treatments of clouds—especially to the extent that their 3D
nature, radiative feedback, and variability (formation and

dissipation) will have a non-negligible impact on observed
properties. Recent work by Charnay et al. (2021) presented
evidence for cloud variability on sub-Neptunes in 3D climate
models, specifically for K2-18b, but did not study how this
variability may affect observations.
To date, characterizing the atmospheres of terrestrial planets

has been difficult due to their higher-metallicity atmospheres,
corresponding to small atmospheric scale heights (H∝ 1/μ)
and transmission signals (∝HRp/Rs

2). For that reason, primary
targets for JWST observations of terrestrial planets are around
M-dwarf hosts due to the optimal size ratios of the star and
planet. Among the Guaranteed Time Observations (GTO)
transiting exoplanet programs, four transits of TRAPPIST-1e
and two transits of TRAPPIST-1d are planned with NIRSpec
PRISM (Program ID 1331, PI: Nikole Lewis and Program ID
1201, PI: David Lafrenière; respectively) and five transits of
TRAPPIST-1f are planned with the Near Infrared Imager and
Slitless Spectrograph, Single Object Slitless Spectroscopy
(NIRISS SOSS; Program ID 1201, PI: David Lafrenière). In
addition to the planned GTO and ERS programs, there is a
desire in the community to spend significant JWST GO time
detecting atmospheres around the habitable-zone TRAPPIST-1
planets (Gillon et al. 2020). Typical feature sizes for a planet
similar to TRAPPIST-1e with an entirely clear atmosphere are
of order 50 ppm, and with an estimated noise floor of
approximately ∼10 ppm (Schlawin et al. 2021), JWST will
be capable of detecting molecular absorption in the atmo-
spheres of cloud-free small planets. As planets in the
TRAPPIST-1 system are likely to be tidally locked (however,
see Leconte et al. 2015), dayside convection may lead to
copious cloud formation that impacts the detectability of
molecular features in the atmospheres of these planets in
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transmission (Fauchez et al. 2019; Komacek et al. 2020; Suissa
et al. 2020).

The broad wavelength range of NIRSpec PRISM makes it the
most effective instrument for terrestrial planet observations due to
the additional wavelength coverage, even preferred over higher-
precision observations with other modes (Greene et al. 2016;
Batalha & Line 2017). In particular, observations at the short
wavelengths accessible with NIRSpec PRISM allow for breaking
the degeneracy between mean molecular weight and patchy cloud
coverage for large planets (Line & Parmentier 2016). Krissansen-
Totton et al. (2018) found that 10 transits with NIRSpec PRISM
should be sufficient to detect the biosignature combination of CH4

and CO2 and lack of CO in cloud-free conditions. Lustig-Yaeger
et al. (2019) further predicted that for a CO2-dominated
atmosphere, approximately seven or eight transits of TRAPPIST-
1e are needed with NIRSpec PRISM to detect an atmosphere at
5σ, with only Venus-like and H2O-dominated atmospheres
requiring more than 10 transits for such a detection. In addition,
Fauchez et al. (2019) found that the 4.3μm CO2 line in a modern
and Archean Earth-like atmosphere, and a CO2-dominated
atmosphere, are detectable at 3σ with NIRSpec PRISM in less
than 15 transits, even in the presence of (unchanging) clouds and
hazes. However, the above predictions for TRAPPIST-1e require
that the atmospheric cloud cover is constant and unchanging—an
assumption that we seek to test here for TRAPPIST-1e.

We first present 3D models of TRAPPIST-1e for a range of
atmospheric compositions (simulated with five different CO2

partial pressures, pCO2) and study the impact that the pronounced
variability of ice clouds in the upper atmosphere has on simulated
observations. Using the Planetary Spectrum Generator (PSG;
Villanueva et al. 2018) and PandExo (Batalha et al. 2017), we
generate limb-averaged synthetic NIRSpec PRISM observations
for every temporal output from the last Earth year of model time
from our five General Circulation Models (GCMs). For each
atmospheric case, we generate 10 random combinations of 10
synthetic spectra to simulate the impact that multi-epoch observa-
tions will have on future observations of TRAPPIST-1e. We then
use CHIMERA (Line & Yung 2013; Line et al. 2013; Tremblay
et al. 2020) to retrieve atmospheric abundances for each of our
random combinations to compare to input values. Through this, we
are able to determine the impact of variability on proposed multi-
epoch observations of TRAPPIST-1e with JWST’s NIRSpec
PRISM mode.

In Section 2 we overview our 3D GCMs. Section 3 discusses
our model post-processing using the PSG. In Section 4 we
describe our simulated JWST observations of the modeled
planets using PandExo. Section 5 describes the atmospheric
retrievals performed on the simulated data, which we compare
to our input compositions in Section 6. Finally, in Section 7 we
present the conclusions of this work.

2. 3D GCMs

2.1. Model Setup

In this work, we apply the ExoCAM5 GCM to study climate
variability in the atmosphere of TRAPPIST-1e. ExoCAM is a
modified version of the Community Atmosphere Model
(CAM) v4.0 (Neale et al. 2010) that includes the novel non-
gray correlated-k radiative transfer scheme ExoRT.6 This

enables ExoCAM to model planets over a much broader range
of climate states than Earth. ExoCAM has been used in a wide
array of previous studies of the atmospheric circulation of early
Earth and exoplanets orbiting a broad range of stellar types
(e.g., Kopparapu et al. 2017; Wolf 2017; Haqq-Misra et al.
2018; Komacek & Abbot 2019; Yang et al. 2019; Suissa et al.
2020; Wei et al. 2020).
Similar to Wolf (2017), we perform a grid of GCMs varying

the atmospheric CO2 partial pressure. Specifically, we conduct
ExoCAM simulations for CO2 partial pressures of 10

−4, 10−3,
10−2, 10−1, and 1 bar, encompassing most of the range of
climate states considered by Wolf (2017). We assume an
aquaplanet with plentiful surface water, and include 1 bar of N2

in all simulations. As a result, our model atmospheres are
composed purely of 1 bar of N2, CO2 at the assumed partial
pressure, and H2O determined by its saturation vapor pressure.
As varying CO2 alone allows us to cover a broad range of both
cold and hot climate states, we do not include other greenhouse
gases (e.g., CH4) or additional atmospheric constituents (e.g.,
O2/O3) in order to conduct a clean parameter sweep with a
single varying parameter, pCO2. Note that our assumptions for
model atmospheric composition imply that the total surface
pressure is different in each simulation with varying partial
pressures of CO2 and H2O. The maximum surface pressure in
our suite of simulations is 2 bars, while ExoRT is valid
for pressures up to 10 bars (Wolf & Toon 2014). The changing
background pressure does affect the mean climate state,
but in this work we focus on the impact of climate variability
of TRAPPIST-1e on observable properties rather than the
impact of mean climate. We assume a planetary radius of 0.92
Earth radii, a surface gravity of 9.12 m s−2 and an incident
stellar flux of 900.85Wm−2, derived from the observations of
Gillon et al. (2017) and Grimm et al. (2018). For simplicity, we
assume that TRAPPIST-1e is spin-synchronized of 6.10 Earth
days (set equal to the orbital period). However, note that
TRAPPIST-1e may lie in a higher-order or quasi-stable spin
state (Leconte et al. 2015; Vinson et al. 2019), which requires
further study to determine the impact of spin state on climate
variability.
For all of the simulations presented in this work, we use an

incident stellar spectrum from the models of Allard et al. (2007)
for an M-dwarf star with an effective temperature of 2600 K.
All simulations assume that the orbit of TRAPPIST-1e has zero
eccentricity and that the obliquity of TRAPPIST-1e is zero. We
further assume that the surface of the planet consists of a slab
(non-dynamic) ocean with a depth of 50 m. This ocean can
form sea ice, but we do not consider ocean heat transport and
the modeled sea ice distribution is governed purely by
thermodynamics (Bitz et al. 2012). We use the sub-grid
parameterization for clouds developed by Rasch & Kristjáns-
son (1998), assuming that liquid water clouds have an effective
radius of 14 μm and with the parameterized ice cloud effective
radius varying from ≈20 to 200 μm. Convection is treated with
the sub-grid scheme of Zhang & McFarlane (1995). All
simulations use a horizontal resolution of 4°× 5° with 40
vertical levels. Our dynamical time step is 30 minutes, and the
radiative time step is set to be three times the dynamical time
step. Simulations are run until they reach top-of-atmosphere
radiative balance, which typically takes 45–50 Earth years of
model time. In the analysis that follows, we study daily
averaged output from the last year of each GCM simulation.

5 https://github.com/storyofthewolf/ExoCAM
6 https://github.com/storyofthewolf/ExoRT
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2.2. Simulated Variability in Cloud Coverage

As in Wolf (2017), the climates in our GCM simulations of
TRAPPIST-1e strongly depend on the partial pressure of CO2

(pCO2). Simulations with low pCO2 (10−2 bar) have cold
climates with ice coverage on much of the surface, while with
increasing pCO2 the atmosphere transitions to temperate and then
to a hot, ice-free state with pCO2= 1 bar. As a result, we find that
hotter climates have greater amounts of open ocean, while cold
climates have an “eyeball” (Pierrehumbert 2011) of open ocean
near the substellar point. In concert with the increase of the
saturation vapor pressure of water with temperature from the
Clausius–Clapeyron relationship, this causes simulations with
larger pCO2 to have more humid atmospheres, resulting in an
increase in atmospheric cloudiness with increasing pCO2. In our
GCM simulations, the yearly average terminator-averaged cloud
column mass increases by over a factor of two with varying pCO2

from 10−4 bars to 1 bar.
The local cloud coverage on a given day can be significantly

different from the time-average state. As an example, Figure 1
shows maps of the vertically integrated cloud water path at six
different times during the year for our simulation with
pCO2= 10−1 bar. The cloud coverage is strongly time-variable,
with most latitudes and longitudes experiencing both cloud-free
and cloudy days. This variability is driven by planetary-scale
waves and the resulting superrotating equatorial jet, both of which
act to transport heat and moisture from the dayside to the nightside
of the planet (Labonté & Merlis 2020). We find that regions near
the substellar point are perpetually cloudy due to vigorous
convective upwelling (Merlis & Schneider 2010; Yang et al.
2013). Similar to the high-resolution simulations of Sergeev et al.
(2020), the cloud coverage near the substellar point is patchy and
evolves in time. Notably, similar to the case of tidally locked gas
giants (Parmentier et al. 2013) we find that the cloud coverage
near the limb experiences some of the most significant variability.
The near-terminator regions experience both some of the strongest
cloud coverage not at the substellar point (e.g., near the western
limb on Day 61 in Figure 1) and at times have almost completely
cloud-free regions (e.g., near the western limb on Day 1).

We find that the variability in terminator cloud coverage is
large in all simulations we considered, with the maximum
change in cloud coverage exceeding 90% for all cases with
varying pCO2. Figure 2 shows both the absolute and relative

maximum variation in terminator-averaged total cloud water
path, along with the standard deviation of the distribution of
daily terminator cloud water path. We find that the absolute
variation and standard deviation of cloud mass both increase
with increasing pCO2. This is because the overall cloudiness of
the atmosphere increases with pCO2. Because each simulation
has days where the terminator is nearly cloud-free, the

Figure 1. Maps of the column-integrated cloud water path at six different days (each separated by 60 days) from the GCM simulation with 100 mbar of CO2. The
atmospheric cloud mass is greatly time-variable, with most locations experiencing both nearly cloud-free days and days with strong cloud coverage. As a result, the
total cloud water path at the terminator strongly varies with time, though regions near the substellar point are perpetually cloudy.

Figure 2. Top panel: amplitude of the total vertical cloud water path variation
at the terminator over one Earth year as a function of the CO2 partial pressure.
Shown are both the absolute cloud water path variation (left y-axis, orange line)
and the percent cloud mass variation, normalized by the maximum cloud water
path (right y-axis, magenta line). Bottom panel: standard deviation of the
variation in total cloud water path at the terminator over one Earth year as a
function of the CO2 partial pressure. Shown are both the absolute standard
deviation of the variation in total cloud water path (left y-axis, orange line) and
the percent standard deviation, normalized by the average total cloud water
path (right y-axis, magenta line).
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maximum variation and standard deviation of in cloud mass is
driven by the maximum cloudiness. As a result, we expect that
hotter planets (with higher pCO2) will have larger-amplitude
variability in their terminator cloud coverage.

3. Model Post-processing

We use the PSG (Villanueva et al. 2018) to post-process our
GCM outputs into transmission spectra for all resolution
elements along the planet limb (longitude=±90°) for each day
in the final Earth year of model time. Our processed spectra
include liquid water and ice clouds, the main factor driving the
variability in the transmission spectra, with all input parameters
(e.g., cloud particle size and mixing ratio, abundance of
gaseous species) the same as those used in our GCMs. We
create limb-averaged spectra for each temporal output to serve
as our true model spectrum at each time output.

For comparison, we further generate cloud-free spectra from
our GCMs with PSG by removing clouds ad-hoc from the
GCM output. These cloud-free spectra are generated over a
30 days subset of our model output to serve as a comparison
retrieval case.

We acknowledge that by only using longitudes of ±90° we
are not considering the full 3D effect of the light rays passing
through the atmosphere from the dayside to the nightside
(Caldas et al. 2019), but, due to the small transit depths of the
system, any differences in our limb averaging and a full 3D
consideration would be within the noise of JWST. Therefore,
we present this as an initial consideration of the effect of cloud
variability on observed transmission spectra, saving full 3D
consideration for future work.

In Figure 3 we show the output spectra for all five CO2

partial pressure at all 365 time steps analyzed. Each panel
displays a different GCM base model, while each colored line
corresponds to the PSG spectrum at a different temporal output
from the GCM. The black line in each figure denotes the cloud-
free comparison. Liquid water and water ice clouds in the upper
atmosphere drive spectral variability on scales comparable to
the expected noise floor of JWST, with the hotter atmospheres
(higher partial pressures of CO2) experiencing more extreme
variability. The final panel shows all of our five cloud-free

baseline spectra for all partial pressures of CO2 considered for
direct comparison to one another.

4. Simulated Observations

To explore the effects of spectral variability on multi-epoch
observations of TRAPPIST-1e, we generate simulated JWST
observations using PandExo (Batalha et al. 2017). While Batalha
& Line (2017) found that the combination of NIRISS SOSS +
NIRSpec G395 provide the highest information content, they do
not directly explore NIRSpec PRISM due to the faint magnitude
limits, but conclude that broad wavelength coverage is preferred
over higher precision and that NIRSpec PRISM is a suitable
alternative for faint host stars such as TRAPPIST-1. Further, we
see significant spectral variability in the short-wavelength
scattering slope, which is best studied with the PRISM mode or
the second order of NIRISS SOSS. Because the second order of
NIRISS SOSS requires a different observational optimization than
that of the first order, the entire wavelength range is best reached
with two separate observations using this instrument mode. For

Figure 3. Transmission spectra for our five CO2 partial pressures, with each panel including spectra for the last 365 Earth days of the model (colored lines) compared
to the cloud-free case for that model (averaged over 30 model days). We see clear variability in all models, with the strength of this effect decreasing with decreasing
partial pressures of CO2, corresponding to greater variability in the hotter atmospheres, as expected. The final (bottom-right) panel in the figure includes our cloud-free
baseline spectra for each CO2 partial pressure case for a direct comparison. A 10 ppm error bar is shown in the first panel.

Figure 4. Sample retrieved spectra. Each line represents a different pCO2 case
for a single multi-epoch case. 1σ and 2σ contours are included.
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these reasons, we choose to model NIRSpec PRISM observations
covering 0.6–5.3μm to optimize our ability to constrain atmo-
spheric constituents in retrievals on our simulated observations.

Following expected best practices for time series observa-
tions with JWST, we assume equal times out-of-transit and in-

transit, plus an extra one hour pre-transit baseline to address the
tight scheduling constraints, as well as an additional half-hour
pre-transit baseline for any ramp-like effects. This corresponds
to a total observing time of 2× Tdur + 1.5 hr. We set a
saturation limit of 80% and apply TRAPPIST-1 stellar values

Figure 5. Retrieved posterior distributions for four of the key parameters explored in this study. From top to bottom the four panels are: CO2 abundance, H2O
abundance, cloud top pressure, and temperature. Each colored histogram represents the retrieved parameter for one of the combined spectra (representing 10 different
“observed” epochs), for a total 10 different combined spectra, each with different underlying cloud assumption. The thick solid vertical lines show the terminator-
average abundance of CO2 and H2O from the input models, while the dotted vertical lines represent the best-fit value and the 1σ constraints on it. With the exception
of the 1 bar pCO2 case, the true CO2 value is within 1σ of the retrieved values. We present the 0.1 bar temperature as a solid vertical line in the temperature
histograms. It is not possible to present a “true” value for the cloud top pressure as this is different for each scenario. The consistency of the retrieved cloud top
pressures demonstrates that the precision of the data is not high enough to detect this variability.
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from Gillon et al. (2017). Using this setup we generate random
uncertainties that are applied to all limb-averaged temporal
outputs for all CO2 cases. All spectra are binned in 10 pixel
chunks to reach a precision 200 ppm in each spectral bin.

As suggested in Krissansen-Totton et al. (2018), Fauchez et al.
(2019), and Lustig-Yaeger et al. (2019), we assume that 10
transits are needed to achieve the signal-to-noise ratio (S/N)
necessary to detect molecular features in the atmosphere of
TRAPPIST-1e. To simulate the effect of these required multi-
epoch observations, we randomly select 10 temporal output
spectra and perform a weighted average of those times. This
process is done 10 times, resulting in 10 multi-epoch “observa-
tions” for each CO2 case. We use the PandExo uncertainties
applied at the locations of the binned model, minimizing biases
due to outliers in the random draws of the noise instance. (e.g.,
Feng et al. 2018; Krissansen-Totton et al. 2018; Changeat et al.
2019; Mai & Line 2019; Taylor et al. 2020). We generate the
“observed” spectra before performing the weighted combination
to capture the effect of the changing underlying model. The
resulting data points and their corresponding uncertainties are
shown in Figure 4 for a single set of 10 combined epochs.

5. Atmospheric Retrievals

To perform our retrievals we use the open-source radiative
transfer and retrieval framework CHIMERA (Line & Yung 2013;
Line et al. 2013). It previously has been used to study the
atmosphere of TRAPPIST-1e to determine the resolution that a
future instrument needs to have in order to detect and constrain the
abundances of molecules in the atmospheres of temperate
terrestrial planets to high precision (Tremblay et al. 2020). Our
retrieval setup is similar to that presented in Tremblay et al.
(2020). For each of the combined spectra we fit for six parameters:
an isothermal temperature profile (Tiso), a radius scaling factor
(xRp), the cloud top pressure ( ( )log CTP ), the mean molecular
weight of the atmosphere, and the volume mixing ratio of H2O
and CO2. We use the mean molecular weight (MMW) as a
proxy to effectively fill the rest of the atmosphere with N2 as this
molecule is inert.

6. Results

Each spectra that we retrieved had a different underlying cloud
configuration, hence we wanted to determine if these physical
processes impact the retrieved CO2 abundance. The histograms
presented in Figure 5 show that the retrieved abundances are
consistent for each of the combined spectra, suggesting that the
impact of cloud variability is not detectable with the resolution
provided by JWST NIRSpec PRISM. This is further verified by
the third panel, which shows consistent retrieved cloud top
pressure for each spectra. While the cloud top pressure can be
seen to vary in our models, this consistency in the retrieved cloud
top pressures demonstrates that the precision of JWST NIRSpec
PRISM will not be able to differentiate variable cloud spectra at
any level of confidence. It can be seen from Figure 5 that for the
CO2 partial pressure greater than 10−1 bars the posterior tends
toward the upper prior, which is set by the physical limit of the
volume mixing ratio, with the true value lying outside 1σ. The
lower partial pressures are not prior dominated and we are able to
retrieve the correct volume mixing ratios within 1σ. Further, the
10 cases for each partial pressure are consistent, suggesting that
the variable clouds are not affecting the retrieved values. We are

unable to constrain a water abundance due to its lack of strong
spectral features in our models.

7. Conclusions

We conducted GCM simulations that show inherent cloud
variability along the limbs of tidally locked terrestrial planets, with
specific results for TRAPPIST-1e. Variability in liquid water and
water ice clouds is most pronounced near the limbs of the tidally
locked planet, which critically lies in the region probed by
transmission spectroscopy. The effect of this variability on
simulated observed spectra is to change the spectral continuum
as well as affect the shape of molecular absorption features.
While each resolution element in our 3D models experiences

extreme variability in cloud coverage, the effect of intrinsic cloud
variability on the limb-averaged spectra is muted. For our
simulated TRAPPIST-1e observations based on these 3D models,
the precision of JWST NIRSpec PRISM is not sufficient to detect
the spectral variability due to the changing cloud cover, nor does it
impact our ability to detect the atmosphere. Future work will
explore a wider range of input scenarios to explore the limits of
this effect, including its impact on next-generation observatories
and other JWST observing modes.
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