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Abstract

Objectives: To develop a mathematical model that incorporates genetic defect in estimating
the growth rate of roan antelopes in Ruma National Park,Kenya.
Methodology: This study has developed an improved Oksendal and Lungu’s stochastic logistic
model to estimates population growth rate of roans by incorporating genetic defect that were
not considered by Magin and Cock. Appropriate adjustments were made to Vortex version 9.99
a computer simulation programme to simulate the extinction process.
Results: There is a high-level impact between inbreeding and population growth(survival) in
small populations. Supplementation of both juvenile and adult roans ensured population survival
for longer period.
Conclusion: Due to unpredictable consequences to the ecosystem and conflict with wildlife
management policies in protected areas, this paper recommends supplementation instead of
predator control to curb inbreeding which is a major threat to small populations. Supplementation
should be done in phases without causing disruption to social groups.
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1 Introduction

Verhust in his classical logistics growth model

dPt

dt
= fPt = λPt

(
1− Pt

M

)
(1.1)

with 0 and M the equilibrium levels of the equation and letting P0 be the initial value corresponding
to the equilibrium stable solution

Pt =
MP0e

−λt

(M − P0) + P0eλ(t−t0)
: P0 ̸= M and (M − P0) + P0e

λ(t∗−t0) ̸= 0 (1.2)

whenever t∗ is a point of jump discontinuity with

eλ(t∗−t0) =

(
P0 −M

P0

)
Since P0 > M and P0 ̸= 0 the RHS > 0 therefore a positive logarithm (raising to the log).

λ(t∗ − t0) = ln

(
P0 −M

P0

)
> 0

t∗ − t0 =
1

λ
ln

(
P0 −M

P0

)
> 0 (1.3)

When t0 = 0 then

t∗ =
1

λ
ln

(
P0 −M

P0

)
> 0

Solving for t. According to Griensen [1], analysis of Voltera is insightful but has no intra-specific
competition i.e natural resources has no diminishing returns. Several variations of Verhust logistics
growth models have been modified for resource management. A case in point, Shaffer [2] modeled
fish population

dPt

dt
= λ

(
1− Pt

M

)
− EPt (1.4)

where E is a positive constant that measures total effort made to harvest given species of fish.
Genetic drift is the cumulative and non-adaptive fluctuation in allele frequencies resulting from
random sampling of genes in each generation that can impede or accelerate wildlife population as
discussed by Lacy, Hughes and Miller,[3]. Inbreeding is not strictly a component of genetic drift
but correlated with it has been documented to cause loss of fitness and reduces the ability of the
population to adapt to future changes in the environment as shown by [4,5].

Gilpin[6],describes synergistic destabilizing effects of stochastic process on small wildlife population
as extinction vortices. Most population growth processes are inherently stochastic yet much theore-
tical analysis involves deterministic models with the assumption that biological systems consist
of large collection of individuals in the same ecological interaction. This assumption according to
Wilson [7] implies that dynamics of measure (mean) is sufficient description and ignores the influence
of variance. Oksendal and Lungu [8], stochastic logistic model estimated population growth at any
time. This study has worked along this line and derived a mathematical model that estimates
population growth of roan antelopes by incorporating genetic defect that was not considered by
Magin and Cock [9]
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2 Preliminaries

Randomness is an intrinsic property of biological observation which makes deterministic models
incomplete.

Pt = λPt

(
1− Pt

M

)
dt (2.1)

where

λ is the intrinsic growth rate,

Pt is the population at any time t and

M is the carrying capacity.

However, for Pivato [10] if some intrinsic randomness in the system which makes perfect prediction
of the future impossible but strong trends or correlation exists, the mathematical structure used
to model this phenomenon is stochastic process. Stochastic process consist of space, time and
probability measure.

Definition 2.1. If Ω is a given set, then a σ algebra F on Ω is a family F of subset of Ω with the
following properties.

(i)Φ ∈ F

(ii)f ∈ F ⇒ fc ∈ F

where fc = Ω/F is the compliment of F in Ω

(iii)

A1, A2, · · · ∈ F ⇒
∞∪
i=1

Ai ∈ F

The pair (Ω, F ) is called a measurable space. A probability measure P on a measurable space (Ω, F )
is a function P : F → [0, 1] such that

(a) P (Φ) = 0, P (Ω) = 1

(b) If A1, A2, · · · ∈ F and (
Ai

)∞

i=1

is a disjoint i.e.

(
Ai

∩
Aj = Φ : i ̸= j

)
then

P

( ∞∪
i=1

Ai

)
=

∞∑
i=1

P (Ai)

The triple (Ω, F, P ) is called a probability space. It is called a complete probability space if F
contains all the subsets of G of Ω with P outer measure zero.

P ∗(G) = inf{P (F ) : f ∈ F,G ⊂ F} = 0

Given any family µ of subsets of Ω there is a smallest σ algebra Hµ containing µ namely

Hµ =
∩

{H : H σ algebra of Ω, µ ⊂ H}

Let (Ω, F, P ) denote a complete given probability space, then a random variable X is F measurable
function X : Ω → Rn Every random variable induces probability measure µx on Rn defined by
µx(B) = P (x−1(B)), µx is the distribution of X. If∫

Ω

|X(ω)|dP (ω) < ∞
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then

E[X] =

∫
Ω

X(ω)dP (ω) =

∫
Rn

xdµx

where x is called the expectation of X(w.r.t.P )

Definition 2.2. A stochastic process is a parameterized collection of random variables {Xt}t∈T

and defined on probability space (Ω, F, P ) and assuming values in Rn. The parameter space T is
usually half line [0,∞) but may belong to [a, b] the non-negative integers and even subsets of Rn

for n ≥ 1 such that for each t ∈ T fixed we have a random variable W → Xt(ω) : ω ∈ Ω and on
fixing ω ∈ Ω, t ∈ T which is called the path of Xt For clarity Xt ≡ X(t). A stochastic process
X = {X(t), t ∈ T} is a collection of random variables. Pollet [11], asserts that for each T in the
index set T,X(t) is a random variable with t interpreted as time and Xt the state of the process at
a time t. Pivato [10] showed that by letting X be some set, time for some other set and we let W
be some σ-algebra on X the W measurable stochastic process on the state space X over time T is a
probability measure W . Stochastic processes are sequences of events governed by probabilistic laws.
These systems occupy one state at a given time and could make transition probabilities from one
state to another. The set X of possible status may be finite or infinite depending on application.
X consist of discrete elements Xi for i = 0, 1, 2 . . . with element Xi being possible states of the
systems at any time t. The probability Pi,j(t) of the system making transition from the state i to
j in the interval time t is the conditional probability defined as

Pi,j(t) = Pr{Xt0+1/Xt0 = Xi} (2.2)

where Xt0 is the state of the state of the system at the time t0. The index set T is a countable set
and X discrete time stochastic process or continuous time stochastic if it forms a continuum.

Definition 2.3. A discrete time stochastic process is the probability measure on (X+,
⊗

n ∈ T ).
Discrete time stochastic processes are ranked in increasing order of complexity. This hierarchy
follows either Bernoulli or Markov processes. Discrete time processes can be demonstrated by
random walks with probability p of a particle moving to the right and probability [(p − 1) = q] of
particle moving to the left. Let Pi,j be the transition probability then

Pi,j+1 = P = 1− Pi,j−1 : i = ±1,±2,±3, . . .

suppose for arbitrary time i, x in a random variable Xi takes p = 1, q = −1 and Xi are independent
and identically distributed (iid) with identity function.

ρδ(x− 1)− (1− q)d(x+ 1)

E[X] = 2p− 1

and
V ar[X] = 4p(1− p)

If the nth partial sum of the random variable

Yn = X1 +X2+, . . . Xn =

n∑
i=1

Xi

Then the sequence for the random variable

{Y1, Y2, . . . Yn}

is the random walk with the probability distribution

E[Yn] = n(2p− 1)
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and
V ar[Yn] = 4npq

at stage n. If we let µ and σ2 be the mean and variance respectively then

E[Yn] = nµ

and
V ar[Yn] = nσ2

Definition 2.4. LetX be some set and time t be some open set and closed interval in R representing
an interval of time andW be some σ algebra, thenW be some measurable continuous time stochastic
process on state space X over time interval T is the probability measure W Continuous time
stochastic process {X(t), t ≥ 0} has independent increments if ∀t0 < t1 < tn the random variables

X(t1)−X(t0), X(t2)−X(t1), . . . X(tn −X(tn−1))

are independent. They may make stationary increments if X(t+ s)−X(t) has distribution values
∀t i.e. the distribution only depends on s. This implies that for n time points the random variables
set

{X(t1), X(t2), . . . X(tn)}
and

{X(t1 + s), X(t2 + s), . . . X(tn + s)}
has the same joint probability distribution thus

E[E(t)] = E[X(t+ s)]

Markov process is a continuous time X = {X(t), t ≥ 0} with the

Pr{X(t) ≤ x|X(µ), µ ∈ [0, s] = Pr[X(t)] 6 x|X(s)}

Markov processes are stochastic processes for which all its future knowledge is summarized in current
value. Examples of these processes are Brownian motion, stable, Poisson and Levy processes.
We can therefore ascertain that stochastic processes are variable with both the expected variable
term (drift term) and random term (diffusion term). The drift-coefficient term, models dominant
actions while diffusion-coefficients represents randomness along the dominant curve. Roan antelope
population growth varies in random number and represents stochastic process.

3 Brownian Motion and Stochastic Differential Equations

An irregular movement of pollen grains suspended in water as was observed by a botanist Robert
Brown in 1828 has a wide range of application. Nobert Wiener came up with a concise and rigorous
mathematical definition of Brownian motion, sometimes called Weiner Process.

Definition 3.1. A Brownian motion or Wiener process is a stochastic process ξ(t) ≥ 0 satisfying

(i)ξ(0) = 0

(ii) For any 0 ≤ to < t1, . . . < tn the random variables

ξ(tk),−x(tk)(1 ≤ k ≤ n) are independent

(iii) If 0 ≤ s ≤ t, x(t)− x(s) is normally distributed with

E(P (t)− P (s)) = (t− s)µE(ξ(t)− ξ(s)2) = (t− s)σ2,

where µ and σ are constants, σ ̸= 0
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If ξ(t) is a Brownian motion,then µ is the drift and σ2 is the variance. Brownian motion can be
a Weiner process dW = ε

√
dt : ε is a random drawn from standard normalized if µ = 0 and

σ2 = 1 any continuous time process with stationary independent increments and can be proved to
be Brownian motion. Brownian motions are used in models that resemble random movements of
particles. A (µ, σ) Brownian motion ξ = {ξ(t), t ≥ 0} can be expressed as a Weiner process i.e

ξ(t) = µt+ σWt

and a normal variable with mean of zero and a variance of one. The values of dW for any two
intervals are independent such that small infinite change can be written as ∆Wt = ξ

√
∆t adding

up each of those intervals, we obtain

Wt −W (0) = lim
t→0

{ n∑
i=1

εi
√
∆t

}
One dimensional Weiner process has ξ(t) determined by the stochastic differential equation(SDE)
of the form of

dξ(t) = µdt+ σdWt : P (0) = Pt, (3.1)

where µ (drift rate) and σ standard deviation. Thus dξ(t) is the sum of the deterministic term dt
and the stochastic term (dWt)and in the short term interval [ti−1, t] and the increase may be given
by

ξi(t)− ξi−1(t) = µ

∫ i

i−1

dt+ σ

∫ i

i−1

dWt (3.2)

With a general solution of the form

ξ(t) = ξi−1(ti−1) + µ(ti − ti−1) + σ(W (ti)−W (ti−1)) (3.3)

and in particular if the interval is [0,1] the equation (3.2) becomes

ξ(t) = ξ0 + µ

∫ 1

0

dt+ σ

∫ 1

0

dWt (3.4)

whose solution is
ξt = ξ0 + µt+ σWt (3.5)

with ξ(0) = 0 and λW (0) = 0 A generalized Weiner process with non-constant coefficient

dξ = µ(ξ, t)dt+ σ(ξ, t)dWt (3.6)

where µ(ξ, t) and σ(ξ, t) are functions of variable ξ and time t is called Ito’s process if it solves the
equation

ξ(t) = ξ0 +

∫ t

0

µ(ξ(t), t)dt+

∫ t

0

σ(ξ(t), t)dWt : t ≥ 0 (3.7)

where ξ0 is the initial value, µ(ξ(t), t) is the drift term and σ(ξ(t), t) is the diffusion term. A special
type of Ito’s with linear coefficient is the geometric Brownian motion (gBm) and has the stochastic
differential equation of the form

dξ(t) = µξ(t)dt+ σξ(t)dWt : µ > 0, σ > 0, (3.8)

where µ is the mean growth rate and σ is the rate of diffusion. Equation (3.8) can be expressed as
a growth function

dξ(t)

ξ(t)
= µdt+ σdWt, ξ(0) = ξt (3.9)

over infinitely short time interval (t, t+∆t). Solutions to equation (3.9) can not be obtained from
standard Reinmann Calculus formula for total derivative. If we let f(x, t) be a continuous function
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with (x, t) ∈ R × [0,∞) together with its derivatives ft, fx, fxx then the process f(ξ(t), t) has the
Stochastic Differential Equation. Ito achieved a rigorous treatment for integrating such Weiner
like differential equation,thus Ito calculus,(3.7). The solution to equation (3.9)is the stochastic
differential equation

df(ξ(t), t) = [ft(ξ(t), t) + fx(ξ(t), t)µ(t) +
1

2
(ξ(t), t)b2(t)]dt+

fx(ξ(t), t)σ(t)dWt (3.10)

This is called Ito’s formula. It is noticeable that if W (t) were continuously differentiable in t then
by Reinmann calculus the term 1

2
fxxb

2dt would not appear.

Proof. See Friedman[12]

Theorem 3.1. Let dξi(x) = µi(t)dt+σi(t)dξ : 1 ≤ i ≤ m and let f(xi , . . . xm, t) be a continuous
function in (x, t) where x = (xi, . . . xm) ∈ Rm, t ≥ 0 together with its first t derivative and second x
derivative then f(ξi(t), . . . ξm, t) stochastic differential given by Friedman [12]

df(X(t), t) =

[
ft(X(t), t) +

m∑
i=1

fxi(X(t), t)µi(t) +

1

2

m∑
i,j=1

fxixj (X(t), t)σi(t)σj(t)

]
dt+

m∑
i=1

fxi(X(t), t)σi(t)dWt (3.11)

where X(t) = (ξi(t), . . . ξm(t)). Equation (3.11) is the Ito’s formula. From theorem 3.1 and equation
(3.11) the geometric Brownian motion (gBm) is given by

dξ(t) = µξ(t)dt+ σξ(t)dWt, (3.12)

where µξ(t)dt is the drift and σξ(t)dWt is the diffusion term dWt = ε
√
dt. Dividing both sides of

equation (3.12) by ξ(t), we obtain
dξ(t)

ξ(t)
= µdt+ σdWt (3.13)

and in order to get the strong solution of equation (3.13) we let f(ξ(t), t) be a function of ξ and t
twice differentiable in ξ and once in t such that

f(ξ(t), t) = ln ξ(t)

Note
dξ(t)

ξ(t)
= µdt+ σdWt

suggests the nature of f(ξ(t), t) differentiating f(ξ(t), t) twice with respect to ξ and once with
respect to t gives

d(ξ(t), t)

dξ
=

1

ξ

∂2(ξ(t), t)

dξ2
=

−1

ξ2
∂(ξ(t), t)

∂t
= 0

and by equation (3.10) we have integral in the form

df(ξ(t), t) = d(ln ξ(t)) =

(
µ− σ2

2

)
dt+ σε

√
t (3.14)
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Equation (3.14) follows a generalized Weiner process with the drift rate

(
µ − σ2

2

)
and diffusion

coefficient σ,which are constants. The distribution of this process is given by

df(ξ(t), t) ∼ N

((
µ− σ2

2

)
dt, σ

√
dt

)
or

∂

(
ln ξ(t) ∼ N

(
µ− σ2

2

)
dt, σ

√
dt

)
whose solution over the interval (ti−1, ti) is given by

ln ξ(t) = ln ξ(ti−1) +

(
µ− σ2

2

)
(ti−1, ti) + σξi(

√
ti−1, ti) (3.15)

Moreover, on putting like terms together, we obtain

ln

(
ξ(ti)

ξ(ti−1)

)
=

(
µ− σ2

2

)
(ti−1, ti) + σε(

√
(ti−1, ti) (3.16)

And in considering the interval (0, 1) then equation (3.14) becomes

ln ξ(t) = ln ξ0 +

(
µ− σ2

2

)
t+ σε

√
t ξ(0) = ξ0 > 0 (3.17)

Thus ln ξ(t) is normally distributed for any time t with the mean given by ln ξ0 +

(
µ − σ2

2

)
and

variance by σ2t and the change in logarithm of the population size in the interval (0, 1) results in

ln ξ(t)− ln ξ0 =

(
µ− σ2

2

)
t+ σε

√
t (3.18)

with the corresponding distribution given by

ln ξ(t)− ln ξ0 ∼ N

((
µ− σ2

2

)
t, σ

√
t

)
From equation (3.18) the strong solution becomes

ξ(t) = ξ0 exp

[(
µ− σ2

2

)
t+ σε

√
t

]
(3.19)

which has the log-normal distribution given by

ξ(t) ∼ log-normal

(
ξ0 expµt, ξ0

√
exp(2µt), exp(σ2t)−1

)
such that if σ = 0 then equation (3.18) becomes

ξ(t) = ξ0 exp(µt)

Thus ξ(t) has the exponential growth with the expectation ξ0 exp(µt) and variance zero.

4 Extinction Growth Model Equation

In addition to competition for resources and predation. We consider the genetic defect on the
population growth rate for the roan antelopes. From the Verhulst logistic growth rate equation
(2.1) and adding genetic growth component to the logistic growth model we have

dPt = λPt

(
1− Pt

M

)
dt−Ψ(Pt), (4.1)

where
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λ is the growth ratio

Pt is the population at time t

M is the carrying capacity

Ψ(Pt) is the function of Pt representing genetic defect

Letting Ψ(Pt) = γ a constant then equation (4.1) becomes representing genetic defect

dPt

dt
= λPt

(
1− Pt

M

)
− γ (4.2)

And equating equation (4.2) to zero we obtain

λP 2
t − λMPt + γM = 0 (4.3)

whose solution is given by

Pt =
λM ±

√
(λ2M2 − 4λγM)

2λ
: P (0) = P0 (4.4)

The nature of solution of equation (4.3) depends on the genetic defect γ such that

γ > λM
4

there is no real valued function implying genetic defect rate leads to extinction,

γ = λM
4

has unique solution thus absolute growth rate in the absence of genetic defect and

γ < λM
4

has positive growth rate with genetic defect.

Suppose we have a genetic defect at the rate proportional to Pt and if we let Ψ = γPtdt then
equation (4.1) becomes

dPt

dt
= λPt

(
1− Pt

M

)
− γPt (4.5)

Integrating equation (4.5) and solving for Pt we obtain the solution

Pt =
(λM − γ)P0

[λ(M − P0)− γ]e−(λM−γ)t + λP0
: P (0) = P0

As t → ∞, Pt → P0 and t → ∞, Pt → (λ−γ)M
λ

with the following steady states

Pt = 0, Pt =
(λ− γ)M

λ

Stochastic models are probabilistic in structure. This helps in solving the effects of uncertainty in
ecological models. Hence, analysis of systems with white noise gives better results. If we consider
population growth process

1

Pt

dP (t)

dt
= λ(M − Pt)

adding noise to the continuous growth process above, we obtain

1

Pt(M − Pt)

dPt

dt
= λdt+ noise (4.6)

If noise= σdWt = σε
√
dt, ε ∼ N(0, 1)., equation (4.6) can be written as

1

Pt

dPt

(M − Pt)
= λdt+ σdWt, M ̸= Pt (4.7)

On making dPt the subject of the formula, we obtain the logistic stochastic differential equation

dPt = λPt(M − Pt)dt+ σPt(M − Pt)dWt (4.8)

101



Achola; ARJOM, 16(8): 93-107, 2020; Article no.ARJOM.58007

with the distribution [
dPt ∼ N(λPt)dt, σPt(M − Pt)

√
dt

]
On using the variable

Y (t) = log

(
P (t)

|M − P (t)|

)
M ̸= Pt

and simplifying equation (4.8) we obtain

dY = λMdt+ σMdWt (4.9)

Equation (4.9) is the generalised Weiner process with λMdt as drift and σMdt as variance. Equation
(4.9) has the explicit solution

Y (t) = Y (0) + λM(t− t0) + σMWt, W0 = 0 (4.10)

If we let

Y (t) = log

(
Pt

M − P (t)

)
and Y (0) =

(
P (0)

M − P (0)

)
Equation (4.10) becomes

log

(
P (t)

M − P (t)

)
= log

(
P (0)

M − P (0)

)
+ λM(t− t0) + σMWt (4.11)

and making Pt the subject of the formula we have the Verhulst Logistic Brownian motion

Pt =
MP0

(M − P0)e−{λM(t−t0)+σMWt} + P0
: P (0) = P0 (4.12)

Considering roans resources whose population Pt varies randomly due to natural factors (e.g
predation, diseases) according to autonomous diffusion process

dPt = λPt(M − Pt)dt+ σPt(M − Pt)dWt (4.13)

Equation (4.13) is an Ito process called logistic geometric Brownian motion, and can be solved by
use of Ito’s lemma. Let F (Pt, t) be function of Pt and t be twice differentiable in Pt and once in t ,
we have

dF (Pt, t) =
∂F

∂t
dt+

∂F

∂Pt
dPt +

1

2

∂2F

∂Pt
dP 2

t

But
dPt = λPt(M − Pt)dt+ σPt(M − Pt)dWt

Hence dP 2
t = σ2P 2

t (M − Pt)
2dt and by Ito’s calculus we obtain

dF (Pt, t) =
∂F

dt
dt+

∂F

dPt
λPt(M − Pt)dt+

∂F

dPt
σPt(M − Pt)dWt +

1

2

∂F

dP 2
t

σ2P 2
t (M − Pt)

2dt (4.14)

We can rewrite equation (4.14) in the form

dF (Pt, t) =

{
∂F

dt
+

∂F

dPt
λPt(M − Pt) +

1

2

∂F

dP 2
t

σ2P 2
t (M − Pt)

2

}
dt+

∂F

dPt
σPt(M − Pt)dWt (4.15)
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If we use the variable F = ln

(
Pt

M−Pt

)
then

∂F

dt
= 0,

∂F

∂Pt
=

M

Pt(M − Pt)
,

∂F

∂P 2
t

=
2M(Pt −M)

P 2
t (M − P 2

t )

Substituting this in equation (4.13), we obtain

dF (Pt, t) =

{
λM − 1

2
σ2(M2 − 2MPt)

}
dt+ σMdWt (4.16)

Equation (4.16) is similar to the Brownian motion in equation (4.9). Its solution is got by integration.
Thus

dF (Pt, t) ∼ λM − 1

2
σ2(M − 2MPt)dt, σMdWt

It can be solved by Ito calculus.When σ = 0 then equation (4.16) is a deterministic differential
equation given by

dF (Pt, t) = λMdt =

(
M

Pt(M − Pt)

)
dPt

and making dPt the subject of the subject of the formula, we obtain

dPt = λPt(M − Pt)dt

If we let

F (Pt, t) = ln

(
Pt

(M − Pt)

)
then dF (Pt, t) =

(
M

Pt(M − Pt)

)
dPt

and rewriting equation (4.14)

dPt = λPt(M − Pt)dt+ σPt(M − Pt)dWt

we obtain
dPt

Pt(M − Pt)
= λdt+ σdWt (4.17)

But
dF (Pt, t)Pt(M − Pt) = MdPt

hence

dPt =
dF (Pt, t)Pt(M − Pt)

M

and when substituted in equation (4.17) we obtain

dF (Pt, t)Pt(M − Pt)

MPt(M − Pt)
= λdt+ σMdWt

dF (Pt, t) = λMdt+ σdWt (4.18)

This is a generalised Weiner process with λMdt as the drift and σMdt as the variance. It has the
explicit solution

F (Pt, t) = F (P0, 0) + λMt + σMdWt

which is equivalent to

ln

(
Pt

M − Pt

)
= ln

(
P0

M − P0

)
+ λMt + σMWt

Solving for Pt we obtain

Pt =
MP0

(M − P0)e−λMt−σMWt + P0
: P (0) = P0 (4.19)
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When σ = 0 in equation (4.19)we obtain the deterministic logistic differential equation given by

Pt =
MP0

(M − P0)e−λMt + P0
as t → ∞, e−λMt−σMWt → 0

To take care of fluctuations in the roan antelopes population growth rate due to genetic defect at
the rate proportional to Pt(M −Pt) so as to ensure positive population growth rate, we add genetic
defect in equation (4.14) to obtain

dPt = (λ− γ)Pt(M − Pt)dt+ σPt(M − Pt)dWt (4.20)

where

Pt roan antelopes population at time t,

λ roan antelope growth ratio,

γ genetic defect,

M carrying capacity,

σ diffusion rate and

Wt random variable.

Suppose F (Pt, t) = F is twice differentiable function in Pt and once in t, then by Ito’s lemma

dF (Pt, t) =
∂F

∂t
dt+

∂F

∂Pt
dPt +

1

2

∂2F

∂P 2
t

dP 2
t

which is equivalent to

dF (Pt, t) =

{
∂F

∂t
dt+ (λ− γ)Pt(M − Pt)

∂F

∂Pt
+

1

2
σ2P 2

t (M − P 2
t )

∂2F

∂Pt

}
dt+

σPt(M − Pt)
∂F

∂Pt
dWt (4.21)

Using the variable

F (Pt, t) = ln

(
Pt

M − Pt

)
(4.22)

where,
∂F

∂t
= 0,

∂F

∂Pt
=

M

Pt(M − Pt)
,

∂2F

∂P 2
t

=
2M(Pt −M)

P 2
t (M − Pt)2

We substitute the above results in equation (4.21) to obtain

dPt =
M

Pt(M − Pt)

[
(λ− γ)Pt(M − Pt)dt+ σPt(M − Pt)dWt

]
+

1

2
(

2Pt −M2

P 2
t (M − P 2

t )
)σP 2

t (M − Pt)
2dt (4.23)

This implies

dPt = M

{
(λ− γ) +

1

2
σ2(2Pt −M)

}
dt+ σMdWt (4.24)

with

dPt ∼ N

{
M(λ− γ) +

1

2
σ2(2Pt −M)dt, σM

√
dt

}
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On rewriting equation (4.23) as

dPt

Pt(M − Pt)
= (λ− γ)dt+ σdWt (4.25)

and using the variable in equation (4.22) we can rewrite equation (4.25) as

∂F (Pt, t) = (λ− γ)Mdt+ σdWt (4.26)

Integrating equation (4.26) with respect to t, we obtain

F (Pt, t) = F (P0, 0) + (λ− γ)Mt + σMWt, (4.27)

which on substitution with the variable in equation (4.26) yields

ln

(
Pt

M − Pt

)
= ln

(
P0

M − P0

)
+ (λ− γ)Mt + σMWt (4.28)

Solving equation (4.28), we obtain

Pt =
MP0

(M − P0)e−(λ−γ)Mt−σMWt + P0
: P (0) = P0 (4.29)

From equation (4.29) when λ = γ ,we have

Pt =
MP0

(M − P0)e−σMWt + P0
: P (0) = P0 (4.30)

Equation (4.30) is a function of random variable Wt only. This implies that the population may
approach extinction.

5 Results

Vortex parameters were appropriately adjusted for inbreeding coefficient of 3.14 as the default
lethal equivalents while Environment Variation in reproduction is left to be concordant. Lambwe
1(scenario 1)were run for 50 years with 200 iterations each of 365 days without supplementation.
It is noted that inbreeding has high-level impact on population survival. The population started
dropping drastically after the 20th year before going extinct in the 43rd year. Scenario two (Lambwe
1 supplemented) incorporating juvenile and adult supplementation. The initial supplementation was
from year 5 and Year 40 as the last year of supplementation.

A decrease in the mean inbreeding coefficients was detected in the supplemented scenario (Lambwe
1 supplemented). Steady population was detected in almost 50 years as compared to the non-
supplemented scenario (Lambwe 1) which showed a drop in the mean survival after only 20 years.
Over supplementation of both the juvenile and adult roans increased inbreeding in the later years,
thus slow rate of population growth. Supplementation ensured population survival for a long time.
In all the above simulations, we maintained adult death rate at 5% default value for large ungulates.

6 Conclusion and Recommendation

Amajor factor for consideration is genetic drift caused by inbreeding in controlling juvenile mortality.
Predator control is not advised due to difficulty in implementation, unpredictable consequences to
the ecosystem and is in conflict with the general wildlife management policies in protected areas.
The management is left with the options for controlling juvenile mortality through supplementation.
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Supplementation involves importing juveniles from parks like Akagera in Uganda or any other park
at intervals of 5 years to curb inbreeding, which is a major threat to population growth in small
populations.

Severe inbreeding after a decade or so may have deleterious effects. This study recommend that
genetic studies be carried out to ascertain the extent to which inbreeding affects population growth.
This should be done without causing disruption of the social groups. It further recommend that
juvenile supplementation of two-year-old heifers and three-year-old bachelors. This seems to be
a reasonable age for supplementation compared to one year old who are usually vulnerable to
predation and other factors relating to increase in their mortality rates.
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Appendices

Fig. 1. Effects of Supplementation on Population Extinction

Fig. 2. Effects of Supplementation on Inbreeding with variations in lethal equivalents
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