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Abstract

Iron is an essential transition metal for all eukaryotic cells, and its trafficking throughout the

cell is highly regulated. However, the overall cellular mechanism of regulation is poorly

understood despite knowing many of the molecular players involved. Here, an ordinary-dif-

ferential-equations (ODE) based kinetic model of iron trafficking within a growing yeast cell

was developed that included autoregulation. The 9-reaction 8-component in-silico cell

model was solved under both steady-state and time-dependent dynamical conditions. The

ODE for each component included a dilution term due to cell growth. Conserved rate rela-

tionships were obtained from the null space of the stoichiometric matrix, and the reduced-

row-echelon-form was used to distinguish independent from dependent rates. Independent

rates were determined from experimentally estimated component concentrations, cell

growth rates, and the literature. Simple rate-law expressions were assumed, allowing rate-

constants for each reaction to be estimated. Continuous Heaviside logistical functions were

used to regulate rate-constants. These functions acted like valves, opening or closing

depending on component “sensor” concentrations. Two cellular regulatory mechanisms

were selected from 134,217,728 possibilities using a novel approach involving 6 mathemati-

cally-defined filters. Three cellular states were analyzed including healthy wild-type cells,

iron-deficient wild-type cells, and a frataxin-deficient strain of cells characterizing the dis-

ease Friedreich’s Ataxia. The model was stable toward limited perturbations, as determined

by the eigenvalues of Jacobian matrices. Autoregulation allowed healthy cells to transition

to the diseased state when triggered by a mutation in frataxin, and to the iron-deficient state

when cells are placed in iron-deficient growth medium. The in-silico phenotypes observed

during these transitions were similar to those observed experimentally. The model also pre-

dicted the observed effects of hypoxia on the diseased condition. A similar approach could

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011701 December 19, 2023 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Thorat S, Walton JR, Lindahl PA (2023) A

kinetic model of iron trafficking in growing

Saccharomyces cerevisiae cells; applying

mathematical methods to minimize the problem of

sparse data and generate viable autoregulatory

mechanisms. PLoS Comput Biol 19(12):

e1011701. https://doi.org/10.1371/journal.

pcbi.1011701

Editor: Mark Alber, University of California

Riverside, UNITED STATES

Received: January 17, 2023

Accepted: November 20, 2023

Published: December 19, 2023

Copyright: © 2023 Thorat et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The code used to

generate all simulation and figures have been

deposited at the public code repository https://

github.com/ShantanuT01/

AutoregulatedKineticIronCellModel under the MIT

License.

Funding: This study was supported by the National

Science Foundation (MCB-1817389), the National

Institutes of Health (GM127021), and the Robert A.

https://orcid.org/0000-0001-8307-9647
https://doi.org/10.1371/journal.pcbi.1011701
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011701&domain=pdf&date_stamp=2023-12-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011701&domain=pdf&date_stamp=2023-12-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011701&domain=pdf&date_stamp=2023-12-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011701&domain=pdf&date_stamp=2023-12-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011701&domain=pdf&date_stamp=2023-12-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011701&domain=pdf&date_stamp=2023-12-19
https://doi.org/10.1371/journal.pcbi.1011701
https://doi.org/10.1371/journal.pcbi.1011701
http://creativecommons.org/licenses/by/4.0/
https://github.com/ShantanuT01/AutoregulatedKineticIronCellModel
https://github.com/ShantanuT01/AutoregulatedKineticIronCellModel
https://github.com/ShantanuT01/AutoregulatedKineticIronCellModel


be used to solve ODE-based kinetic models associated with other biochemical processes

operating within growing cells.

Author summary

Developing mathematical models that describe the rates of biochemical processes within

growing cells can be difficult because sufficient experimental information is often unavail-

able. This is especially true for models that include regulatory mechanisms. Here we devel-

oped a mathematical model describing the kinetics of how iron, an essential transition

metal, is “trafficked” into and within a eukaryotic cell, and how such a system might be

regulated. The model was solved using a novel combination of mathematical methods

combined with a modest amount of experimental data. Once solved, the model simulated

how iron trafficking is affected when healthy cells become diseased or iron deficient. It

also accurately predicted the healing effect of reducing the level of oxygen to which dis-

eased cells are exposed. Models of other biochemical processes occurring within growing

cells could be developed using similar methods. Such models may eventually be useful for

developing more effective treatments for metabolic diseases involving complex biochemi-

cal reaction networks.

Introduction

Nearly all biochemical processes occurring within cells are regulated, often at multiple levels.

The molecular players involved in regulation are typically identified by genetic screens in

which the deletion of a particular gene displays a dysregulated phenotype. However, under-

standing how these players collectively interact to give rise to such phenotypes remains a chal-

lenge [1, 2]. Various approaches to modeling the regulation of biochemical processes in cells

have been reviewed [3]; our focus here is on building a cellular-level (a.k.a. systems’ level) regu-

latory mechanism within a classical deterministic ordinary-differential-equations- (ODE-)

based biochemical reaction network [4, 5]. Specifically, we wanted to develop a cellular-level

iron trafficking network, including autoregulation, for budding yeast Saccharomyces
cerevisiae.

Iron is essential in biology, and the import and function of this transition metal has been

the subject of many previous computational studies [6–11]. In the current model, we wanted

to simulate observed iron-associated changes in healthy iron-replete wild-type (WT) cells as

they transitioned to either an iron-deficient state or to a diseased state in which expression of

the yeast frataxin homolog 1 (Yfh1) protein is anomalously low. Yfh1 is a mitochondrial pro-

tein involved in the synthesis of iron-sulfur clusters (ISCs) and possibly of heme centers. The

primary biochemical role of Yfh1 is to activate cysteine desulfurase, the enzyme responsible

for extracting sulfur from cysteine–the sulfur that is ultimately used to build [Fe2S2] and

[Fe4S4] clusters in mitochondria [12]. Humans with a deficiency of frataxin, the human homo-

log of Yfh1, suffer from Friedreich’s Ataxia, a neurodegenerative mitochondrial disease that

involves iron dysregulation [13]. We wanted to understand the mechanism of disease progres-

sion with hopes that this might help in developing more effective treatments. The observed

changes in phenotype between healthy and diseased human vs. yeast cells are similar, in that a

deficiency of frataxin in humans and of Yfh1 in yeast both result in a massive accumulation of
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nanoparticle iron in mitochondria, a decline in iron-sulfur clusters, an increase in ROS, and

the dysregulation of iron trafficking [14].

Developing reliable ODE-based models of biochemical processes within cells is often chal-

lenging because the actual mechanisms are rarely known in sufficient detail. Moreover, a com-

plete set of experimentally determined kinetic parameters, as is required to numerically

integrate an ODE system, including rate-constants (krxn), Michaelis-Menten (Km) constants,

and component concentrations [Ci], are rarely known, or known with sufficient accuracy.

Both problems have been considered for decades and methods are well established [15–17].

For the model developed here, the problem of insufficient data was handled in the standard

way; by grouping molecular species, combining reactions into fewer more symbolic forms,

and assuming parsimonious rate-law expressions. Resulting coarse-grainmodels have fewer

unknown parameters and simpler reaction networks; thus, they are more readily solved math-

ematically. However, the symbolic nature of reactions and components limits their testability

and connection to reality. Nevertheless, even “sloppy” models, in which some parameters are

guessed, can provide useful insights [18].

Here we utilized the 9-reaction, 8-component coarse-grain model shown in Fig 1 (top

panel), which was developed from earlier versions [19, 20]. The assumed chemical mechanism

was translated into a set of 8 ODEs, one for each component Ci. Each ODE included rate-law

terms that influence [Ci], the concentration of Ci. These influences included substrate depen-

dences controlled by either Michaelis-Menten or mass-action expressions. In each rate, the

expression assumed depended on whether the reaction was, or was not, presumed to be

enzyme-catalyzed. Each ODE also included a term that accounted for the dilution of each

component due to cell growth. This term had the form -αcell [Ci] where αcell is the exponential

growth rate of the cell, measured experimentally as the slope of ln(absorbance at 600 nm) vs.

time for a culture of growing cells [21]. (A600 is proportional to the extent of light scattering,

and thus to cell density in cultures.) Concentrations of iron-containing components in the

model were estimated from published Mössbauer spectra and the iron content of whole yeast

cells, and of isolated mitochondria, cytosol, and vacuoles [20–27]. The model assumed 3 cellu-

lar compartments, including cytosol, mitochondria, and vacuoles. Modeling within the context

of cellular compartments is well-established [19, 28].

Three cellular states were used to train the model, including W (WT cells grown on iron-

replete media), Y (the Yfh1-deficient strain), and D (WT cells grown on iron-deficient media).

Each cellular state employed the same biochemical reaction network but different rates of reac-

tions. The combined effect of these rates controlled component concentrations. Reaction rates

could be affected by external factors such as [IRON] and [OXYGEN] in the growth media, and

by internal factors which included, in this case, the mutation of the YFH1 gene and the growth

rate of the cells.

The mechanisms used to regulate reaction rates in real cells are often complicated and/or

poorly understood. This is especially true in assessing how individual regulatory processes

function in concert at the systems’ (i.e. cellular) level. Methods for optimizing regulatory

mechanisms in biological systems have also been investigated [15, 17]. Here we used surrogate
regulatory mechanisms that were simpler than actual chemical mechanisms but still able to

mimic the behavior arising from the actual mechanisms. We wanted these regulatory mecha-

nisms to cause cells to transition from one cellular state to another (W! Y or W!D) as real-

istically as possible. The selection process that distinguished realistic from unrealistic behavior

was analogous to evolutionary selection. In our case, this involved mathematically screening

candidate mechanisms and selecting those which afforded transitions most likely to be

observed in real cells.
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Fig 1. The chemical model. Top, without regulation; blue, yellow, and green regions represent cytosol, mitochondria,

and vacuoles, respectively. Nutrient IRON enters the cytosol and becomes part of the labile iron pool (FC). Iron from

this pool can either enter mitochondria, vacuole, or remain in the cytosol, converting to the CIA. This component was

named after the Cytosolic Iron-sulfur Assembly protein complex, which functions to assemble iron-sulfur clusters in

the cytosol. In this model, the CIA refers to all iron from FC that is not imported into mitochondria or vacuoles. Iron
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In real yeast cells, the best-understood regulatory mechanism associated with iron traffick-

ing involves the iron regulon, 20–30 genes whose expression levels are controlled by proteins

Aft1 and Aft2. These two transcription factors can exist in metal-free (apo-) forms which bind

promotor sequences of iron-regulon genes; binding promotes gene expression. Aft1/2 can also

exist in an inactive holo-form in which an [Fe2S2] cluster bridges Aft1 or Aft2 homodimers.

The cellular functions of Aft1 vs. Aft2 differ slightly [29] but these differences were ignored

here. The balance between apo- and holo- forms is controlled by the extent of ISC activity

occurring in mitochondria. When ISC activity is normal (WT cells growing under iron-replete

conditions), the holo forms of Aft1/2 dominate and expression of the iron regulon declines.

When the apo- forms dominate (under iron-deficient conditions), the iron regulon activates.

Activation causes additional iron to be imported into the cell and funneled into the mitochon-

dria to stimulate ISC assembly.

To some extent, Aft1/2 also control the level of iron imported into vacuoles for iron storage.

Prior to ca. 2004, cellular iron regulation was thought to be controlled (or sensed) by the labile

iron pool in the cytosol [30–32]. However, Chen et al. found that mitochondrial ISC activity

rather than this pool was being sensed [33]. Complicating matters is that proteins Yap5 and

Cth1/2 also regulate iron trafficking in yeast cells [34, 35]. In summary, there are numerous

molecular systems involved in regulating iron trafficking and metabolism in yeast cells, but

there are also major uncertainties regarding how these local mechanisms are integrated at the

global or cellular level. Our objective was to better understand this integration, by using a fully

transparent quantitative method to select the cellular-level surrogate-based regulatory mecha-

nism(s) that could mimic the overall regulatory behavior of the cell.

Cellular regulation plays an essential role in generating the phenotype of Yfh1-deficient cells.

Yfh1 deficiency causes iron dysregulation. Nutrient iron from the environment rushes into the

cell, migrates through the cytosol, and traffics into mitochondria. Iron is simultaneously

exported from vacuoles into the cytosol [36]. Iron in the mitochondrial matrix, which would

otherwise be used as substrate for ISC and heme biosynthesis, reacts to form ferric phosphate

oxyhydroxide nanoparticles. Associated with this is a decline in ISC assembly and heme biosyn-

thesis, and an increase in reactive oxygen species which damages various cellular components.

Wofford and Lindahl, and more recently Fernandez et al., developed a core biochemical

mechanism that explains this phenotype on the molecular level [19, 20]. Decisions regarding

how best to regulate iron in those models were made at the discretion of the modeler. The cur-

rent study was motivated to develop user-independent autoregulatorymechanisms (“auto”

means that the system would be regulated exclusively and automatically by components in the

system). Our success represents an advance not only for the field of cellular iron regulation,

but for designing cellular-level autoregulatory mechanisms generally.

that enters vacuoles is stored, either as FeII (F2) or FeIII (F3). Iron that enters mitochondria becomes part of another

labile iron pool called FM which is used as substrate for the assembly of iron-sulfur clusters and hemes (FS). These

centers are installed into, among other proteins, the respiratory complexes which ultimately reduce O2 to water. In

healthy cells, this prevents O2 from penetrating into the mitochondrial matrix. However, in the diseased state, the

“Respiratory shield” is weakened, and excessive O2 enters the matrix and reacts with FM to generate nanoparticles

(MP) and reactive oxygen species (ROS). ROS is not shown as it is not included in the model (however, its rate of

formation would be the same as MP). Names of reaction rates are indicated near the associated arrow. Bottom Panel:

with regulation (CRM Case 1) shown in red dashed lines. Circles indicate sensed species. Feedback terms are indicated

by perpendicular terminal lines. Feedforward terms are indicated by terminal arrows. According to this regulatory

mechanism, there are three sensed species, including FC, FM, and FS. FC controls the rate of iron import into the cell,

the rate of cytosolic iron import in vacuoles, and the oxidation of vacuolar FeII to FeIII. FM controls the rate at which

the cytosolic labile iron pool reacts to form the CIA, and the rate at which FM reactions with O2 to make

nanoparticles. FS controls the rate by which cytosolic iron enters mitochondria and the rate by which nutrient

OXYGEN enters the cell.

https://doi.org/10.1371/journal.pcbi.1011701.g001
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Model development

Biochemical reaction network

The mechanism of Fig 1 top panel defines the biochemical reaction network assumed for iron traf-

ficking in yeast cells, excluding regulation. Reactions and rate-law expressions are given in Table 1.

The model describes a population of yeast cells growing exponentially on two nutrients called

IRON and OXYGEN. The exponential growth rate of WT cells, given by parameter αcell, was set

at 0:00�3 min-1 which corresponds to a typical growth rate of respiring WT yeast cells [21]. The

in-silico cell was subdivided into 3 compartments, including cytosol (Fig 1, blue), mitochondria

(yellow), and vacuoles (green); respective fractional volumes were fcyt = 0.8, fmit = 0.1 and fvac =

0.1. IRON enters the cell at rate Rcyt where it becomes cytosolic iron FC. (Model components and

rates are introduced in bold.) OXYGEN enters the cell at rate RO2 where it becomes mitochon-

drial O2. FC enters mitochondria at rate Rmit, becoming a labile pool of FeII called FM. FC can

also enter vacuoles at rate Rvac, becoming a pool of FeII called F2. FC can also metallate all ISC

proteins in the cytosol and nucleus, forming component CIA in accordance with rate Rcia. In this

model, CIA reflects all of the iron from the labile pool that is delivered to cellular sites other than

mitochondria or vacuoles. In the mitochondria, FM is the substrate for generating hemes and

ISCs (collectively called FS), at rate Risu. This reaction is inhibited by O2 as evidenced by the addi-

tional term in the rate-law expression. In that expression [O2]sp represents the set-point concen-

tration for O2 inhibition. FS is a catalyst for respiration (involving substrate O2 which reacts at

rate Rres); this limits O2 from diffusing into the mitochondria where it reacts with FM to generate

nanoparticles (MP) at rate Rmp. In the vacuole, F2 can be oxidized to FeIII, called F3, in accor-

dance with rate R23. The resulting ODEs in (1) are given in terms of reaction rates.

½FC�0 ¼ Rcyt � Rvac � Rmit � Rcia � DFC

½CIA�0 ¼ Rcia � DCIA

½F2�
0
¼
fcyt
fvac
Rvac � R23 � DF2

½F3�
0
¼ R23 � DF3

½FM�0 ¼
fcyt
fmit
Rmit � Risu � Rmp � DFM

½FS�0 ¼ Risu � DFS

½MP�0 ¼ Rmp � DMP

½O2�
0
¼ RO2 � Rmp � Rres � DO2

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>;

ð1Þ

Table 1. Chemical reactions, rate-law expressions, and cellular regions in which the reactions of Fig 1 occur. Reg-

ulation is not included. Regions: E, environment; C, cytosol; M, mitochondria; V, vacuole.

# Reaction Rate Law Expression Region

1 IRON! FC Rcyt ¼
kcyt ½IRON�

K
CytðIRONÞ

þ½IRON�
E, C

2 FC! FM Rmit ¼
kmit ½FC�

KmitðFCÞþ½FC�
C, M

3 FC! F2 Rvac ¼
kvac ½FC�

K
vacðFCÞ

þ½FC�
C, V

4 FC! CIA Rcia ¼
kcia ½FC�

K
ciaðFCÞ

þ½FC�
C

5 FM! FS Risu ¼
kisu ½FM�

K
isuðFMÞ

þ½FM�
½O2�sp

½O2�spþ½O2�

� �
M

6 FM + O2!MP Rmp ¼ kmp½FM�½O2� M

7 OXYGEN! O2 RO2 ¼ kO2ðOXYGEN � ½O2�Þ E, M

8 O2! Rres ¼ kres½FS�
½O2�

KresðO2Þþ½O2�
M

9 F2! F3 R23 ¼ k23

½F2�

K23ðF2Þþ½F2�
½OXYGEN� V

https://doi.org/10.1371/journal.pcbi.1011701.t001

PLOS COMPUTATIONAL BIOLOGY A kinetic model of iron trafficking and regulation in growing yeast cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011701 December 19, 2023 6 / 28

https://doi.org/10.1371/journal.pcbi.1011701.t001
https://doi.org/10.1371/journal.pcbi.1011701


The last term in each ODE reflects the dilution of the designated component due to cell growth. Frac-

tional volumes augment rates of interregional reactions in which reactants and/or products are in different

cellular regions. Rvac and Rmit refer to rates in the cytosol. To calculate corresponding rates for the same inter-

regional reactions in vacuoles and mitochondria, cytosolic rates must be multiplied by the corresponding

fractional volume ratios, as in (1). If this were not done, mass would not be conserved.

Our first objective was to determine these rates. After including the fractional volume ratios

given above, the ODEs in (1) were organized into matrix form yielding (2)

1 � 1 � 1 � 1 0 0 0 0 0 � 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 � 1 0 0 0 0 0 0

0 0 8 0 0 0 0 � 1 0 0 0 � 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 � 1 0 0 0 0

0 8 0 0 � 1 � 1 0 0 0 0 0 0 0 � 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 � 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 � 1 0

0 0 0 0 0 � 1 1 0 � 1 0 0 0 0 0 0 0 � 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

Rcyt

Rmit

Rvac

Rcia

Risu

Rmp

RO2

R23

Rres

DFC

DCIA

DF2

DF3

DFM

DFS

DMP

DO2

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

FC0

CIA0

F20

F30

FM0

FS0

MP0

O20

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð2Þ

where the 8×17 stoichiometric (or S) matrix is multiplied by a vector of rates (the R vector) to

yield a vector of component concentration derivatives. To separate rates into independent and

dependent groups, the S matrix was transformed into the Reduced-Row-Echelon Form

(RREF), as shown on the left-hand-side of (3).

1 0 0 0 0 0 0 0 0 � 1 � 1 �
1

8
�

1

8
�

1

8
�

1

8
�

1

8
0

0 1 0 0 0 0 0 0 0 0 0 0 0 �
1

8
�

1

8
�

1

8
0

0 0 1 0 0 0 0 0 0 0 0 �
1

8
�

1

8
0 0 0 0

0 0 0 1 0 0 0 0 0 0 � 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 � 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 � 1 0

0 0 0 0 0 0 1 0 � 1 0 0 0 0 0 0 � 1 � 1

0 0 0 0 0 0 0 1 0 0 0 0 � 1 0 0 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

Rcyt
Rmit
Rvac
Rcia
Risu
Rmp
RO2

R23

Rres
DFC

DCIA

DF2

DF3

DFM

DFS

DMP

DO2

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

0

0

0

0

0

0

0

0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: ð3Þ
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Starting from the top left side, the RREF matrix has a staircase pattern of 1’s and 0’s with a

“pivot” at each step. There are 8 pivot columns which correspond to dependent rates; these

include Rcyt, Rmit, Rvac, Rcia, Risu, Rmp, Ro2, and R23. The 9 remaining non-pivot columns corre-

spond to independent rates; these include Rres, DFC, DCIA, DF2, DF3, DFM, DFS, DMP, and DO2.
Independent rates can be assigned any value. However, once assigned, dependent rates can be

determined directly from the 8 relationships obtained from the null space of the RREF, Eq (4),

one for each component.

Rcyt ¼ DFC þ DCIA þ
1

8
DF2 þ

1

8
DF3 þ

1

8
DFM þ

1

8
DFS þ

1

8
DMP

Rmit ¼
1

8
DFM þ

1

8
DFS þ

1

8
DMP

Rvac ¼
1

8
DF2 þ

1

8
DF3

Rcia ¼ DCIA

Risu ¼ DFS

Rmp ¼ DMP

Ro2 ¼ Rres þ DMP þ DO2

R23 ¼ DF3

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>;

ð4Þ

The null space includes subsets of reaction rate vector R for which the system is at steady-

state such that component concentrations are unchanging (i.e. [Ci]’ = 0). Unlike simple sys-

tems which possess a single steady-state, more complex systems may have many such states. A

steady-state condition is guaranteed when all null space relationships are obeyed. However,

this does not guarantee that the steady-state will be stable or employed by real cells.

The dimension of the null space is given by the number of independent rates, 9 in this case.

The lower the dimension of this space, the fewer steady-state solutions that exist; if the null

space were zero-dimensional, there would be a unique steady-state solution given by the zero

vector. In our case, 8 of those dimensions represent rates of dilution. Since the exponential

growth rate of cells (called αcell) has been measured experimentally, dilution rates could be

assigned if the steady-state concentrations of each component were known. This would lower

the dimensionality of the null space to 1 in which case only Rres would need to be freely chosen

to obtain a unique steady-state solution.

Defining cellular states

From a biological perspective, a cellular state is defined by a particular genetic strain (internal
conditions) grown in a specified nutrient environment (external conditions). Here, an internal

cellular state (W, Y or D) was defined by a set of rate-constants, Michaelis-Menten parameters,

and the exponential growth rate of the cells. External conditions included fixed [IRON] and

[OXYGEN] concentrations. For non-WT strains or conditions, a user-defined change in an

internal parameter was taken to be the primary mutation, and all other resulting internal

changes were viewed as responses to the primary change. The primary mutation in the Y state

involved reducing kisu(W) and αcell(W) by factors of 10× and 2×, respectively, relative to in the

W state. kisu was primarily affected by the absence of Yfh1 because this protein is part of a cata-

lyst driving the reaction FM! FS. Experimentally, αcell declines under Y conditions, from αcell
(w) = 0:00�3 min-1 when kisu(W) = 6:�6 min-1, to αcell(Y) = 0:001�6 min-1 when kisu(Y) = 0:�6 min-1.

These were the only two primary changes needed to cause the shift W! Y. As the cell transi-

tioned, its growth rate was related to the changing value of kisu(W!Y) according to relationship
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(5).

acellðW!YÞ ¼
acellðWÞ � acellðYÞ

kisuðWÞ � kisuðY Þ

 !

kisuðW!YÞ þ
acellðYÞkisuðWÞ � acellðWÞkisuðY Þ

kisuðWÞ � kisuðY Þ

 !

ð5Þ

The D state was not generated by a primary mutation; rather the nutrient IRON concentra-

tion was incrementally reduced from 40! 1 μM as the cell transitioned from W!D.

For the current study, the phenotype associated with a cell state referred to differences in

steady-state component concentrations relative to in W cells; this was the only “observable”.

More sophisticated phenotypes may eventually be defined by differences in stabilities, sensitiv-

ities to perturbations, cellular morphology, growth rates, etc.

Steady-state concentrations

The steady-state concentrations assumed for the three cellular states are given in Table 2. Con-

centrations were estimated from experimental studies primarily using Mössbauer spectroscopy

and iron-concentration determinations of whole cells, isolated mitochondria, isolated vacu-

oles, and isolated cytosol for the three cellular states; see Appendix C in S1 Text.

Although we did not formally evaluate identifiability for this model, we constructed the

model mindful of this principle. We kept it simple, and made sure that each iron-containing

component was directly connected to experimental measurements. The only component that

has not been measured experimentally is O2 (dissolved O2 concentration in the mitochondrial

matrix). However, there is substantial indirect evidence that this space is hypoxic in healthy

mitochondria (argued in [37]).

We integrated all such information to generate the listed concentrations for each compo-

nent and for whole cells. This constrained the system significantly. Nevertheless, these concen-

trations should be viewed as best-approximations or informed hypotheses due to their large

uncertainties. Components with high concentrations (e.g. MP in the Y state or F3 in the W

state) were known with greater accuracy than those with low concentrations (e.g. FC).

Table 2. Experimental (estimates) and calculated steady-state concentrations without logistic functions for each cellular state. Concentrations for individual compo-

nents are local and are given in units of μM. Data were estimated as described in Appendix C in S1 Text Simulated concentrations were within 1% of experimental values.

The [Fecell] values listed are obtained by summing the concentrations of individual iron-containing component multiplied by the fractional volume (0.8 for cyt; 0.1 for vac;

0.1 for mit), [Fecell] = fcyt[CIA] + fvac[F2] + fvac[F3] + fcyt[FC] + fmit[FM] + fmit[FS] + fmit[MP]. For the first column, [Fecell] = 0.8�80 + 0.1�200 + 0.1�3400 + 0.8�20 + 0.1�100

+ 0.1�500 + 0.1�50 = 505 μM. Comparable computed values as obtained by Fernandez et al. [20] are given on the right side of the table for comparison. Predictions for the

HW and HY states assumed CRM case 1 autoregulation. Hw and HY state values were not used to train the model.

State (columns)! Component

(rows)# (μM)

W Y D HW HY Fernandez

(W)

Fernandez

(Y)

Fernandez

(D)

Fernandez

(HW)

Fernandez

(HY)

CIA 80 70 68 174 100 42 62.5 42.3 6.6 37.5

F2 200 30 20 1736 5500 300 32.6 20.5 6500 4820

F3 3400 420 60 1194 100 5900 0.03 435 404 11.1

FC 20 10 5 16.8 18.5 7 328 2.76 6.6 2075

FM 100 200 50 44.7 467 290 482 160 277 4560

FS 500 150 300 545 273 597 0.09 392 639 25.9

MP 50 8500 20 1.93 1129 42 43,270 40.5 1.95 634

O2 1.0 0.48 1.2 0.13 0.0051 0.17 59.8 0.25 0.01 0.15

αcell (min-1) 0.003333 0.0020 0.003333 0.003333 0.0020 0.003333 0.002 0.003 0.00333 0.00333

[Fecell] 505 994 103.4 505 842 940 4700 141 880 2700

[IRON] 40 40 1.000 40 40 41 41 1 41 41

[OXYGEN] 100 100 100 25 1 ~100 ~100 ~100 ~25 ~25

https://doi.org/10.1371/journal.pcbi.1011701.t002
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Using those assigned steady-state concentrations, dilution rates of each component were

calculated by multiplying each steady-state concentration by αcell. The assumed value of the

remaining independent rate (Rres) was estimated from the literature. We initially selected Rres
= 10,000 μM/min based on the results of Popel et al [38]; see Appendix A in S1 Text for

detailed considerations. Dependent rates were then calculated by solving (4). Resulting reac-

tion rates are listed in Table 3.

Kinetic constants

Once a complete set of reaction rates was generated, each rate was equated to its corresponding

rate-law expression as given in Table 1. The rate-constant associated with each rate was

Table 3. Steady-state rates, rate-constants, and Km parameters for each defined state. Rates are given in units of μM/min. Km values are in units of μM. Units for rate-

constants are dictated by the associated rate-law expressions (Table 1). Excessive digits are given to allow accurate simulations. Far fewer digits are significant biologically.

The same situation applies for the numbers given in all tables.

Parameter W Y D HW HY

Rcia 0.266640 0.140000 0.226644 0.581018 0.200896

R23 11.332200 0.840000 0.199980 3.980788 0.198875

Risu 1.666500 0.300000 0.999900 1.817023 0.546340

Rmp 0.166650 17.000000 0.066660 0.006415 2.203349

Rvac 1.499850 0.112500 0.033330 1.220877 1.405497

Rmit 0.270806 2.212500 0.154151 0.246539 0.460551

Rcyt 2.103960 2.485000 0.430790 2.104468 2.104030

Rres 9090.909091 1772.360000 6000.000000 2322.757108 49.979927

Ro2 9091.080000 1789.360000 6000.070000 2322.770833 52.183199

DFC 0.066660 0.020000 0.016665 0.056035 0.037089

DCIA 0.266640 0.140000 0.226644 0.581002 0.200634

DF2 0.666600 0.060000 0.066660 5.786121 10.999540

DF3 11.332200 0.840000 0.199980 3.981002 0.199939

DFM 0.333300 0.400000 0.166650 0.148875 0.934662

DFS 1.666500 0.300000 0.999900 1.817025 0.546342

DMP 0.166650 17.000000 0.066660 0.006422 2.258360

DO2 0.003333 0.000963 0.004074 0.000442 0.000010

kcia 0.533280 0.420000 1.133219 1.272209 0.417560

k23 0.226643 0.064400 0.021998 0.177576 0.206108

kisu 6.666000 0.666600 6.666000 6.666000 0.666600

kmp 0.001667 0.176597 0.001091 0.001082 0.932340

kvac 2.999702 0.337501 0.166650 2.673257 2.921314

kmit 0.541613 6.637541 0.770759 0.539827 0.957252

kcyt 2.629947 3.106247 4.738685 2.630585 2.630037

kres 36.363636 36.363636 36.363636 36.363636 36.363636

kO2 91.829091 17.980069 60.743001 93.406707 52.448426

Kcyt(IRON) 10 Same Same Same Same

Kmit(FC) 20 Same Same Same Same

Kvac(FC) 20 Same Same Same Same

Kcia(FC) 20 Same Same Same Same

K23(F2) 200 Same Same Same Same

Kisu(FM) 100 Same Same Same Same

Kres(O2) 1.0 Same Same Same Same

[O2]sp 1.0 Same Same Same Same

https://doi.org/10.1371/journal.pcbi.1011701.t003
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calculated using the steady-state concentrations in Table 2. The Michaelis-Menten Km parame-

ter for each rate-law expression was initially equated to the concentration of the corresponding

substrate for the W state: i.e. Km(w) = Km(Y) = Km(D) = [Ci](w). This assumption rendered the

rate of the designated reaction most sensitive to changes in [Ci]. It also reduced the number of

unknown parameters and allowed the corresponding rate-constants (generically called kobs) to

be solved. The Km parameter Kcyt(IRON) was minorly adjusted from its initial assumed value to

avoid instability. Rate-constant values are organized in Table 3. The 3 sets of rate-constants,

one for each cellular state, and the corresponding sets of steady-state concentrations, one for

each component, along with αcell values, defined the W, Y and D states.

Stability of the System

A fundamental characteristic of biochemical processes occurring within actual growing cells is

their stability to modest or limited perturbations. Any component in the cell whose concentra-

tion at some time differs from its steady-state concentration will eventually return to that con-

centration. There are limits to the ability of the system to recover, such that a perturbation of

sufficient magnitude can cause the system to attract to a different steady-state (or to an unsta-

ble state). Correspondingly, in real cells, extreme perturbations can be lethal. To assess whether

the calculated steady-states in our in-silico cell were stable, each state was evaluated by con-

structing the Jacobian (J) matrix and solving its eigenvalues. Such states are stable to perturba-

tions if and only if all eigenvalues of the J matrix lie in the left half of the complex plane. To

construct J, the rates given in the ODEs of (1) were replaced with the rate-law expressions in

Table 1, generating the functions in Table 4. The partial derivatives of those functions with

respect to each component of the system were obtained and organized into matrix form. Val-

ues for [Ci], kobs, and Km parameters were included in calculating matrix elements. Since the

model included 8 ODEs and 8 components, the J matrix was 8 × 8. Matrix elements equaled 0

when a component was not included in the ODE. Eigenvalues were then calculated by solving

(6)

detjJ � lIj ¼ 0 ð6Þ

where I is the identity matrix and λ is a vector of eigenvalues. For each cellular state, the com-

plete set of eigenvalues are required to be negative for the system to be stable to perturbation

in component concentrations. Using Rres = 10,000 μM/min, not all eigenvalues were negative.

This illustrates that although any value of Rres can be selected to satisfy the null space

Table 4. Functions used in constructing the Jacobian matrix.

name Function

d½FC�
dt ¼ fODEFC ¼

kcyt ½IRON�
K
CytðIRONÞ

þ½IRON� �
kvac ½FC�

K
vacðFCÞ

þ½FC� �
kmit ½FC�

KmitðFCÞþ½FC�
�

kcia ½FC�
K
ciaðFCÞ

þ½FC� � acell½FC�

d½CIA�
dt ¼ fODECIA ¼

kcia ½FC�
K
ciaðFCÞ

þ½FC� � acell½CIA�

d½F2�

dt ¼ fODEF2 ¼
fcyt
fvac

kvac ½FC�
K
vacðFCÞ

þ½FC� � k23

½F2�

K23ðF2Þþ½F2�
½OXYGEN� � acell½F2�

d½F3�

dt ¼ fODEF3 ¼ k23

½F2�

K23ðF2Þþ½F2�
½OXYGEN� � acell½F3�

d½FM�
dt ¼ fODEFM ¼

fcyt
fmit

kmit ½FC�
K
mitðFCÞ

þ½FC� �
ðkisu ½FM�Þ

KisuðFMÞþ½FM�
� kmp½FM�½O2� � acell½FM�

d½FS�
dt ¼ fODEFS ¼ kisu ½FM�

K
isuðFMÞ

þ½FM�
½O2�sp

½O2�spþ½O2�

� �
� acell½FS�

d½MP�
dt ¼ fODEMP ¼ kmp½FM�½O2� � acell½MP�

d½O2�

dt ¼ fODEO2 ¼ kO2ðOXYGEN � ½O2�Þ � kmp½FM�½O2� � kres½FS�
½O2�

K
resðO2Þ

þ½O2�
� acell½O2�

https://doi.org/10.1371/journal.pcbi.1011701.t004
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relationships, some values may not result in a system that is stable from perturbations. In this

case, Rres = 9090 μM/min was selected since it was near to our initial selection yet afforded a

system in which all eigenvalues were negative (Table 5).

Solving the dynamical system

With all kinetic parameters and concentrations assigned, and stability toward perturbations

confirmed, the ODE systems were integrated to exhibit time-dependent behavior. Steady-

states were assumed to be the dynamical component concentrations attained at 50,000 min.

Computations were performed in Wolfram Mathematica notebooks along with Python, and

JavaScript (to determine nonlinear regression values). States were modeled with the same

ODE system but with parameters and variables assigned to their state-specific values (Tables 2

and 3). Steady-state concentrations, as obtained by simulations, matched the experimental val-

ues in Table 2 to within 1% accuracy.

We defined a cellular steady-state not merely as being in the null space of the stoichiometric

matrix but also being stable to perturbations and affording the set of steady-state concentra-

tions for that state (W, Y, or D) given in Table 4.

Including autoregulation

The next challenge was to model transitions from the W state to either the Y or D state. This

was equivalent to having a growing healthy cell abruptly develop a mutation in the YFH1 gene,

causing it to become diseased, or for an iron-replete cell to be abruptly placed in iron-deficient

media. Rather than manually changing the set of rate constants from those that defined the W

state to those that defined Y or D and then allow the system to evolve in time, we wanted to

design a cellular regulatory mechanism (CRM) which would facilitate such transitions auto-

matically in response to the primary or causal event(s). In our cases, this meant either altering

kisu and αcell for the W! Y transition or altering [IRON] for the W! D transition. At that

point, the system should respond in time to ultimately generate the Y or D state.

Most reactions in a cell are enzyme-catalyzed and regulated at the transcriptional level.

However, the enzymes catalyzing the coarse-grain reactions of Fig 1 were not explicit compo-

nents of the model. Consequently, the level of gene expression for these assumed enzymes was

viewed as being reflected in the rate-constants associated with the considered reactions. Regu-

lating rate-constants more accurately simulates changes in gene expression levels of an enzyme

than would regulating rates per se, as the latter would be affected by substrate concentrations

according to their corresponding rate-law expressions, whereas the former would not.

Table 5. Eigenvalues λi of the Jacobian matrices. Calculation were from Wolfram using CRM case 1. Units are min-1.

State λFC λCIA λF2 λF3 λFM λFS λMP λO2

CRM not included

W -4637.46 -0.0542654 -0.0316635 -0.011413 -0.003333 -0.003333 -0.003333 -0.0019854

Y -2539.03 -0.166333 -0.0872849 -0.0263478 -0.002 -0.002 -0.002 -0.0000970953

D -2269.9 -0.069593 -0.0150332 -0.012423 -0.003333 -0.003333 -0.003333 -0.00233368

CRM included

W -4637.46 -0.072625 -0.0316634 -0.0133618 -0.003333 -0.003333 -0.003333 -0.0022985

Y -2539.04 -0.880372 -0.501518 -0.0263477 -0.0028465 -0.002 -0.002 -0.002

D -2269.89 -0.08787 -0.012423 -0.00514911 +0.00639993i -0.00514911

-0.00639993i
-0.003333 -0.003333 -0.003333

https://doi.org/10.1371/journal.pcbi.1011701.t005
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Tyson et al. suggested using “soft” (a.k.a. continuous) Heaviside logistical functions to regu-

late reactions within an ODE framework [3]; this would allow the sensitivity of the regulatory

response and the strength of the regulatory interaction to be easily adjusted. This framework

was included in our model by dividing observed rate-constants for each cellular state W, Y,

and D into two components; a regulated (or inducible) term (kreg) and an unregulated (or con-

stitutive) term (kunreg), as in (7).

kobs ¼ kreg
1

1þ enð½SP�� ½Sen�Þ
þ kunreg ð7Þ

Here, Sen is the sensed species (or sensor), SP is the “setpoint” concentration of Sen, and n
controls the sensitivity of the response. When [Sen] = [SP], expression for the regulated gene

would be half-maximal. Including these logistical functions rendered kobs a function of time

because [Sen] is a function of time. If kobs for a given reaction differed in each cellular state,

that difference was attributed to changes in the gene expression level of the implicit enzyme

catalyzing the reaction.

For the system to be autoregulated, Senmust be a component of the model (i.e. FC, FM, FS,

MP, O2, F2, F3, or CIA), not a user-controlled parameter external to the model. In this way,

the changing concentration of Sen would automatically regulate the system regardless of cellu-

lar state. For each regulated reaction, Sen had to be identified and values for kreg, kunreg, n, and

SP assigned.

To do this, we first assumed that differences in kobs from one cellular state to another arose

entirely from the regulated part of (7), specifically due to changes in [Sen] with kreg, kunreg, [SP]

and n fixed for the same reaction in all three cellular states. Other regulated reactions could

employ the same or different Sen without restriction. Also, if the same Sen were used, values

for kreg, kunreg, [SP], and nmight differ. Identifying which component would best regulate the

system as it attempted to transition from one state to another–i.e. finding the best Sen—

became a major challenge.

Both time-dependent and steady-state (time-independent) cell-state transitions were con-

sidered. Time-dependent transitions were generated by changing, at some moment in time,

internal and/or external parameters from those characterizing the healthy W state to those

characterizing the diseased Y state or iron-deficient D state. Time-independent steady-state

transitions from W! Y or W!D were generated by incrementally (linearly) changing two

parameters (kisu and αcell) for the W! Y transition, and one parameter [IRON] for the W!

D transition. In both steady-state cases, at each increment along the transition, the system was

allowed to evolve 50,000 min ensuring that this condition was established.

Evolution of cellular regulatory mechanisms

The next challenge was to identify the “best” regulatory mechanism to apply to each regulata-

ble reaction in the model, and to justify or define what is meant by “best”. We employed a pro-

cess, analogous to Darwinian evolution, in which all possible cellular regulatory mechanisms

(CRMs) were considered, and then subsets of those cases were selected based on their ability

to satisfy six sequentially applied fitness criteria (filtering).

i) Uniqueness: In principle each of the 9 rate-constants in the model could be regulated by

any of the 8 model components. This afforded 89 = 134,217,728 possible CRMs. The first filter,

called uniqueness, stipulated that the magnitude of kobs for a given reaction should be unique

to a given cellular state; if not, the reaction need not be regulated. Thus, only reactions for

which kobs(W), kobs(Y) and kobs(D) had distinct values were regulatable. According to Table 3, this

included 7 of the 9 reactions (all except Risu and Rres). kisu was not autoregulated in this model
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as it was the primary mutation for generating the Y state and was manually assigned the same

value for both W and D states. kres was constant for all three states. After applying this filter, 87

= 2,097,152 CRM cases were selected for further screening.

ii) Trending: The concentration of Senmust either trend with changes in rate-constants

(for feedforward regulation) or trend against them (for feedback regulation). For a given reac-

tion with rate-constant kobs, this condition is described by the rule

Trend in kobs : kobsðiÞ > kobsðjÞ > kobsðkÞ
Feedback Trend : ½SenðiÞ� < ½SenðjÞ� < ½SenðkÞ�

Feedforward Trend : ½SenðiÞ� > ½SenðjÞ� > ½SenðkÞ�

ð8Þ

where i, j, and k refer to W, Y, and D states (no order implied). A single deviation from either

trending rule (feedback or feedforward) disqualified the CRM entirely. Of 2,097,152 CRMs

screened, only 576 survived.

iii) Targeting: At this point, Sen could be assigned for a given logistic function, but the

behavior of that function would change depending on how [Sen] changed (either [Sen]ss or

[Sen]t). The behavior would also change depending on the values of kreg, kunreg, n, and [SP].

Best-fit values for these parameters (Table 3) were obtained using nonlinear regression, mini-

mizing the difference between kobs and the respective rate-constant values for a state. Essentially,

a logistic function mapped a state-specific component concentration to a state’s rate-constant

value as illustrated in Fig 2. Nonlinear regression optimization was done via Desmos’s algorithm

as described at https://engineering.desmos.com/articles/regressions-improvements/.

The targeting error for a given component was the difference between the simulated

steady-state concentration for the Y or D state, and the experimentally estimated steady-state

Fig 2. Behavior of continuous Heaviside Logistical functions in regulating rate-constants. In this particular plot the

ordinate is k23 (as an example of a regulated kobs) while the abscissa is [FC] (example of [Sen]). The solid blue line is the

function calculated by nonlinear regression using parameters in Table 6. Orange, blue and green dots indicate k23 for

W, Y, and D states, respectively, as given in Table 3.

https://doi.org/10.1371/journal.pcbi.1011701.g002
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concentrations given in Table 2, normalized to the experimental concentrations.

Target Err ¼
½Ci�ðY;DsimÞ � ½Ci�ðY;DexpÞ

½Ci�ðY;DexpÞ

�
�
�
�
�

�
�
�
�
�
t¼50;000

� 0:01 ð9Þ

The maximum allowed Target_Err for any component and any transition was set at� 1%.

The Desmos (desmos.com) algorithm was used for nonlinear regression such that no initial

values were required. Desmos performs regression problems using the Levenberg-Marquardt

algorithm which minimizes the sum-of-squares and converges to a minimum (local or global)

solution. [SP] values < 0 or > 10,000 were excluded as chemically impossible or unreasonable,

respectively. The resulting pool of 18 Heaviside functions could be combined as needed to

construct a given CRM. Only final steady-state concentrations for a component were included

in solving a particular Heaviside function; this allowed us to “mix and match” such functions

for testing the validity of any candidate CRM. The case was excluded if Target_Err was > 1%

for any component. Of the 576 CRMs examined, 146 survived. An example of a CRM excluded

due to poor Targeting is given in Fig A in S1 Text.

iv) Wandering: Depending on the CRM, a component concentration plot might deviate

from a straight-line transition from the steady-state concentration in the W state to the steady-

state concentration in Y or D states. W! Y or W!D transitions that minimized “wander-

ing” were preferred. This preference was based on Occam’s razor. To quantify the extent of

wandering, we calculated the arc length of the concentration transition lines in steady-state

plots as described [39]. Component Ci in time-dependent transitions generally approached an

asymptotic limit by 5000 min, and thus the arc length for each component was determined

over this period using (10).

ALtðCiÞ ¼

Z 5000

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ½Ci
0ðtÞ�2

q

dt ð10Þ

To implement this equation, steady-state transitions were divided into 100 increments

j = 1. . .100, assuming a linear incremental change in parameter kisu and αcell for W!Y, and in

parameter [IRON] for W!D. For each Ci, arc length was defined as the sum of the Euclidean

distances to the next point.

ALssðCi;ssÞ ¼
Xj¼99

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCi;jþ1 � Ci;jÞ
2
þ ðkisu;jþ1 � kisu;jÞ

2

q

ð11Þ

For a given component, the associated percentage error for steady-state transitions was

Wanderss ErrðCi;ssÞ ¼
ALðCi ;ssÞsim � ALðCi ;ssÞmin

ALðCi ;ssÞmin

� 100 ð12Þ

For each component of a given CRM, Wander_Err for steady-state and time transitions

were averaged separately, and the lowest-error half of the 146 cases were selected for each tran-

sition type. Each set contained approximately 73 cases. The intersection of those sets contained

26 cases, and these were selected. An example of a CRM excluded due to excessive Wandering
is given in Fig B in S1 Text. This filter (and the Smoothness filter) favor cases in which oscilla-

tions are minimized.

v) Smoothness: This filter was designed to exclude CRMs in which steady-state transition

plots contained abrupt nonphysical spikes. Smoothness was essentially the normalized arc-

length for any point in a plot. A smoothness error was calculated as the defining model param-

eter was changed (kisu and αcell for W!Y or [IRON] for W!D) linearly over 100 increments
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j = 1. . .100. The smoothness error for a given CRM was determined by summing all “spikes”

(normalized distance or arc-length between two points) for each component concentration in

the steady-state transition from W to either Y or D, as determined by (13).

Sm Err ¼
X8

i¼1

100
X99

j¼1

jCiðkisu;jÞ � Ciðkisu;jþ1Þj

Ciðkisu;jÞi
ð13Þ

Sm_Err for an individual CRM was defined to be the sum of the W!D and W! Y

smoothness error scores. We wanted to select CRMs that allowed both transitions to occur

smoothly. Of the 26 cases considered, the top 2 cases had similar smoothness scores, and so

both were selected. In situations involving many cases, clustering may be required to identify

the best group. The process of clustering would start by plotting the smoothness scores on a

number line and see which cases grouped together. Clusters are separated by large gaps in the

number line where no values reside. In our case, we applied mean-shift clustering (calculated

using Python’s scikit-learn library) on our 26 cases and arrived at a similar selection. An exam-

ple of a CRM which was excluded due to insufficient Smoothness is given in Fig C in S1 Text.

vi) n/SP-Reasonableness: Parameter n in (7) represents the sensitivity of the regulation or

the steepness of the Heaviside function plotted vs ([SP]–[Sen]). In real systems, sensitivities

reflect cooperative binding of transcription factor proteins onto DNA promotor sites. Follow-

ing Occam’s Razor, values of n nearer to 1 were preferred, as this avoided the implication of

cooperativity. We calculated the error associated with n deviating from 1 as

n Err ¼ ðjnj � 1Þ for jnj > 1 and ðj1=nj � 1Þ for n < 1 ð14Þ

[SP] represents the concentration of Sen in which the regulatory “valve” is half opened,

since kreg([SP] = [Sen]) = ½kreg([SP]<<[Sen]). From a biochemical perspective, [SP] reflects the

binding strength of Sen to its transcription factor and indirectly to a gene promotor. [SP] val-

ues nearest to the mean of [Sen] for the three cellular states were preferred, as deviations of

[SP] from this span of concentrations might be less chemically meaningful. We calculated this

deviation using (15).

SP Err ¼
X8

j¼1

j½SP� � ½Sen�meanj
½Sen�mean

ð15Þ

For the remaining 2 cases, the sums of n_Err and SP_Err were similar and near the top

scores for all 146 cases examined. These top cases, defined as the “best” cellular regulatory

mechanisms for surviving all filters, are listed in Table 6.

Table 6. Autoregulatory parameters. The order of vertical entries within a column is for CRM cases 1 (left) and 2 (right). A single entry indicates the same value for both

cases.

Parameter k23 kcia kvac kmit kcyt kO2 kmp

Sen FC; FC FM; FM FC; FC FS; FS FC; F2 FS; FS FM; FM
n 0.249 -0.0388 0.680 -0.022 -1.00; -0.159 0.0135 0.0587

[SP] 15.1 0.992 14.0 0.992 8.74; 7.91 258 225

kreg 0.294 5.51 2.89 169 2.16; 16.6 95.4 0.931

kunreg 0 0.418 0.160 0.539 2.63; 2.63 0 0.00106

https://doi.org/10.1371/journal.pcbi.1011701.t006
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Results

Characteristics of the selected CRMs

The top two CRMs exhibited remarkably similar transition plots, so we selected one (Case 1)

for highlighting. The regulatory structure of Case 1 is illustrated in Fig 1, lower panel. Both

best cases had component FC (the labile FeII pool in the cytosol) as the sensor for the kvac and

k23 reactions, operating in feedforward regulation. Thus, both the import of vacuolar FeII from

the cytosol and its oxidation to FeIII (i.e. [F3]) are predicted to be feedforward-regulated by the

concentration of the cytosolic labile iron pool. Informally, this makes sense because the vacu-

oles store excess cellular iron, and the “gate” allowing iron to flow into them should open

when cytosol iron levels become too high. The setpoint concentrations for both relationships

were nearly identical, suggesting the same regulatory event. That cells might regulate the

import AND oxidation of vacuolar FeII has not been suggested in the literature; whether this

occurs in real cells requires further investigation.

Both cases predicted that the rate of cytosolic iron import into mitochondria is feedback-

regulated by FS, with setpoint concentrations significantly lower than the range of [FS] for the

three cellular states. This is a fast reaction in which the unregulated rate is insignificant.

Both cases predicted that the rate of nanoparticle formation in mitochondria is feedfor-

ward-regulated by FM, the FeII pool in mitochondria. This implies that excessive concentra-

tions of FM in the matrix stimulates nanoparticle formation. The setpoint concentration for

this regulation was in the vicinity of the FM concentrations for the three cellular states. Again,

the unregulated rate-constant was insignificant.

There was disagreement as to the sensor that feedback-regulates the rate of iron import into

the cell; Case 1 predicts FC while Case 2 predicts F2. Iron import into real cells through the

Fet3/Ftr1/Fre1 high-affinity system on the plasma membrane is feedback-regulated (along

with other genes of the iron-regulon) by the transcription factors Aft1/2, whose DNA-binding

activity is controlled by the activity level of ISC assembly in mitochondria. In our model, this

corresponds to having FS be the sensor.

The remaining two regulatable reactions of the model, including the generation of CIA

from the labile iron pool and the transport of O2 from the cell exterior to mitochondria, are

more difficult to rationalize from a chemical perspective since little is known as to how (or if)

these processes are regulated. Both cases predict that FM feedback-regulates kcia and that FS

feedforward-regulates kO2. Both predictions require experimental verification.

Steady-state transitions

Fig 3 reveals how the steady-state system, employing Cases 1 and 2 autoregulation, transi-

tioned from W! Y (upper panel) and from W!D (lower panel). Plots were similar regard-

less of which top CRM case was assumed. For the W! Y conversion, [FS] declined smoothly

and gradually (black line) as kisu declined from 6.6! 0.66 μM/min. This was expected given

that FS is the product of the kisu reaction. There were remarkably few dramatic changes in the

concentration of other components until kisu declined to ~ 2 μM/min. Thereafter, mitochon-

drial nanoparticles (MP) increased dramatically and vacuolar iron (F2 + F3) decreased dra-

matically. Fernandez et al observed similar behavior experimentally by examining Mössbauer

spectra of cells as the concentration of frataxin was lowered [20]. They found that vacuolar

iron empties earlier in the transition than MP accumulates.

The behavior of the steady-state system as it transitioned from iron-replete to iron-deficient

conditions (Fig 3, lower panel) was similar to what is observed experimentally. As the in silico
cell becomes increasingly iron deficient (left to right in the plot), vacuoles, which store iron
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Fig 3. Normalized steady-state concentrations of model components during the transformation W! Y (top panel) and W!D

(bottom panel). The following plots represent the steady state transition for the 2 cases. CRM 1 is represented by a solid line while

CRM 2 is the dotted line.

https://doi.org/10.1371/journal.pcbi.1011701.g003
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under iron-replete conditions, empty their iron. This allows the concentration of other iron

species to remain relatively unchanged until extreme iron-deficient conditions (e.g. [IRON] <

ca. 1 μM) are attained. This buffering effect is important as it allows the cell to operate nor-

mally under a wide range of nutrient iron concentrations. O2 concentrations gradually

increased as the cell became more iron-deficient because the rate of respiration slowly

declined. Encouragingly, the CIA concentration remained relatively stable even under rela-

tively extreme iron-deficient conditions. One group of Fe proteins symbolized by the CIA is

non-mitochondrial ISC proteins in the nucleus. Nuclear ISC-containing proteins are perhaps

the most essential iron centers in the cell, and so their concentrations would be expected to be

the most resistant to decline under Fe-deficient conditions.

Time-dependent Transitions

These plots for the W! Y and W!D transitions are given in Fig 4, top and bottom left pan-

els, respectively. The healthy-to-diseased transition, stimulated by an abrupt 10× decline of kisu
(and reduction in αcell), required ca. 3000 min (2 days) which corresponded to ~ 9 doublings.

The primary event led to a slow decline of [FS] along with faster transient increases in virtually

all other components (except MP). Then, all these species gradually declined as [MP]

increased. This choreography is predictive because the kinetics of the transition has not been

investigated experimentally. Interestingly, the reverse transition, Y!W, was not the reverse

of the forward process. In this case, all components returned to W concentrations faster, in ca.

1500 min, probably because the cell would be growing faster.

The W!D transition was faster (complete in ca. 1500 min) and showed the expected

changes, including an emptying of vacuoles and a precipitous decline of FC and FM. These

were followed by a more gradual and limited decline of [FS] and [CIA]. Thus, changes in [FS]

and [CIA] were buffered at the expense of vacuoles emptying their iron; this makes sense

physiologically. Again, plots of the reverse process were not the reverse of the forward plots.

Fig 4. Normalized time-dependent concentrations of model components as the system transitions from W! Y

and D!W (left side) and reverse (right side). Left two panels: W! Y (top) and W!D (bottom); Right two

panels: Y!W (top) and D!W (bottom).

https://doi.org/10.1371/journal.pcbi.1011701.g004
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Stability analysis

The all-negative eigenvalues of the Jacobian matrix guarantee that the system recovers when

the concentration of any component in the model is perturbed (within limits). To illustrate

this, we abruptly doubled the concentration of [FS] for the W cell growing at steady-state. The

steady-state system recovered regardless of whether the system was (Fig 5, lower panel) or was

not (upper panel) autoregulated. In both cases, recovery required ~ 2400 min or ~ 11 dou-

blings. Without autoregulation, only half of the components in the system were interrelated

and thus perturbed; FC, F2, CIA, and F3 were unaffected by doubling [FS]. With Case 1 auto-

regulation included, all components of the system were impacted by the perturbation which

seems more realistic. Immediately after [FS] was doubled, [FM], [MP], [FC], and [O2]

Fig 5. Perturbation and recovery. In this simulation, the system began in the W state with all components at their normalized steady-

state concentrations except for [FS] which was normalized to 0.5. At t = 400 min, [FS] was doubled, and the system was allowed to

recover in time. Top panel, without autoregulation; bottom panel, with Case 1 autoregulation.

https://doi.org/10.1371/journal.pcbi.1011701.g005
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declined and then recovered. [O2] declined majorly and instantly, due to the increased respira-

tory activity caused by doubling [FS], which in turn prevented O2 from entering mitochon-

dria. [F3] declined as well but after a slight delay. [CIA] and [F2] both increased initially, and

then recovered in accordance with the autoregulation of these components.

The eigenvalues obtained by the J matrix for the 3 states represent apparent first-order

decay constants (ki / elit) for the associated component returning from a perturbed value.

The eigenvalue for the recovery of component [FC] was orders-of-magnitude greater than for

any other component (Table 5). This implies that the recovery from a perturbation in [FC]

should be far faster than for other components. This makes sense because [FC] (the cytosolic

labile iron pool) increases rapidly as nutrient iron enters cells, and it also decreases rapidly as

FC iron is distributed into mitochondria, vacuoles, and cytosolic and nuclear proteins. In con-

trast, terminal components such as MP or F3 recovered far slower from a perturbation, as they

relied solely on dilution to lower their concentrations.

Sensitivity analysis

The sensitivity of the system in each cellular state was evaluated by determining the effect of

changing each kobs of the system on the steady-state concentration of each component Ci. The

magnitude of each kobs, augmented by a Heaviside function, was multiplied by a scale factor h
with values ranging from 0.5 to 2.0. This factor was increased in increments of j = 0.01. The

effect of “jiggling” a selected kobs in this way on the steady-state concentration of a selected

component Ci was determined by calculating the slope of a function designated Gi(h). For

each value of h, this function returned the percent change in the steady-state concentration of

Ci. The greater the percent change at h = 1 (i.e. the greater the slope of Gi(h = 1)), the more sen-

sitive that kobs was considered. For a given kobs, the process was repeated for each Ci, and the

resulting normalized slopes were summed and then averaged. A larger slope indicated a

greater sensitivity of that kobs. The sensitivity of a kobs was calculated as

Sensitivity of a kobs ¼
1

8

X8

i¼1

Giðh� 2jÞ� 8Giðh� jÞþ8GiðhþjÞþGiðhþ2jÞ
12j

� �

½Ci�

�
�
�
�
�
�

�
�
�
�
�
�

ð16Þ

by a finite difference approximating the derivative with a Taylor’s series [40][41]. Table 7 indi-

cates the sensitivity of each kobs for each cellular state. Assuming Case 1 (Table 6), kO2 was the

most sensitive for all three cellular states, indicating the great importance of the rate of oxygen

entering the system. The rate of iron entering mitochondria (kmit) was the second-most sensi-

tive. In the model, the reactions involving iron and oxygen within mitochondria are clearly

critical in controlling overall behavior. The least sensitive rate-constant, again for all three cel-

lular states, was k23 which reflects the oxidation of F2 to F3 in vacuoles. Also interesting is that

Table 7. Sensitivity analysis. Sensitivities were calculated according to Eq (16). They represent the sum of percentage

changes in the concentration of each component in the model when the indicated rate constant was “jiggled”.

Rate constant W Y D

kO2 59 40 47

kmit 26 1.7 11

kcyt 23 1.9 21

kvac 16 0.79 2.6

kcia 3.0 0.33 11

kmp 2.5 0.87 1.6

k23 0.15 0.59 0.74

https://doi.org/10.1371/journal.pcbi.1011701.t007
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the Y state was overall least sensitive to any change in rate (by summing up all the sensitivity

numbers); one could view the healthy W state as “spiraling down” and becoming “locked into”

the diseased Y state.

Predicting cellular states

Finally, we used our model to predict the iron content of WT and Yfh1-deficient yeast cells

grown under hypoxic conditions, called the HW and HY states (Fig 6, top and bottom panels),

respectively. The model was not trained on these states so our results represent true predic-

tions. The HW state was obtained simply by reducing [OXYGEN] from 100 μM in the W state

to 25 μM; the HY state was obtained likewise from the Y state, except that [OXYGEN] was

reduced to 1 μM. In this latter case, [MP] and [F3] declined majorly while [F2] (Fig 6, green

line) became dominant. Indeed, Mössbauer spectra of the H states are dominated by a non-

heme high-spin FeII quadrupole doublet, and nanoparticles are absent [20]. Importantly, the

steady-state concentration of [FS] in the HY state (Fig 6, black line, lower panel) is predicted in

our simulations to be ~ 5× higher than in the Y state, and comparable to [FS] concentrations

in the W and D states. A similar recovery under hypoxic conditions was observed experimen-

tally [20]. Moreover, raising frataxin-deficient mice under hypobaric conditions attenuated

disease progression [42].

Discussion

In this study, we solved a coarse-grain ODE-based biochemical kinetic model operating within

growing yeast cells. The model describes how iron is trafficked and regulated in eukaryotic

cells. The system was solved to allow both dynamic (time-dependent) and steady-state simula-

tions. To do this, we relied on steady-state concentrations for each component in each of the

three considered cellular states (W, Y, and D). Component concentrations for these systems

were assigned based on previously published Mössbauer spectroscopic results in combination

with determinations of iron concentrations in whole cells, mitochondria, vacuoles, and cyto-

sol. The model also employed experimentally determined growth rates for cells.

Like most ODE-based biochemical models, sufficient kinetic information was unavailable

to solve the system rigorously and uniquely, whereas substantial concentration data were avail-

able. Relying on concentrations of cellular components increasingly makes sense because such

quantitative concentration determinations are becoming increasingly available due to mass-

spectrometry-based proteomic and metabolomics studies. In contrast, determining kinetic

parameters experimentally for individual biochemical reactions remain an arduous task.

The current model evolved from earlier versions [19, 20] and uses an improved method of

optimization. Both earlier versions were solved only at steady-state; here time-dependent

dynamic states were also obtained. The regulatory mechanisms assumed in earlier versions

were designed by the modeler as needed to generate steady-state concentrations that approxi-

mated experimental results by adjusting kinetic parameters at will. In optimizing the current

model, steady-state concentrations were assigned to be most consistent with experimental

results, and then the set of kinetic parameters that would generate those concentrations exactly

or nearly so was calculated. This was a major advance.

The traditional notion of solving transient dynamical systems is to assign all system param-

eters and then perform numerical simulations to observe the evolution of the state variables

including approximating their steady state values. For dynamical systems corresponding to

metabolic networks, the system parameters correspond to reaction rates while the state vari-

ables are metabolite concentrations. Assigning values to all the parameters needed to deter-

mine the reaction rates as functions of the state variables is a formidable task. The approach
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taken here capitalized on the specific structure of the dynamical system corresponding to a

metabolic network within an exponentially growing cell which included amongst the system

reactions, dilution terms for the state variables. The reaction rates are determined by

Fig 6. Predicting the effect of hypoxia. The system began in the W (left panel) and Y (right panel) states. At t = 0, the concentration of O2 was reduced from

100 μM to 25 μM (top) or to 1 μM (bottom). This caused the system to transition from W!HW (top) and Y!HY (bottom).

https://doi.org/10.1371/journal.pcbi.1011701.g006
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consideration of the steady state counterpart to (2) in which the right-hand-side is set to the

zero-vector giving a homogeneous, linear algebraic system with the vector of reaction rates as

the unknown. By organizing the stoichiometric matrix so that the respiration rate Rres and the

eight dilution rates are the final nine entries in the reaction rate vector, the RREF in (3) gives

the respiration rate and the eight dilution rates as the nine degrees of freedom in the general

solution to (3) with the other eight reaction rates being linear functions of those nine degrees

of freedom. Reasonable estimates for those nine free rates were measured experimentally or

gleaned from the literature; the remaining reaction rates were then calculated from the rela-

tions (4). This allowed the entire steady-state system to be solved for each cellular state consid-

ered. The stability of the resulting systems was demonstrated by constructing the Jacobian

matrix and solving for its eigenvalues (Appendix B in S1 Text and Table 5).

For the most part, each cellular state used different steady-state concentrations as well as a

unique set of rate-constants. The next challenge was to have the model transition from the

wild-type iron-replete state (W) to a diseased state characteristic of Friedreich’s Ataxia (Y) as

well as to an iron-deficient wild-type state (D). Transitions were triggered by simple primary

events initiated external to the model. The W! Y transition was triggered by a decline in the

rate-constant associated with the assembly of mitochondrial ISC coupled to a decline in the

growth rate of the cell. This mirrored the primary cause in the development of Friedreich’s

Ataxia. The W! D transition was triggered by lowering the nutrient iron concentration.

Without regulation, the in silico cell’s response to these primary events was insufficient to

successfully transition from W to Y or D states, because the set of rate-constants used for each

state were (generally) different from each other. In essence, we had “tied-down the two ends”

of the desired transitions (W! Y and W! D) but needed to solve the system between those

ends. We reasoned that transitioning must involve the gradual shifting of rate-constants, from

the set that defined the initial W state to those which defined the final Y or D states. Adjusting

these rate-constants manually would be artificial (nonbiological), so a strategy was developed

to do this automatically in response to the primary events.

The strategy involved autoregulation which would exclusively use model components as

sensed species (i.e. sensors) in regulation. The concentration of a designated sensor, relative to

a set-point concentration, could regulate the rate of a reaction. Real cells do this to maintain

homeostasis, making autoregulation superior to externally/manually controlled mechanisms.

The reactions of the model did not involve enzymes explicitly, but we reasoned that rate-

constants for a given reaction could be viewed as reflecting the expression level of an implicit

enzyme. Thus, shifts in rate-constants from one state to another were viewed as reflecting

shifts in gene expression levels during transition.

The actual biochemical mechanisms by which gene expression levels are controlled were

either too complicated to be employed in autoregulation, or they were unknown. Thus, we

decided to augment every regulatable reaction using soft Heaviside functions as surrogate reg-

ulatory systems. For each such reaction, we needed to identity which component would best

serve as sensor in shifting the set of rate constants appropriately. This would constitute the

best CRM.

To do this, we first assumed all possible combinations of sensed species for the group of reg-

ulatable reactions. We then applied six criteria, called uniqueness, trending, targeting, wander-
ing, smoothness, an n/SP-reasonableness to filter or select the best CRMs, similar to a genetic

screen. In the end, two CRM cases all had similar “fitness”, and one was highlighted in con-

structing transitional plots. We caution that applying the same strategy for selecting viable

autoregulatory mechanisms will become increasing difficult computationally as the complexity

of models increases.
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The problems we faced are the norm for kinetic biochemical models within the field of cell

biology; thus, our methods might be useful in solving other such models. The quality and

quantity of available kinetic information, and the correctness of the proposed mechanism and

rate-laws ultimately limit the reliability and predictive power of simulations. However, there

are many situations within the field of cell biology where simulating even qualitative or semi-

quantitative behaviors would provide new insights and advance the field. In such cases, a more

rigorous mathematical analysis, as given here, could constrain possible solutions and render

models more reliable.

One advantage of mathematical models is that they are fully transparent in terms of

assumptions, the parameters required and values used, the sensitivity of that information to

the behavior of the model, etc. Allowing the entire system to be open for inspection and criti-

cism will advance our understanding of the modeled process to a far greater extent than can be

gleaned from cartoon mechanisms (e.g. Fig 1 alone) which are commonly included in papers

and reviews.

Once a mathematical model is operational, an iterative process of making predictions, test-

ing and modifying can commence. As more reliable information becomes available, models

will also become more reliable and possess greater predictive power. Ultimately, a model with

predictive power could be used to understand (on a biochemical mechanistic level) the effect

of a genetic mutation and consequent disease formation. Such models could also be used to

evaluate the effect of various therapies and treatments for diseases. This would be highly useful

to researchers, clinicians–and most importantly, patients.
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