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Abstract 

 
In this article, we theoretically derived a system of partial differential models representing mass 

concentration and momentum of viscoelastic fluid flowing through a non-porous channel in dimensional 

form and were further reduced to a system of ordinary differential equations using the oscillatory 

perturbation equations. The perturbed ordinary differential equations were solved analytically using the 

direct method, and the numerical simulation was performed using Wolfram Mathematica, version 12, where 

the physical parameters such as Schmidt number, solutal Grashof number, retardation time, and the ratio of 

relaxation to retardation time parameters, oscillatory frequency parameter, and mass concentration 

parameter were varied at a fixed period of ten units. The investigation reveals that the viscoelastic fluid 

velocity decreases for an increase in Schmidt number and mass concentration reaction parameter, and the 

velocity increases for a change in Solutal Grashof number, retardation time parameter, and the relaxation 

to retardation ratio parameter. In addition, the volumetric flow rate decreases for the increasing values of 
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the Schmidt number and mass concentration reaction parameter; however, the flow rate increases for an 

increased value of the relaxation to retardation ratio. This study is important in understanding and proposing 

solutions to viscoelastic fluid flow challenges through a non-porous channel.  

 

 

Keywords: Mathematical modelling; mass concentration; viscoelastic fluid; flow and non-porous channel. 

 

Nomenclatures 
 

   : Dimensional velocity  

   : Dimensionless velocity  

   : Perturbed velocity  

   : Dimensional velocity  

  : Dimensionless distance variables  

   : Dimensional mass concentration 

   : Dimensionless mass concentration  

   : Perturbed mass concentration  

   : Mass Grashof number parameter  

   : Schmidt number parameter 

   : Dynamic viscosity of blood 

   : Kinematic viscosity parameter  

   : Ratio of relaxation to retardation parameter  

   : Retardation time parameter  

   : Rate of mass concentration reduction parameter  

   : Mass concentration reaction parameter  

   : Oscillatory frequency  

   : Dimensionless time 

 

1 Introduction 
 

Viscoelastic fluid is a unique type of fluid exhibits both elastic and viscous properties. It is complex and finds 

applications in various industries due to its unique rheological behavior, according to Galindo-Rosales et al. 

[1]. These fluids exhibit characteristics like turbulent drag reduction, elastic turbulence, and shear-thinning 

behavior, where viscosity changes significantly with shear rate. Plasma is the main component of blood and 

consists mostly of water, with proteins, ions, nutrients, and wastes mixed in. Red blood cells are responsible 

for carrying oxygen and carbon dioxide. Platelets are responsible for blood clotting. White blood cells are part 

of the immune system and function in immune response. According to Bunonyo et al. [2], cells and platelets 

make up about 45 percent of human blood, while plasma makes up the remaining 55 percent. There are several 

researchers who have studied the flow of blood through blood channels, and they are: Dhange et al. [3] used 

mathematical modelling to study the flow of blood in a stenosed artery with post-stenotic dilatation and a force 

field. The observed that the narrowing of an artery is caused by arteriosclerotic deposition or other aberrant 

tissue growth. As the growth spreads into the artery’s lumen, blood flow is impeded. Research was carried out 

by Sriram et al. [4] to study the haematocrit dispersion in asymmetrically bifurcating vascular network 

topology, including vessel branching. Jones et al. [5] formulated a mathematical model for pressure losses in 
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the haemodialysis graft vascular circuit. In this study, they developed a mathematical model of this circuit, 

and pressure losses were measured in an in vitro experimental apparatus and compared with losses predicted. 

Elhanafy et al. [6] investigated the haematocrit variation effect on blood flow in an arterial segment with 

variable stenosis degree. They presented a numerical simulation of blood flow in a three-dimensional 

axisymmetric segment with stenosis under steady conditions. Kumawat et al. (2021) performed mathematical 

analysis of two-phase blood flow through a stenosed curved artery with haematocrit and temperature-

dependent viscosity. A two-phase blood flow model is considered to analyse the fluid flow and heat transfer 

in a curved tube with time-variant stenosis. Secomb et al. (2008) investigated the theoretical models for 

regulation of blood flow. The study showed how blood flow rate in the normal microcirculation is regulated 

to meet the metabolic demands of the tissues, which vary widely with position and with time, but is relatively 

unaffected by changes of arterial pressure over a considerable range. Kumar et al. [7] investigated a 

mathematical model for blood flow through a narrow catheterised artery. The model was investigated to 

analyse the effect of the stenosis height, shape, catheter radius, and slip velocity on axial velocity, shear stress, 

and effective viscosity. Onitilo et al. [8] investigated the effects of haematocrit on blood flow through a 

stenosed human carotid artery; it was discovered that the resistance increases as the level of haematocrit 

increases. Also, the wall shear stress decreases with the increase in the haematocrit level of the red blood cells. 

Branigan et al. [9] researched the mean arterial pressure nonlinearity in an elastic circulatory system subjected 

to different haematocrits. The model was used to evaluate the equilibrium intraluminal average blood pressure 

in an elastic, auto-regulated arteriole-like blood vessel. 

 

Srivastava et al. [10] formulated a theoretical model for blood flow in small vessels. A quantitative comparison 

shows that the model suitability represents blood flow at haematocrit (less than or equal to 40%) and in vessels 

up to 70 micrometres in diameter. Farina et al. [11] formulated a mathematical model for some aspects of 

blood microcirculation. Blood flow in vessels whose size is comparable to the RBC dimensions has very little 

to do with traditional fluid dynamics. 

 

Takahashi et al. (2009) derived a mathematical model for the distribution of haemodynamic parameters in the 

human retinal microvascular network. Using this model, we evaluated haemodynamic parameters; including 

blood pressure, blood flow, and blood velocity, shears rate, and shear stress, within the retinal microcirculatory 

network as a function of vessel diameter. Pralhad et al. [12] carried out modelling of arterial stenosis and its 

applications to blood diseases. The results on shear stress and on resistance to flow for different suspensions 

have been shown. It was observed that the value of shear stress increases with the increase of stenosis height 

and decreases with the increase of couple stress parameters. Kumar et al. [13] carried out performance 

modelling and study of blood flow in vessels with porous effects. The study helped to understand the biofluid 

dynamics and flow of blood in the presence of porous effects. Ali et al. [14] researched cardiovascular 

dynamics through mathematical modelling of arterial blood flow. The mathematical model was solved by 

adopting a finite volume-based numerical technique. Kocsis et al. [15] formulated a mathematical model for 

the estimation of haemodynamic and oxygenation variables by tissue spectroscopy. In the study, by integrating 

and extending these models, they developed a general mathematical model for the estimation of 

haemodynamic and oxygenation variables by tissue spectroscopy. Roy et al. [16] modelled on blood flow in 

an artery with an unsteady overlapping stenosis: mathematical and computer modeling. The model was 

developed to determine the leading-order flow velocity, pressure gradient, impedance, and wall shear stress at 

the throats and at the critical height of the stenosis. 

 

Khalid et al. [17] researched a review of mathematical modelling of blood flow in the human circulatory 

system. The study was focused on the derivation of cardiovascular system equations with the help of continuity 

equations and the Land Navier-Stokes equation in order to develop a general equation of normal blood flow 

and an extended normal blood pressure equation. Caiazzo et al. [18] carried out a mathematical modelling of 

blood flow in the cardiovascular system. The formulation of the mathematical modelling discussed the 

simulation and interplay between modelling, imaging, and experiments in order to improve clinical diagnosis 

and treatment. 

 

Johnson et al. [19] researched the application of 1D blood flow models of the human arterial network to 

differential pressure predictions. From the study, a new use for a one-dimensional blood flow model has been 
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presented based on an analysis of patterns in the differences seen between pressure profiles obtained under 

normal (base case) and diseased (test case) conditions. 

 

Misra et al. [20] investigated the peristaltic transport of blood in small vessels. In the study, he used the 

available experimental results on human blood and plotted a graph of square root of strain rate against square 

root of shear stress, which showed remarkable linearity with a nonzero value for the intercept on the stress 

axis. Gabryś et al. [21] researched blood flow simulation through fractal models of the circulatory system. The 

study shows that the model of the blood vessel system is a certain geometrical simplification, but it suffices 

for acceptable blood flow analysis. Tawhai et al. [22] formulated a model for pulmonary blood flow. The study 

focusses on computational models that have been developed to study the different mechanisms contributing 

to regional perfusion of the lung. Tsubota et al. [23] carried out a simulation study on effects of haematocrit 

on blood flow properties using the particle method. As a result, it was shown that at higher haematocrit, RBCs 

were less deformed into a parachute shape during their downstream motion, indicating that mechanical 

interaction between RBCs restricted the RBC deformation. 

 

Kehrer et al. [24] formulated the development of cerebral blood flow volume in preterm neonates during the 

first two weeks of life. The study helped to investigate the postnatal development of cerebral perfusion in 

preterm neonates with normal brains by serial measurements during the first 14 days of life. Haddy et al. [25] 

researched the role of potassium in regulating blood flow and blood pressure. The study revealed that, when 

blood is infused into the arterial supply of a vascular bed, blood flow increases. Kershen et al. (2002) modelled 

on blood flow, pressure, and compliance in the male human bladder. The study shows that human bladder 

blood flow tends to increase with increasing volume and pressure and depends largely on local regulation. 

Liao et al. (2013) researched skin blood flow dynamics and its role in pressure ulcers. It shows that blood flow 

over large areas of skin can be measured using laser Doppler imaging, and rapid dynamic changes in flow over 

a small area can be measured using laser Doppler flowmetry. Goodwill et al. [26] formulated a regulation of 

coronary blood flow. It regulates with emphasis on functional anatomy and the interplay between the physical 

and biological determinants of myocardial oxygen delivery. The flow of viscoelastic fluids through porous 

media has attracted the attention of a large number of scholars owing to their application in the fields of 

extraction of energy from geothermal regions and in the flow of oil through porous rocks. Many common 

liquids, such as certain paints, polymer solutions, some organic liquids, and many new materials of industrial 

importance, exhibit both viscous and elastic properties. Fluids with such characteristics are called viscoelastic 

fluids. 

 

The aim of this research is to investigate the impact of mass concentration on the flow of viscoelastic fluid 

through a non-porous channel. Proffer an analytical solution as an expression for the mass concentration and 

the velocity profile, the volumetric flow rate, and the rate of mass transfer through the channel, and present 

the results graphically. 

 

2 Mathematical Formulation and Method of Solution 
 

Before formulating mathematical models that represent mass concentration and its effect on viscoelastic fluid 

flowing through a non-porous channel, let’s consider the following assumptions: 

 

2.1 Mathematical formulation 
 

In formulating mathematical models representing the situation under investigation, let’s consider the following 

assumptions: 

 

1. The fluid is considered to be viscoelastic due to the formed elements composition and insoluble and 

Tran’s fats in it. 

2. There is an impact of mass in mass concentration in the fluid, thereby causing the fluid to exhibits 

both elastic and viscous characteristics. 

3. The flow is through a non-porous channel  

4. The flow obeys the principle of no-slip  
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5. The impact of magnetic field is neglected and the flow is towards the axial direction 

6. There is relaxation and retardation time effect on the flow momentum 

7. The rate of mass reaction reduction affecting the both the mass concentration and fluid velocity 

profiles 

 

In view of the above mentioned assumptions, we present the diagram showing the flow of viscoelastic fluid 

through a non-porous channel without the impact of magnetic field and it obeys the no-slip boundary condition.   

 

 
 

Fig. 1. Diagram showing the flow of viscoelastic fluid through a non-porous channel 

 

Following the aforementioned assumptions and Bunonyo et al. (2020), Butter et al. (2024) we present the 

derived models governing the mass concentration and viscoelastic fluid flow with the corresponding boundary 

conditions as follows: 

 

2.2 Method of solution 
 

In this section, we are going to present the models governing the mass concentration and the effect on the 

viscoelastic fluid flowing through the non-porous channel.  

 

2.2.1 Momentum equation with the impact of mass concentration   

 

In order to understand the role of relaxation and retardation time fact, we modified the governing models from 

previous research by Bunonyo et al’ [27], hence the new model governing the momentum of the viscoelastic 

fluid flowing through the non-porous channel is: 

 

             (1) 

  

2.2.2 Mass concentration equation 

 

The mass concentration equation is derived from Bunonyo et al. (2021) 

 

               (2) 

 

The corresponding boundary conditions are as: 
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               (3) 
 

2.2.3 Dimensional parameters  
 

In order to make the governing equations dimensionless, we shall introduce the following scaling quantities 

derived from Bunonyo et al. (2021), they are: 
 

           (4) 
 

The governing equations (1)-(4) are reduced using equation (4), the dimensionless governing equations are as 

follows: 
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3 Analytical Solution 
 

We consider that the flow is being generated by an oscillatory condition; hence the dimensionless equations 

can be represented as: 
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Substituting equation (8) into the dimensionless governing equations (5)-(7), they are reduced to: 

 

             (9) 

 

              (10) 

 

 

Let , and  so that equations (9) and (10)  

reduces to: 

 

              (11) 

 

               (12) 

 

The corresponding boundary conditions are as: 

 

             (13) 

 

Solving equation (12), we have: 
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Solving equation (14) using equation (13), we have: 

 

              (15) 

 

Substituting equations (15) into equation (8), this is: 
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Let , so that equation (16) becomes: 

              (17) 

 

Solving equation (17), we have: 

 

                  (18) 

 

The particular part of equation (17) is 

 

                                                                                                  (19) 

 

                                            (20) 

 

Simplifying equation (20) using the boundary conditions in equation (13), we have: 

 

                                       (21) 

 

Substituting equations (21) and (15) into equation (8), we have: 

 

                                                                                                                         (22) 

 

                (23) 

 

3.1 The volumetric flow rate within the channel 

 
In order to calculate the flow rate of the viscoelastic fluid in the channel, we shall state the flow rate  

mathematically as:  

 

                              (24) 

 

Substituting the equation (21) into equation (24) and integrate, we have: 
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Simplifying equation (25), we have: 

 

        (26) 

 

Simplifying equation (26), we have: 

 

         (27) 

 

3.2 The shear stress with the channel   
 

                (28) 

 

Simplifying equation (28) using equation (21), we have: 

 

         (29) 

 

4 Results and Discussion 
 

In this section we shall be presenting the graphical results obtained from the simulation in the preceding 
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et al. [27], and the graphical results are presented as: 
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to zero when the boundary layer attains its maximum, while the other pertinent parameters and their values 
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( )

( )
( ) ( )36 6

1 32 2 2 2

1 1 3 1 3 3 1 0

1 1
y h

y

cosh h
Q sinh y sinh y

cosh h

 
 

      

=

=

    
= +     − −    

( )

( )
( ) ( )36 6

1 32 2 2 2

1 1 3 1 3 3 1

1 1cosh h
Q sinh h sinh h

cosh h

 
 

      

   
= +   

− −   

0

h

y h

w

y


=


=



( )

( )
( ) ( )31 6 3 6

1 32 2 2 2

1 3 1 3 1

h

cosh h
sinh h sinh h

cosh h

   
  

    

   
= +   

− −   

3 1
0.3, 15, 3, 10, 10Rd Gc t = = = = =

3
0.3Rd =



 
 
 

Bunonyo and Dagana; Asian J. Pure Appl. Math., vol. 6, no. 1, pp. 253-270, 2024; Article no.AJPAM.1732 

 

 

 

262 
 
 

the velocity continue to decreases as the mass reaction values increases, and the other pertinent parameters 

and their values remains at . 

   

 
 

Fig. 2. Plot showing the impact of Schmidt number on the velocity of viscoelastic fluid through a non-

porous channel 

 

 
 

Fig. 3. Plot showing the impact of mass concentration on the velocity of viscoelastic fluid through a 

non-porous channel 
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Fig. 4. Plot showing the impact of solutal Grashof number on the velocity of viscoelastic fluid through 

a non-porous channel 

 

 
 

Fig. 5. Plot showing the impact of retardation time on the velocity of viscoelastic fluid through a non-

porous channel 
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Fig. 6. Plot showing the impact of relaxation to retardation ratio on the velocity of viscoelastic fluid 

through a non-porous channel 

 

 
 

Fig. 7. Plot showing the impact of Schmidt number on flow rate against the mass Grashof number 
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Fig. 8. Plot showing the impact of mass Grashof number on flow rate against the Schmidt number 

 

 
 

Fig. 9. Plot showing the impact of mass reduction on flow rate against retardation parameter 

 



 
 
 

Bunonyo and Dagana; Asian J. Pure Appl. Math., vol. 6, no. 1, pp. 253-270, 2024; Article no.AJPAM.1732 

 

 

 

266 
 
 

 
 

Fig. 10. Plot showing the impact of Schmidt number on flow rate against relaxation to retardation 

ratio 

 

 
 

Fig. 11. Plot showing the impact of relaxation to retardation ratio on the flow rate against the mass 

Grashof number 

 

Fig. 4 illustrate the impact of Schmidt number on the velocity of non-viscous viscoelastic fluid, and the figure 

is of the view that an increase in Schmidt number decreases the velocity from the maximum velocity of 
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414.409 to zero when the boundary layer attains its maximum, while the other pertinent parameters and their 

values are . Fig. 5 showing the impact of retardation time on the 

velocity of non-viscous viscoelastic fluid, where it is seen that the velocity of the fluid increases for different 

values of the retardation time from . However, we noticed that the fluid velocity attained 

different maximum at the centre of the channel before decreasing to zero at maximum boundary layer 

thickness, and the other pertinent parameters and their values remains at

. 

 

Fig. 6 illustrate the impact of relaxation to retardation ratio on the velocity of the non-viscous viscoelastic 

fluid. The result indicates that the relaxation to retardation was minimum at 16.8922 units but increases 

gradually to 414.409 units for the increasing values of the relaxation to retardation ration. Fig. 7 illustrates the 

impact of Schmidt number on the flow rate against the solutal Grashof number. And the result showed that the 

flow rate decreases for an increase in Schmidt number. The impact of the solutal Grashof number on the 

volumetric flow rate was investigated and the result shown in Fig. 8. The plot showed that the flow rate 

increases against the Schmidt number for an increasing value of the solutal Grashof number

, while the other pertinent parameters remained the same

. The flow rate against retardation parameter was investigated and 

result shown in Fig. 9 and the figure depicts that the flow rate decreases against the retardation parameter for 

an increasing values of the mass reaction parameter.  

 

Fig. 10 depicts a scenario where the flow rate decreases against the relaxation to retardation ratio increase 

while every other parameter quantities remain the same.  

 

Fig. 11 illustrated that the flow rate increases against the solutal Grashof number as the impact of the relaxation 

to retardation ratio from on the flow increases. 

 

5 Conclusion  
 

The numerical simulation was carried out to investigate the impact of the pertinent values for the different 

parameters on the viscoelastic fluid and flow rate of the viscoelastic fluid through the non-porous channel after 

solving for the flow profile analytically, we can conclude as follows: 

 

• The velocity profile of the viscoelastic fluid decreases for an increase in Schmidt number 

• The velocity profile of the viscoelastic fluid decreases for different values of mass reaction parameter 

• The velocity profile of the viscoelastic fluid increases for different values of the solutal Grashof 

number 

• The velocity profile viscoelastic fluid increases for different values of the retardation time parameter 

• The velocity profile viscoelastic fluid increases for different values of the relaxation to retardation 

ratio parameter 

• The flow rate decreases for different values of the Schmidt number 

• We noticed an increase in volumetric flow rate for different values of the solutal Grashof number  

• We noticed a flow rate decreases for different values of the mass reduction parameter  

• The volumetric flow rate was observed to have decreased for different values of the Schmidt number 

• The flow rate increases for different values of relaxation to retardation ratio. 

 

6 Future Work 
 

This research is part of an ongoing study to investigate the effect of mass concentration and heat absorption 

on the non-viscous viscoelastic fluid flowing through porous or non-porous blood vessels. 

3 1
0.3, 15, 3, 10, 10Rd Gc t = = = = =

1,3,5,7,9 =

1
2, 15, 3, 10, 10Sc Gc t = = = = =

5,10,15, 20, 25Gc =

3 1
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1
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