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Abstract 
Pattern matching method is one of the classic classifications of existing online 
portfolio selection strategies. This article aims to study the key aspects of this 
method—measurement of similarity and selection of similarity sets, and 
proposes a Portfolio Selection Method based on Pattern Matching with Dual 
Information of Direction and Distance (PMDI). By studying different com-
bination methods of indicators such as Euclidean distance, Chebyshev dis-
tance, and correlation coefficient, important information such as direction 
and distance in stock historical price information is extracted, thereby filter-
ing out the similarity set required for pattern matching based investment 
portfolio selection algorithms. A large number of experiments conducted on 
two datasets of real stock markets have shown that PMDI outperforms other 
algorithms in balancing income and risk. Therefore, it is suitable for the fi-
nancial environment in the real world. 
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1. Introduction 

In the context of global financial markets, how to allocate limited capital rea-
sonably and maximize returns has always been a focus of attention for investors 
and researchers. The complexity and high interdependence of financial markets 
make it difficult to predict market behavior, while factors such as financial in-
novation, trading methods, and market regulation also increase market uncer-
tainty. Therefore, how to complete the allocation of capital in such a complex 
system has become a global challenge. 
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Portfolio Selection (PS) is a core task in the financial field, which involves al-
locating capital within a given set of assets to achieve specific investment goals. 
The origin of this problem can be traced back to Markowitz’s mean variance 
theory proposed in 1952 [1], which is based on mean variance analysis and se-
lects the optimal investment portfolio by balancing expected returns and risks. 
However, with the continuous changes in the market and the diversification of 
investor demands, traditional portfolio selection methods have gradually ex-
posed their limitations. 

In recent years, with the rapid development of artificial intelligence and ma-
chine learning technologies, these technologies have provided new ideas and 
methods for solving portfolio selection problems. Machine learning algorithms 
have the ability to analyze historical data and identify patterns and trends within 
it, which enables them to effectively predict future market behavior. By learning 
and processing a large amount of historical data, machine learning models can 
capture complex relationships between data and make accurate predictions based 
on them. This process not only improves the accuracy of predictions, but also 
provides valuable reference information for investors and decision-makers, help-
ing them make wiser decisions. 

By combining machine learning algorithms with portfolio theory, researchers 
have proposed a series of high-performance online portfolio selection strategies 
[2] [3]. The difference between online portfolio selection and traditional portfo-
lio selection is that it considers the dynamics and real-time nature of the market. 
In an online environment, investors need to continuously adjust their invest-
ment portfolios in a constantly changing market to adapt to market changes and 
maximize returns. This requires investors to have the ability to analyze real-time 
data and make quick decisions. In order to solve the problem of online portfolio 
selection, researchers use various machine learning algorithms to process large 
amounts of real-time data and make fast and accurate investment decisions. 
Through the application of these algorithms, investors can maintain sharp insight 
in the constantly changing market environment, adjust investment strategies in a 
timely manner, and thus obtain better investment returns. 

In summary, online portfolio selection is a challenging and promising research 
field. By combining artificial intelligence and machine learning technologies, we 
can develop more intelligent and effective investment strategies to help investors 
achieve better returns in complex and ever-changing financial markets. Under 
the previous research, the methods to solve the portfolio selection problem are 
mainly divided into following the winner, following the loser, pattern matching 
and so on. In this study, we use one of the highly intuitive methods: pattern 
matching. In short, pattern matching is to find the most similar window in his-
torical stock data, predict the stock price of the latest trading day, and optimize 
the portfolio. Therefore, this paper makes efforts on the selection method of 
similar sets and proposes a Portfolio Selection Method based on Pattern Match-
ing with Dual Information of Direction and Distance (PMDI). 

The remainder of the paper is structured as follows. Section 2 presents some 
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preliminary work. Section 3 mainly introduces several online portfolio selection 
strategies based on pattern matching. Section 4 introduces the basic idea and al-
gorithm of PMDI. Section 5 conducts experiments to evaluate the algorithm. Fi-
nally, Section 6 concludes. 

2. Preliminaries 

Suppose there is a financial market with M assets, over which we will invest n 
trading periods. The non-negative price relative vectors 1, , M

n +∈x x�   de-
notes the changes of asset prices for n trading periods, where M

+  denotes the 
M-dimensional non-negative real space. The tth vector is  

( ) ( ) ( )( ),1 ,2 ,, , ,t t t t Mx x x=x � ; the ith component of it ( ),t ix  can be expressed as: 

( )
( )

( )

,
,

, 1

t i
t i

t i

P
x

P −

= , that is, the ratio of the ith asset’s closing price of period t to that of 

period 1t − . Thus, there are ( ) ( )( ),1 ,, ,t t t MP P=P � . Notably, window size w is 

given in some algorithms; at that time, the market window for the tth trading pe-
riod is defined as ( )1

1, ,t
t w t w t
−
− − −=X x x� . 

Meanwhile, the portfolio at the beginning of period t can be expressed as 

t M∈∆b , where M∆  denotes the M-dimensional simplex. Assuming self-financed 
and non-short-selling, the components of tb  meet the conditions of ( ), 0t ib ≥  
and ( ),1 1M

t ii b
=

=∑ . 
Hence, the cumulative wealth tS  at the end of the tth trading period is updated 

by an increasing factor t t
Τb x : that is: ( )1t t t t

Τ
−= ⋅S S b x . For convenience, suppose 

the initial wealth is 0S  and 0 $1=S ; thus, the total wealth eventually achieved is: 

 ( ) ( )0
1 1

.
n n

n t t t t
t t

Τ Τ

= =

= =∏ ∏S S b x b x  (1) 

Finally, the online portfolio selection problem has become a sequential deci-
sion problem through previous setting and modeling, aiming to maximize t t

Τb x  
in each period to maximize the final accumulated wealth. 

Notably, the above mathematical model is based on the following general as-
sumptions: 
• No transaction cost; 
• Liquid market: In this market, assets are easily convertible without apparent 

price fluctuations, and the decline in the value of assets is minimal. There are 
always both buyers and sellers on the market. They can buy and sell any 
quantity of assets at the trading period’s closing price; 

• No market impact cost. 
The method based on pattern matching entails comparing the price relation-

ships of the previous windows to yield a similarity set C: 

 ( ) ( ) ( ){ }1
1 1, 1: ,t t i

t w i wC w w i t G G −
− + −= < < + =X X X  (2) 

where G is a corresponding discretization function. 
Given a similar set ( )1

tC X , there are price relative vectors ( )1, t
i i C∈x X , and 
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the logarithmic optimal utility function is the weighted average logarithmic re-
turn of its probability iP : 

 ( )( ) ( )
( )1

1, log log
t

t
L i i

i C

U C E P
∈

= ⋅ = ⋅∑
X

b X b x b x  (3) 

Therefore, the innovation points of existing pattern-matching-based methods 
focus primarily on modifying the similarity set’s measurement method to im-
prove performance and mathematical interpretation. For example, according to 
the convention, we generally choose the uniform portfolio if the similarity set is 
empty in the following algorithms. 

3. Pattern-Matching Based Approaches 

This section introduces benchmark strategy (which will be used for comparative 
experiments in subsequent sections) and pattern-matching strategy. 

3.1. Benchmarks 

• BAH. Buy-and-Hold strategy, in which assets are bought and held until the 
end of the period with the initial weight b , and the warehouse is not ad-
justed during the trading period; 

• Market. A uniform BAH strategy with initial weight 
1 1 1, , ,
M M M

 =  
 

b � ; 

• Best-stock. It is also a BAH strategy, a hindsight strategy that invests all the 
money into assets that perform best in hindsight; 

• CRP. Constant Rebalanced Portfolios (CRP) maintain the portfolio’s initial 
weight through constant warehouse adjustments, as the value of each asset 
fluctuates over time; 

• UCRP. Uniform Constant Rebalanced Portfolios (UCRP) rebalance to the 
same uniform weight in each trading period; 

• BCRP. It is also a CRP strategy, a hindsight strategy with potfolio ∗b  to 
maximize the final wealth. 

3.2. Method Based on Pattern Matching 
3.2.1. BK 
Györf et al. proposed Nonparametric kernel-based log-optimal strategy (BK) [4] 
in 2006, which combines kernel-based sample selection with a log-optimal utility 
function. This strategy obtains a similar pair of market windows by calculating 
the L2 norm, also known as the Euclidean distance: 

 ( ) 1
1 1, 1: ,t t i

K t w i w
cC w w i t −

− + −
 = < < + − ≤ 
 

X X X
�

 (4) 

where c and �  are the threshold parameters used to control the number of sim-
ilar samples. 

3.2.2. BNN 
Györf et al. proposed Nonparametric nearest neighbor-based empirical portfolio 
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selection strategy (BNN) [5] in 2008, which measures the similarity of two market 
windows using the �  nearest neighbor [6] in terms of Euclidean distance: 

 ( ) { }1
1 1, 1: is among the NNs of ,t i t

N i w t wC w w i t −
− − += < < +X X X�  (5) 

where �  is a threshold parameter. 

3.2.3. CORN 
Li et al. proposed Correlation-driven Nonparametric Learning Approach for 
Portfolio Selection [7] in 2011, which uses the correlation coefficient to measure 
the similarity between two market windows: 

 ( ) ( )
( ) ( )

1
1

1 1
1

,
, 1: ,

i t
i w t wt

C i t
i w t w

cov
C w w i t

std std
ρ

−
− − +

−
− − +

  = < < + ≥ 
  

X X
X

X X
 (6) 

where ρ  is a correlation coefficient threshold. 
Generally, CORN involves two steps. The first is defining experts  
( ){ }, : 1, 1 1w wε ρ ρ≥ − ≤ ≤ , where w is the window size and ρ  is the correla-

tion coefficient threshold. The duty of each expert is to identify comparable his-
torical price relationships and learn how to construct an optimal portfolio based 
on these comparable historical price relationships. The second step combines the 
expert-calculated portfolios to create the final portfolio effectively. The final 
portfolio for the tth trading day can be calculated as follows: 

 
( ) ( ) ( )

( ) ( )

1
,

1
,

, , ,
,

, ,

t t
w

t
t

w

q w s w w

q w s w
ρ

ρ

ρ ρ ρ

ρ ρ

−

−

=
∑

∑

b
b  (7) 

where ( )1 ,ts w ρ−  is the historical performance of each expert, ( ),q w ρ  is a 
probability distribution function, and ( ),t w ρb  is the portfolio output by each 
expert ( ),wε ρ . 

In addition, they present CORN-U and CORN-K variants. The CORN-U al-

gorithm treats ( ),q w ρ  as a uniform distribution; that is, ( ) 1,q w
W

ρ = , where 

W is the maximum number of windows that combine all experts uniformly. The 

second algorithm, CORN-K, assigns a uniform distribution of ( ) 1,q w
K

ρ =  to 

the set of top-K best experts, while the weights of the remaining experts are set 
to 0. 

4. A Portfolio Selection Method Based on Pattern Matching 
with Dual Information of Direction and Distance 

When investors make investments, it is difficult to invest in thousands of stocks 
at once. Usually, they need to choose a few or dozens of stocks (risk assets) from 
thousands of stocks and invest proportionally. Therefore, the key to portfolio 
problems lies in how to scientifically and proportionally allocate investment 
funds to multiple assets, in order to achieve maximum returns and minimum 
risks. In this chapter, we propose a new strategy that belongs to the pattern 
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matching type of investment portfolio selection method. By finding a series of 
time periods with w as the cycle and the most similar to the recent w period 
stock price changes on each trading day, we obtain a similarity set of stocks, ap-
ply optimization algorithms to it, obtain the required investment portfolio for 
the next trading day, and extract effective information such as direction and dis-
tance from the historical stock prices. This strategy is named: A Portfolio Selec-
tion Method based on Pattern Matching with Dual Information of Direction and 
Distance (PMDI). 

4.1. Basic Idea 

Early non-parametric learning methods, such as BK and BNN, essentially used 
Euclidean distance to measure the similarity between current and historical 
market windows. However, the main drawback of using Euclidean distance is 
that it does not take into account the direction information of market window 
movement, which may include some useless or harmful relative prices. There-
fore, CORN uses the Pearson product moment correlation coefficient to meas-
ure it. In fact, the Pearson correlation coefficient is the cosine value of the vector 
angle between two standardized sets of data, mainly used to measure the direc-
tion of information between the data. 

However, the CORN strategy is not perfect. The historical similarity set de-
fined by it covers all market vectors whose correlation coefficient with the cur-
rent market vector is not lower than the preset threshold c. If the threshold value 
c is improperly selected, whether it is too high or too low, it may cause those 
vectors that are significantly different from the current market vector to be 
wrongly included in the historical similar set, thus greatly reducing the effec-
tiveness of the corn strategy. 

In order to further optimize the previous algorithm, PMDI recommends a 
more complex selection of similar sets to achieve better results. Therefore, this 
paper studies the Euclidean distance, Chebyshev Distance, Correlation Coeffi-
cient and other distance measurement methods as well as K-Nearest Neighbors 
(KNN) algorithm [6]: 

1) Euclidean Distance 
Euclidean distance is a widely used and easy to understand distance calcula-

tion method. Firstly, assuming the existence of two n-dimensional variables 
( )1, , nX x x= �  and ( )1, , nY y y= � , the Euclidean distance can be expressed 

as follows: 

 2
1

.
n

M i i
i

D x y
=

= −∑  (8) 

In an investment portfolio, Euclidean distance is sensitive to changes in each 
stock because it calculates linear distance, so small changes in each dimension 
will affect the final distance. If the correlation between stock prices is high, using 
Euclidean distance may be more appropriate. 

In reality, changes in stock prices are both related to the overall market situa-
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tion in the financial market (such as the impact of the epidemic on the entire fi-
nancial market). Therefore, when doing similarity combinations, we need to take 
into account the Euclidean distance. 

2) Chebyshev Distance 
The Chebyshev distance between two points ( )1 1,A x y  and ( )2 2,B x y  in a 

two-dimensional plane: 

 ( )2 1 2 1max , .ABD x x y y= − −  (9) 

So, the Chebyshev distance between two n-dimensional vectors 
( )1, , nX x x= �  and ( )1, , nY y y= �  is: 

 3 max ,M i ii
D x y= −  (10) 

Specifically, Chebyshev distance, also known as chessboard distance, measures 
the maximum numerical difference between two points in various coordinate 
dimensions. 

In investment portfolios, paying attention to the Chebyshev distance between 
relative price vectors at different time points can help investors understand the 
changes in stock prices across various dimensions. If the Chebyshev distance is 
large, it indicates that the stock price of a certain stock fluctuates greatly in the 
relative price vector, which may indicate that the stock has significant risks or 
opportunities. On the contrary, if the Chebyshev distance is small, it indicates 
that the price changes of each stock are relatively stable. 

3) Correlation Coefficient 
Pearson correlation coefficient is a statistical indicator used to measure the 

degree of linear correlation between two samples. Its value range is [ ]1,1− , 
where −1 represents complete negative correlation, 0 represents uncorrelated, 
and 1 represents complete positive correlation. The Pearson correlation coeffi-
cient calculation formula for samples X and Y is as follows: 

 
( ) ( )( )

( ) ( ) ( ) ( )2 2 2 2
,XY

E XY E X Y
P

E X E X E Y E Y

−
=

− ⋅ −
 (11) 

where ( )E X  represents the expected value of variable X, and the others represent 
the same. 

In an investment portfolio, the Pearson correlation coefficient measures the 
degree of linear dependence between two relative price vectors. 

If the Pearson correlation coefficient is close to 1, it indicates a strong positive 
linear relationship between the price vectors at two time points. That is, as the 
price vector at one time point increases, the price vector at the other time point 
also tends to increase. If the Pearson correlation coefficient is close to −1, it in-
dicates a strong negative linear relationship between the price vectors at two 
time points, that is, as the price vector at one time point increases, the price vec-
tor at the other time point tends to decrease. If the Pearson correlation coeffi-
cient is close to 0, it indicates that there is no significant linear relationship be-
tween the price vectors at two time points. 
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Therefore, when making similarity combinations, we will also consider the 
Pearson correlation coefficient, and we are more inclined to choose relative price 
vectors with positive Pearson correlation coefficients. 

4) K-Nearest Neighbors Algorithm 
Strictly speaking, KNN is not a measure of distance, but as a classification al-

gorithm in machine learning, it is very suitable for selecting similar sets in pat-
tern matching. 

Its principle is that when it is necessary to predict the category of a new sam-
ple, the algorithm will search for the K nearest sample points in the training da-
taset to the new sample, and determine the category of the new sample based on 
these K nearest neighbor categories. The “K” here is a key parameter that deter-
mines the number of neighboring samples participating in decision-making. In 
the KNN algorithm, Euclidean distance or Manhattan distance are usually used 
as distance metrics to calculate the similarity or distance between sample points. 

The following Figure 1 is a very clear explanation: assuming that the small 
dashed circle and the large dashed circle in the figure represent K = 3 and K = 5, 
respectively, the red point in the center of the figure is the point we want to pre-
dict. So the KNN algorithm will find the three closest points to it and see which 
category has more. When K = 3, there are 2 blue crosses and 1 green star around 
the predicted point, and the predicted point should belong to the “blue cross” 
category; When K = 9, there are 4 blue crosses and 5 green stars around the pre-
dicted point, so the predicted point belongs to the “green star” category. 

In fact, when using this algorithm for classification in class domains with 
small sample sizes, it is easy to generate misclassification. From the diagram, it 
can also be seen that the above figure did not provide a good classification result 
for the predicted points. On the contrary, this algorithm is more suitable for au-
tomatic classification of class domains with larger sample sizes, and is therefore 
very suitable as a classification method for pattern matching in portfolio selec-
tion, used to process a large amount of historical stock data. 

In pattern matching, assuming we have a series of historical relative price  
 

 
Figure 1. KNN algorithm. 
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vectors, we can use the KNN algorithm to predict the categories or trends of fu-
ture price vectors. In this process, the KNN distance refers to the distance be-
tween the current price vector and the K nearest neighbor points in the historical 
dataset. If the current price vector is very close to the price vector of a certain 
period in history (i.e., the KNN distance is small), it may indicate that the mar-
ket is repeating past behavior patterns, so trend analysis can be conducted based 
on this. 

Based on the above analysis, this article ultimately chooses to combine various 
ranging methods in different ways to form a historical similarity set with the 
highest similarity in historical moments. 

In this algorithm, we mainly use the Correlation Coefficient and Chebyshev 
Distance as the distance measures. First, we filter out the historical stock prices 
that are close to the direction information provided in the current trading period 
and the distance information between individual stocks. Then, we use the KNN 
algorithm in terms of Euclidean distance as the measure to filter the similar sets 
twice, so as to extract the distance information, direction information and the 
distance information between individual stocks in the historical stock prices. 

First, at the beginning of the T trading day, the parameter combination 
( ), ,W m ρ  is used to determine a relatively large similar set 1C , which meets 
the Chebyshev Distance limit or the Correlation Coefficient limit 1i

i w
−
−X  will be 

selected into the similar set: 

 
( )

( ) ( )
1 1

1 1
1 1 1

,
1: or

i t
i w t wt i

t w i w i t
i w t w

cov
C w i t m

std std
ρ

− −
− −− −

− − − −∞
− −

  = < < − − ≤ ≥ 
  

X X
X X

X X
 (12) 

where w is the market window size, 0m ≥  refers to the Chebyshev Distance 
threshold, 1 1ρ− ≤ ≤  is a parameter of Correlation Coefficient threshold, 

( ),cov A B  denotes the covariance between market windows A and B, and 
( )std A  denotes the standard deviation of market window A. In addition, 

∞
⋅  

represents calculating the L∞  norm, which is the Chebyshev Distance. 
Then, �  historical relative price sequences closer to 1t

t w
−
−X  are selected by 

KNN Algorithm in the similarity set to obtain the historical similarity set 2C . 
The specific method is: after calculating the Euclidean distance between the 
market vectors 1t

t w
−
−X  and the 1i

i w
−
−X  of 1C , arrange these distances in ascend-

ing order, and take the market vector corresponding to the first �  distances to 
construct the historical similarity set 2C : 

 { }1 1
2 1 : is among the NNs of .i t

i w t wC i C − −
− −= ∈ X X�  (13) 

Therefore, the algorithm process of PMDI is shown in Algorithm 1. 
Specifically, in the actual operation of the algorithm, �  cannot be fixed, be-

cause with the increase of trading period, many market vectors with high simi-
larity to the current market vector will be excluded. Therefore, we need to con-
struct a parameter �  about the number of neighbors that increases with the in-
crease of trading period: ells t= ×� , Where ells  is the scale factor. 

From an experimental perspective, expert learning algorithms are very slow,  
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so PMDI will not use them, but instead choose fixed parameters through a large 
number of experiments. Specifically, if there is no historical price sequence that 
satisfies the similarity condition, the final calculated similarity set is an empty  

set: C = ∅ , then a uniform investment portfolio 
1 1 1, , ,t M M M

 =  
 

b � . 

4.2. Portfolio Optimization 

The first two sections proposed a method for selecting similar sets in pattern 
matching. Then, after calculating the similar set 2C  on each trading day, the 
optimal investment portfolio is obtained by maximizing the total return of all 
relative price vectors in that similar set. The overall process of portfolio optimi-
zation is shown in the Algorithm 2. 

By using this algorithm to output tb  on each trading day, we will use it as 
the investment portfolio to complete the next trading day. By using this recur-
sion, the final investment return can be calculated: 

 

 
 

 

https://doi.org/10.4236/am.2024.155019


X. Y. He 
 

 

DOI: 10.4236/am.2024.155019 323 Applied Mathematics 
 

 ( ) ( )0
1 1

.
n n

n t t t t
t t

Τ Τ

= =

= =∏ ∏S S b x b x  (14) 

where the initial funds 0 1=S . 
The key step of the above algorithm 2 is how to optimize the investment 

portfolio: 

 
2

arg max
M

t i
i C∈∆ ∈

= ⋅∏
b

b b x  (15) 

The Sequential Quadratic Program (SQP) algorithm [8] has a superlinear 
convergence speed, and the number of function and gradient evaluations is 
small. It can transform complex nonlinear constrained optimization problems 
into relatively simple quadratic programming (QP) problems, and is one of the 
most effective methods for solving nonlinear optimization problems with equal-
ity and bound constraints. Therefore, this article will use this algorithm to op-
timize the investment portfolio. 

According to the different methods for solving subproblems in quadratic pro-
gramming, the SQP method can be divided into line search SQP method and 
trust region SQP method. Both of these methods are important for ensuring 
global convergence, determining displacement and new iteration points in each 
iteration. The difference between the two lies in the fact that the line search me-
thod first determines the search direction, and then selects the search step size; 
The trust region method directly determines the direction step size and gene-
rates new iteration points. 

This article uses the line search SQP algorithm. To perform an accurate line 
search, let kG  be the descent direction at the iteration point kb , and the step 
size is: 

 ( ) ( ){ }
>0

arg mink k kf G
α

α α α= Ω = +b  (16) 

But in reality, this approach requires too much computation and does not re-
quire such precision, so we use the Armijo criterion for line search: Let kG  be 
the descent direction at the iteration point kb . Given the constant ( )0,1c∈ , if 
there is 

 ( ) ( ) ( )k k k k kf G f c f Gα α+ ≤ + ∇b b b  (17) 

then the step size α  satisfies the Armijo criterion. 
In summary, the general process of using the line search SQP algorithm to 

solve portfolio optimization problems is: 
First, set ( ) ii Cf

∈
= − ⋅∏b b x , ( )1,1, ,1 M

+= ∈a �  , 1b = , ( )h b= ⋅ −b a b , 

( )0,0, ,0 Ml += ∈�  , ( )1,1, ,1 Mu += ∈�  , so solving the optimization portfolio 
problem requires solving the following nonlinear constrained optimization 
problem: 

 
( )
( )

min
s.t. 0

f
h
l u

=
≤ ≤

b
b
b

 (18) 
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The above constraints include: Equation constraint ( ) 0h b= ⋅ − =b a b , 
represents that the sum of the components of b  is 1, and the value range of b  
constrains l u≤ ≤b , indicating that the investment weight of each asset is be-
tween 0 and 1. 

Secondly, through Taylor expansion, we approximate the objective function of 
the nonlinear constrained optimization problem to a quadratic function at the 
iteration point kb , and linearize the constraint conditions to obtain a quadratic 
programming subproblem: 

 

( ) ( ) ( )

( ) ( )

TT 2

T

1min
2

s.t. 0

k k k k k

k k k

k k k

f f f

h h

l u

     = − ∇ − +∇ −     

 ∇ − + = 
− ≤ − ≤ −

b b b b b b b b b

b b b b

b b b b

 (19) 

where the initial value of iteration point kb  will be set as a uniform investment 

portfolio 0 1 1 1, , , M

M M M +
 = ∈ 
 

b �  . The above optimization problem, as an  

approximate problem of the original problem, has a locally better solution and is 
not the optimal solution of the original problem. However, this solution pro-
vides a direction for the subsequent iteration process. Through continuous itera-
tion and optimization, we can gradually approach the optimal solution of the 
original problem. To achieve the goal, set: 

 kG = −b b  (20) 

At this point, the above quadratic programming problem is transformed into 
an optimization problem regarding variable G, namely: 

 

( ) ( ) ( )

( ) ( )

TT 2

T

1min
2

s.t. 0

k k

k k

k k

f G f G f G

h G h

l G u

= ∇ +∇

∇ + =

− ≤ ≤ −

b b b

b b

b b

 (21) 

Thirdly, by instructing: 

 

( )
( )
( )

( )

2

T

k

k

k

k

k

k

H f

C f

A h

B h

D l
E u

= ∇

= ∇

= ∇

=

= −

= −

b

b

b

b

b
b

 (22) 

Transform the optimization problem into a general form of a quadratic pro-
gramming problem: 

 

T T1min
2

s.t. 0

G HG C G

AG B
D G E

+

+ =
≤ ≤

 (23) 
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The Lagrange function for optimization problems is 

 ( ) ( )T T1,
2

G G HG C G AG Bλ λ= + + +  (24) 

From the extremum conditions of multivariate functions ( ), 0G λ = , it can 
be concluded that: 

 
T 0

0
HG C A
AG B

λ+ + =
+ =

 (25) 

Write in matrix form as: 

 
T

0
G CH A

BA λ
−    

=    −    
 (26) 

The above equation can be understood as a linear system of equations with 
[ ]T,G λ  as the variable, where both the number of variables and equations are 

1M + . The equations either have no solution or have a unique solution. 
Finally, in the fourth step, the optimal solution G∗  of the quadratic pro-

gramming problem is taken as the next search (descent) direction kG  of the 
original problem. The search step size kα  is determined using the Armijo cri-
terion. Then, the step size of kα  is moved in the kG  direction to obtain the 
next iteration point: 

 1k k k kGα+ = +b b  (27) 

By iterating repeatedly until kG  satisfies a certain convergence accuracy, an 
approximate solution 1k+b  for the original constraint problem can be obtained. 

5. Experiments 
5.1. Preparation 

In order to test the empirical effect of the proposed strategy, we conducted ex-
tensive experiments on 2 real-world stock market data sets, which are summa-
rized in Table 1. 

For the convenience of obtaining and easy to reproduce, this article uses daily 
closing price data from the stock market. One dataset is widely used by other 
scholars in the field. NYSE (O) was first used by Cover (1991) [9] and has been 
reused by many later scholars. It consists of the closing prices of 36 stocks on the 
New York Stock Exchange over 5651 trading days. 

In addition to the classic data sets NYSE (O), we collect an additional data set. 
The data set is the list of 19 high-market stocks in the China Securities 500 In-
dex. The data spans 2405 trading days, or ten years, from December 25th 2012 to  

 
Table 1. Summary of the 2 real data sets in our numerical experiments. 

Dataset Region Time Frame Trading days Assets 

CSI500 CN Dec. 25th 2012 - Nov. 18th 2022 2405 19 

NYSE(O) US Jul. 3rd 1962 - Dec. 31st 1984 5651 36 
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November 18th 2022. We call this data set “CSI500”. This is a very new dataset 
that also takes into account the pandemic period of the past three years. The 
purpose of collecting this dataset is to determine whether our algorithm can 
adapt to the economic development of the new era and handle the impact of the 
epidemic on the economy. Also since the data sets are stored as relative prices, 
we do not need to consider exchange rates. 

In addition, for comparative experiments, the benchmarks and 3 state-of-the-art 
portfolio-selected systems are selected, and the preliminary settings are as fol-
lows: 

1. Market; 
2. Best-Stock [10]; 
3. BCRP [11]; 
4. BK. The parameters are set to 5W = , 10L = , 1.0c = . According to the 

research of Györf et al., it has the best empirical performance at this time; 

5. BNN. The parameters are set to 5W = , 10L = , 10.02 0.5
1

p
L
−

= +
−�
�  sug-

gested by Györf et al.; 
6. CORN. The CORN Uniform combination algorithm with the parameter 

setting 5W = , 1L = , 0.1c = . 
Simultaneously, the PMDI’s parameters were set to 5w = , 0.2ρ = , 0.05m = , 

0.5 t= ×� . The performance of the above strategies was primarily evaluated by 
the following metrics: 1 and 2 are investment performance metrics, 3 and 4 are 
risk metrics. That is: 

1. CW (Cumulative Wealth) 
Cumulative wealth is the most important indicator for evaluating investment 

effectiveness, and the initial investment amount is set to 0 1=S , the formula is: 

 ( )
1

.
n

n t t
t

Τ

=

=∏S b x  (28) 

This has been calculated in chapter 2 and will not be repeated here. 
2. APY (Annual Percentage Yield) 
Given Cumulative wealth of nS , then the Annual Percentage Yield (APY) can 

be expressed as: 

 ( )
1

APY 1,Yn= −S  (29) 

where Y represents the number of years corresponding to n trading cycles. APY 
measures the average annual wealth increment achieved by trading strategies. In 
general, the higher the Cumulative Wealth or APY value, the more desirable the 
trading strategy is. 

3. Risk (Annualized Standard Deviation of Daily return) 
The annualized standard deviation σ  is obtained by multiplying the stan-

dard deviation of daily returns dσ  by 252  (252 is the average number of 
trading days per year): 

 252.dσ σ= ×  (30) 
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The annualized standard deviation is an important indicator for measuring 
the volatility of investment portfolios, which can reflect the risk level of invest-
ment portfolios and help us better manage investment risks. 

4. SR (Sharpe Ratio) 
The Sharpe ratio [12] is one of the three classic indicators that can compre-

hensively consider both returns and risks. As a risk adjusted rate of return, it can 
eliminate the adverse effects of risk factors on performance evaluation. The for-
mula for calculating the Sharpe ratio is: 

 
APY

Sharpe Ratio ,fR
σ
−

=  (31) 

Wherein, fR  is the annualized risk-free interest rate, which generally adopts 
the interest rate of treasury bond in the same period. The purpose of this formu-
la is to calculate how much excess return will be generated per unit of total risk 
undertaken by the investment portfolio. 

5.2. Cumulative Wealth 

The first experiment evaluates the CW obtained by various strategies without 
considering transaction costs. 

Table 2 summarizes the CW obtained by various algorithms on four datasets, 
with bold numbers indicating the top ranked achievement on each dataset. 

On the CSI500 dataset, the PMDI algorithm achieved the best results, which 
proves the superiority of the PMDI algorithm. Although the performance of the 
PMDI algorithm on the NYSE (O) dataset is not as good as other pattern 
matching algorithms, it is worth mentioning that the PMDI algorithm does not 
use expert algorithms, which greatly accelerates the running speed of the algo-
rithm compared to other pattern matching algorithms. It is not easy to achieve a 
revenue of nearly 100 million dollars in this situation. 

5.3. APY 

The performance of APY is almost consistent with that of CW, as shown in the 
Table 3, so it will not be further elaborated here. 

 
Table 2. The CW obtained through different strategies. 

Strategies CSI500 NYSE (O) 

Market 4.72 14.50 

Best-stock 19.51 54.14 

BCRP 26.79 250.60 

BK 11.06 1.08E+09 

BNN 22.50 3.19E+11 

CORN 30.62 1.45E+13 

PDMI 61.20 3.60E+07 
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5.4. Risk 

In this subsection, we examine the volatility of strategy returns, i.e. annualized 
standard deviation. As shown in Table 4, there is a correlation between the volatil-
ity of returns for each strategy and the cumulative and annualized returns, which 
further validates the investment principle of “high returns accompanied by high 
risks”. By observing this indicator, we can have a clearer understanding of the risk 
levels of each strategy, thereby providing stronger basis for investment decisions. 

As is well known, high risk can bring high returns. The PDMI algorithm 
achieved the best returns on the CSI500 dataset, but the risk indicator was not 
the highest. Therefore, it can be expected that the risk adjusted returns in the 
next section will be the highest. 

5.5. Sharpe Ratios 

Table 5 summarizes the performance of risk adjusted return indicators for each 
strategy—Annualized Sharpe Ratios, with risk-free rates generally set at 4%. 

From the table, it can be seen that the Sharpe ratio of PMDI has always main-
tained a high level of over 100%. 

6. Conclusions 

There is certain reference value of the Portfolio Selection Method based on Pattern  
 

Table 3. APYs of different strategies. 

Strategies CSI500 NYSE (O) 

Market 18% 13% 

Best-stock 37% 19% 

BCRP 41% 28% 

BK 29% 153% 

BNN 39% 226% 

CORN 43% 286% 

PMDI 54% 117% 

 
Table 4. Risks of different strategies. 

Strategies CSI500 NYSE (O) 

Market 31% 15% 

Best-stock 60% 24% 

BCRP 47% 31% 

BK 36% 36% 

BNN 38% 40% 

CORN 46% 49% 

PMDI 48% 42% 
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Table 5. Sharpe ratios of different strategies. 

Strategies CSI500 NYSE (O) 

Market 43% 58% 

Best-stock 55% 64% 

BCRP 79% 78% 

BK 68% 409% 

BNN 92% 551% 

CORN 86% 578% 

PMDI 103% 269% 

 
Matching with Dual Information of Direction and Distance (PMDI) for the de-
velopment of pattern matching methods in online portfolio selection algorithms. 

On the one hand, this method has theoretical advantages. This article crea-
tively proposes a method for extracting similarity sets driven by similarity mea-
surement by analyzing various pattern matching algorithms in the past. By com-
bining different similarity measurement methods, the KNN algorithm is used to 
select the best among them. After multiple screening of historical price informa-
tion in stock trading, a similarity set with distance and direction information is 
obtained, and optimization algorithms are implemented on this similarity set. 

On the other hand, we conducted extensive experiments on two datasets, in-
cluding different stock data from the real world. PMDI outperformed all other 
comparable algorithms in one dataset. Although the results on another dataset 
were not as expected, we greatly reduced the runtime due to not using expert 
algorithms. Due to the completely different time periods and financial environ-
ments of the two datasets, it can be proven that the PDMI algorithm has robust-
ness and adaptability in different market environments and time periods. There-
fore, it is suitable for practical financial environments, including high-frequency 
trading. 

We will continue to explore the possibilities of pattern matching based me-
thods and contribute to future research on online portfolio selection problems. 
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