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Abstract

One of the most prominent families of statistical distributions is the Burr’s system. Recent
renewed interest in developing more flexible statistical distributions led to the re-examination
of Burr’s system. Solutions of Burr differential equation are expressed in terms of distribution
functions. Burr [1] considered only 12 distribution functions known in literature as the Burr
system of distributions, yet there are more than that in number. Studying the Burr system,
it was realized that 9 of the Burr distributions are powers of cdf ′s, popularly now known as
exponentiated distributions. The remaining 3 are direct solutions in terms of cdf ′s.
Detailed studies using generator approach techniques to generate Burr distributions has not been
undertaken in literature. This motivated us to generalize solutions of Burr differential equation
by generator approach. With this aim in mind, beta generator method, exponentiated generator
method and beta-exponentiated generator method (a combination of beta and exponentiated
generator methods) was proposed. However in this paper, we will focus on exponentiated
generator technique as it generates cdf ′s. The other two generator approach techniques generate
pdf ′s and distributions of order statistics.
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1 Introduction

Kotz and Vicari [2] highlighted methods developed before 1980s focused on systems of frequency
functions which started with the differential equation approach. This approach was significant and
led to the construction of Pearsons system (Pearson[3]) and The Burr system (Burr[1]). After 1980s,
methods of generating new distributions shifted to adding parameters to an existing distribution
and combining existing distributions into new distributions.

Burr [1] introduced a system of distributions by considering distribution functions F (x) satisfying
the differential equation of the form

y′ = y(1− y)g(x, y) (1.1)

where y′ =
dy

dx
=

dF (x)

dx
= f(x), y = F (x) and g(x, y) is a non negative function for 0 ≤ y ≤ 1 and

x in the range over which the solution is to be used.

Burr gave the following twelve solutions in table 1 (usually referred to by number). The Roman
numeral description for the 12 types was first used by Johnson and Kotz [4].

Table 1. The Burr system of distributions

Type F(x) Support

I x 0 < x < 1

II
[
e−x + 1

]−r −∞ < x < ∞

III
[
x−c + 1

]−r
0 < x < ∞

IV

[(c− x

x

) 1
c
+ 1

]−r

0 < x < c

V
[
ke− tan x + 1

]−r −π
2
< x < π

2

VI
[
ke−c sinh x + 1

]−r −∞ < x < ∞
VII 2−r [1 + tanhx]r −∞ < x < ∞

VIII

[
2

π
arctan ex

]r

−∞ < x < ∞

IX 1− 2

c [(1 + ex)k − 1] + 2
−∞ < x < ∞

X
[
1− e−x2

]r
0 < x < ∞

XI

[
x− 1

2π
sin 2πx

]r

0 < x < 1

XII 1− [1 + xc]−k 0 < x < ∞
where c, k and r are positive real numbers.
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2 Direct Solution Approach

To obtain the various distribution functions F (x), we will solve the Burr differential equation for
the 5 cases of g(x, y).

The cases to be considered are:

Case I: g(x, y) =
g(x)

y(1− y)
Case II: g(x, y) = g(x)

Case III: g(x, y) =
g(x)

xy

Case IV: g(x, y) =
r(x)

(1− y)

Case V: g(x, y) =
µ(x)

y

2.1 Distributions based on Case I of Burr Differential Equation

This is the case when g(x, y) =
g(x)

y(1− y)
.

Therefore (1.1) becomes y′ = g(x). Solving this we get,

F (x) =

∫
g(x)dx (2.1)

2.2 Distributions based on Case II of Burr Differential Equation

This is the case when g(x, y) = g(x).

Therefore (1.1) becomes y′ = y(1− y)g(x). Solving this we get,

F (x) =
[
e−

∫
g(x)dx + 1

]−1

(2.2)

which was Burr’s assumption.

2.3 Distributions based on Case III of Burr Differential Equation

Stoppa [5] proposed a differential equation for income elasticity as

η(x, F (x)) =
1− [F (x)]

1
θ

[F (x)]
1
θ

g(x, F (x)), x > x0 > 0 (2.3)

where η(x, F (x)) = x
F ′(x)

F (x)
, is the income elasticity and F (x) is the cdf.

Let g(x, F (x)) = g(x) and θ = 1, then (2.3) becomes x
F ′(x)

F (x)
=

1− F (x)

F (x)
g(x) which can be written

as x
y′

y
=

1− y

y
g(x).

Re-arranging, y′ = y(1− y)
g(x)

xy
which is (1.1) with g(x, y) =

g(x)

xy

According to Kleiber and Kotz [6], Dagum’s differential equation is of the form

d log [F (x)− δ]

d log x
= θ(x)ϕ(F ) ≤ k, 0 ≤ x0 < x < ∞ (2.4)
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where k > 0, θ(x) > 0, ϕ(F ) > 0, δ < 1 and
d {θ(x)ϕ(F )}

dx
< 0.

When δ = 0, θ(x) = g(x) and ϕ(F ) =
1− F

F
, (2.4) becomes

d logF (x)

d log x
= g(x)

[
1− F

F

]
But

d logF (x)

d log x
= x

F ′(x)

F (x)
.

Therefore x
F ′(x)

F (x)
= g(x)

[
1− F

F

]
which can be written as x

y′

y
=

1− y

y
g(x) and re-arranged to

y′ = y(1− y)
g(x)

xy
. This is the same result as before.

Thus this Burr’s equation reduces to y′ = (1− y)
g(x)

x
. Solving this we get,

F (x) = 1− exp

[
−
∫

g(x)

x
dx

]
(2.5)

2.4 Distributions based on case IV of Burr differential equation

Olapade [7] states that one of the properties of Type I Generalized Logistic distribution is that it

satisfies the homogeneous differential equation (1− e−x)F ′ − be−xF = 0 where F ′ =
be−x

1 + e−x
F .

Therefore F ′ = F (1−F )

(
be−x

1 + e−x

)
1

(1− F )
which can be written as y′ = y(1−y)

(
be−x

1 + e−x

)
1

(1− y)

Let g(x) =

(
be−x

1 + e−x

)
, thus

y′ = y(1− y)
g(x)

(1− y)

y′ = yg(x)

g(x) =
y′

y
=

f(x)

F (x)
= r(x)

where r(x) is the reverse hazard function.

Re-writing the equation, y′ = y(1− y)
r(x)

(1− y)
which is (1.1) with g(x, y) =

r(x)

(1− y)
.

Solving this we get,

F (x) = exp

[∫
r(x)dx

]
(2.6)

2.5 Distributions based on case V of Burr differential equation

The statistical theory of survival analysis deals with survival time T which is regarded as a continous
random variable. Accordingly, the survival time t is a realization of T.

Since T is a continous random variable, the probability of dying at any given time is 0. T has
an associated probability density function f(t) and can be characterized in terms of two other
functions, namely the survival function S(t) and the hazard function h(t).

A nonzero probability is obtained only when we consider the probability of dying in an interval of
time. Thus S(t), f(t) and h(t) are defined as follows:
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S(t) = the probability of an individual alive at time 0 surviving until (at least) time t

S(t) = 1− F (t) (2.7)

where F (t) is the cdf.

f(t) = the instantaneous probability per unit time than an individual alive at time 0 will die at
time t

f(t) = −dS(t)

dt
(2.8)

h(t) = the instantaneous probability per unit time than an individual alive at time t will die in the
next instant

h(t) =
f(t)

1− F (t)
(2.9)

It follows that from (2.9), h(t) = −d[logS(t)]

dt
. Hence, h(t)dt = −d[logS(t)]

Integrating both sides

−
x∫

0

h(t)dt =

x∫
0

d[logS(t)]

logS(x)− logS(0) = −
x∫

0

h(t)dt

log

(
S(x)

S(0)

)
= −

x∫
0

h(t)dt

But by definition S(0) = prob (T ≥ 0) =

∞∫
0

f(x)dx = 1

Therefore, logS(x) = −
x∫

0

h(t)dt. Exponentiating both sides, S(x) = exp

− x∫
0

h(t)dt


But S(x) = 1− F (x), Therefore 1− F (x) = exp

− x∫
0

h(t)dt

.
Re-arranging,

F (x) = 1− exp

− x∫
0

h(t)dt

 (2.10)

From stochastic approach, Chiang [8] derived the hazard function as follows:

Let µ(x)∆x + o(∆x) = the probability of dying between age x and x + ∆x and prob (X ≤ x) =
the probability of dying at or before age x = F (x)

Then

F (x+∆x) = the probability of dying at or before age x+∆x

= the probability of dying at or before age x or probability

of living upto age x and dying between age x and x+∆x

= F (x) + [1− F (x)][µ(x)∆x+ o(∆x)]
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which becomes F (x+∆x)− F (x) = [1− F (x)][µ(x)∆x+ o(∆x)]

Hence

lim
∆x→0

F (x+∆x)− F (x)

∆x
= lim

∆x→0

[1− F (x)][µ(x)∆x+ o(∆x)]

∆x
(2.11)

Since lim
∆x→0

o(∆x)

∆x
= 0, (2.12) reduces to

f(x) = [1− F (x)]µ(x) (2.12)

Re-arranging (2.12), we get µ(x) =
f(x)

1− F (x)
which can be written as

µ(x) =
y′

1− y
(2.13)

Re-writing (2.13) we get y′ = y(1− y)
µ(x)

y
which is (1.1) with g(x, y) =

µ(x)

y

In demography, the hazard function h(t) is called the force of mortality denoted by µ(t). This
implies that (2.13) becomes ∫

dy

(1− y)
=

x∫
0

µ(t)dt (2.14)

Solving (2.14), we get

F (x) = 1− exp

− x∫
0

µ(t)dt

 (2.15)

same result as (2.10).

3 Exponentiated Generator Approach

This method generates the exponentiated family of distributions. It involves adding extra parameters
to an existing distribution and can be applied to any generated family of distributions.

The pioneering work on the exponentiated method is given in Mudholkar and Srivastava [9] when
they developed the exponentiated Weibull distribution for modeling bathtub failure-rate data.

Let
G(x) = [F (x)]r , r > 0 (3.1)

where F (x) is the old/parent cdf and G(x) is the new cdf . Then G(x) is an exponentiated
distribution.

4 Distribution Functions Obtained

A summary of cdf ′s obtained from the five cases and exponentiated generator technique is given in
table 2.
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Table 2. Generated distributions based on Burr differential equation: y′ = y(1−y)g(x, y)

g(x), r(x), µ(t) F (x) [F (x)]r , r > 0 Support

Case I: g(x, y) =
g(x)

y(1 − y)

1 x xr 0 < x < 1
Standard Uniform (Burr
I)

Exponentiated Standard
Uniform (Burr I)

Case II: g(x, y) = g(x)

1
[
e−x + 1

]−1 [
e−x + 1

]−r
−∞ < x < ∞

Logistic Type I Generalized Logistic
(Burr II)

c

x

[
x−c + 1

]−1 [
x−c + 1

]−r
0 < x < ∞

Log-Logistic/Fisk Exponentiated Log-Logistic/Fisk
(Burr III)

[(c − x)x]−1

[(
c−x
x

) 1
c + 1

]−1 [(
c−x
x

) 1
c + 1

]−r

0 < x < c

Burr IV

sec2 x
[
ke− tan x + 1

]−1 [
ke− tan x + 1

]−r
−

π

2
< x <

π

2
Burr V

c cosh x
[
ke−c sinh x + 1

]−1 [
ke−c sinh x + 1

]−r
−∞ < x < ∞

Burr VI

2 2−1 [1 + tanh x] 2−r [1 + tanh x]r −∞ < x < ∞
Burr VII

Case III: g(x, y) =
g(x)

xy

ckxex(1+ex)k−1

c
[
(1+ex)k−1

]
+2

1 −
2

c
[
(1 + ex)k − 1

]
+ 2

{
1 − 2

c
[
(1+ex)k−1

]
+2

}r

−∞ < x < ∞

Burr IX Exponentiated Burr IX

2x2 1 − e−x2
[
1 − e−x2

]r
0 < x < ∞

Burr X

ckxc

1 + xc
1 − [1 + xc]−k

{
1 − [1 + xc]−k

}r
0 < x < ∞

Burr XII Exponentiated Burr XII

cx

1 − cx
cx [cx]r 0 < x <

1

c

cx 1 − e−cx
[
1 − e−cx

]r
0 < x < ∞

(c − x)−1 1 −
(

c − x

x

) 1
c

[
1 −

(
c − x

x

) 1
c

]r
c

2
< x < c

cx sec2 x 1 − e−c tan x
[
1 − e−c tan x

]r
−

π

2
< x <

π

2

α 1 −
[
1

x

]α {
1 −

[
1

x

]α}r

1 < x < ∞

Pareto (Type I) Exponentiated Pareto (Type I)

αx

1 + x
1 −

[
1

1 + x

]α {
1 −

[
1

1 + x

]α}r

0 < x < ∞

Pareto (Type II) Exponentiated Pareto (Type II)

61



Momanyi and Ottieno; JAMCS, 35(8): 55-64, 2020; Article no.JAMCS.62524

g(x), r(x), µ(t) F (x) [F (x)]r , r > 0 Support

βx +
αx

1 + x
1 −

e−βx

[1 + x]α

{
1 −

e−βx

[1 + x]α

}r

0 < x < ∞

Pareto (Type III) Exponentiated Pareto (Type III)

αx(x − µ)
1
β

−1

β[1 + (x − µ)
1
β ]

1 −
[
1 + (x − µ)

1
β

]−α
{
1 −

[
1 + (x − µ)

1
β

]−α
}r

µ < x < ∞

Pareto (Type IV) Exponentiated Pareto (Type IV)

α

(
x

β

)α
1 − e

−
(
x
β

)α [
1 − e

−
(
x
β

)α]r

0 < x < ∞

Weibull Exponentiated Weibull

x

β
1 − e

− x
β

[
1 − e

− x
β

]r
0 < x < ∞

Exponential Exponentiated Exponential

α + 2β log x 1 − e−α log x−β(log x)2
[
1 − e−α log x−β(log x)2

]r
1 < x < ∞

Benini Exponentiated Benini

Case IV: g(x, y) =
r(x)

(1 − y)

1

2 cosh x arctan ex

2

π
arctan e

x
[
2

π
arctan e

x
]r

−∞ < x < ∞

Burr VIII

1 − cos 2πx

x − 1
2π

sin 2πx
x −

1

2π
sin 2πx

[
x −

1

2π
sin 2πx

]r
0 < x < 1

Burr XI

αe−x

1 + e−x
[1 + e−x]−α [1 + e−x]−αr −∞ < x < ∞

Type I Generalized
Logistic (Burr II)

Exponentiated-Type I
Generalized Logistic

Case V: g(x, y) =

∫ x
0 µ(t)dt

y

α

β + t
1 −

(
1 + x

β

)−α
[
1 −

(
1 + x

β

)−α
]r

0 < x < ∞

Lomax Exponentiated Lomax

c 1 − e−cx
[
1 − e−cx

]r
0 < x < ∞

Exponential Exponentiated Exponential

cαtα−1 1 − e−cxα [
1 − e−cxα ]r

0 < x < ∞
Weibull Exponentiated Weibull

α + βt 1 − e
−αx− βx2

2

[
1 − e

−αx− βx2

2

]r

0 < x < ∞

Linear Exponential Exponentiated-Linear
Exponential

A log t 1 −
(

e

x

)Ax
[
1 −

(
e

x

)Ax
]r

p

1 + kt
1 − (1 + kx)

− p
k

[
1 − (1 + kx)

− p
k

]r
0 < x < ∞

1

ω − t

x

ω

[
x

ω

]r
0 < x < ω

ekt−d 1 − exp

{
− e−d

k

[
ekx − 1

]} (
1 − exp

{
− e−d

k

[
ekx − 1

]})r
0 < x < ∞

Gompertz Exponentiated Gompertz

A + ekt−d F (x) = 1 − exp

{
−Ax − e−d

k

[
ekx − 1

]}
0 < x < ∞

Gompertz-Makeham

[F (x)]r =

(
1 − exp

{
−Ax − e−d

k

[
ekx − 1

]})r

Exponentiated Gompertz-Makeham
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g(x), r(x), µ(t) F (x) [F (x)]r , r > 0 Support

A + Ht + ekt−d F (x) = 1 − exp

{
−Ax − Hx2

2
− e−d

k

[
ekx − 1

]}
0 < x < ∞

[F (x)]r =

(
1 − exp

{
−Ax − Hx2

2
− e−d

k

[
ekx − 1

]})r

A + ekt−d +
D

N − t
F (x) = 1 −

[
N

N−x

]−D
exp

{
−Ax − e−d

k

[
ekx − 1

]}
[F (x)]r =

(
1 −

[
N

N−x

]−D
exp

{
−Ax − e−d

k

[
ekx − 1

]})r

A + Bct + Mnt F (x) = 1 − exp
{
−Ax − B

log c
[cx − 1] − M

log n
[nx − 1]

}
0 < x < ∞

[F (x)]r =
(
1 − exp

{
−Ax − B

log c
[cx − 1] − M

log n
[nx − 1]

})r

a
√

t
+ b + ct

1
3 F (x) = 1 − exp

{
−2a

√
x − bx − 3

4
c

(
x

1
3

)4}
0 < x < ∞

[F (x)]r =

[
1 − exp

{
−2a

√
x − bx − 3

4
c

(
x

1
3

)4}]r
c + 2dt

1 − ct − dt2
F (x) = cx + dx2 −c −

√
c2 + 4d

2d
< x <

−c +
√

c2 + 4d

2d

[F (x)]r =
[
cx + dx2

]r

A + Bct

1 + Dct
F (x) = 1 −

 (1+cxD)
1
cx

1+D

− 1
D

exp
{
−B

D
x
}

[F (x)]r =

1 −

 (1+cxD)
1
cx

1+D

− 1
D

exp
{
−B

D
x
}

r

A + Bct

1 + Dct
+ Ec

t
F (x) = 1 −

 (1+cxD)
1
cx

1+D

− 1
D

exp
{
−B

D
x − E

log c
[cx − 1]

}

[F (x)]r =

1 −

 (1+cxD)
1
cx

1+D

− 1
D

exp
{
−B

D
x − E

log c
[cx − 1]

}
r

µ(t) = a1e
−b1t + a2e

−b2
2

(t−c)2
+ a3e

b3t

F (x) = 1 − exp


a1
b1

[
e−b1x − 1

]
+

a2

b2


e
−b2c2

2

ce
−b2(x2−2xc)

2 + (x − c)


c(x − c)

 −
a3

b3

[
e
b3x − 1

]


[F (x)]r =

1 − exp


a1
b1

[
e−b1x − 1

]
+

a2

b2


e
−b2c2

2

ce
−b2(x2−2xc)

2 + (x − c)


c(x − c)

 −
a3

b3

[
e
b3x − 1

]




r

0 < x < ∞

a1e
−b1t + a2 + a3e

b3t F (x) = 1 − exp
{

a1
b1

[
e−b1x − 1

]
− a2x − a3

b3

[
eb3x − 1

]}
0 < x < ∞

[F (x)]r =
(
1 − exp

{
a1
b1

[
e−b1x − 1

]
− a2x − a3

b3

[
eb3x − 1

]})r

µ(t) =

2a
t2

[
a−t
t

]
+ b

c

[
−e

− t
c + e

− t
d

]
[
a−t
t

]2
− b

[
e
− t

c − e
− t

d

]
F (x) = 1 −

([
a − x

x

]2
− b

[
e
− x

c − e
− x

d
])

[F (x)]r =

{
1 −

([
a − x

x

]2
− b

[
e
− x

c − e
− x

d
])}r
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5 Conclusions

a In the section (2) and subsections (2.1), (2.2), (2.3), (2.4), (2.5), we have highlighted and solved
the five cases for constructing distribution functions based on Burr differential equation.

b In the section (3), we have further examined the use of exponentiated generator approach to
construct distribution functions by adding an extra parameter r.

c In the section (4), 86 distribution functions have been introduced which is more than the 12
proposed by Burr [1]. Extensive study on reverse hazard functions is required as this will
facilitate other researchers to construct more distribution functions in future.
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