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Abstract

This paper presents a novel sound event detection (SED) system for rare events occurring

in an open environment. Wavelet multiresolution analysis (MRA) is used to decompose the

input audio clip of 30 seconds into five levels. Wavelet denoising is then applied on the third

and fifth levels of MRA to filter out the background. Significant transitions, which may repre-

sent the onset of a rare event, are then estimated in these two levels by combining the peak-

finding algorithm with the K-medoids clustering algorithm. The small portions of one-second

duration, called ‘chunks’ are cropped from the input audio signal corresponding to the esti-

mated locations of the significant transitions. Features from these chunks are extracted by

the wavelet scattering network (WSN) and are given as input to a support vector machine

(SVM) classifier, which classifies them. The proposed SED framework produces an error

rate comparable to the SED systems based on convolutional neural network (CNN) archi-

tecture. Also, the proposed algorithm is computationally efficient and lightweight as com-

pared to deep learning models, as it has no learnable parameter. It requires only a single

epoch of training, which is 5, 10, 200, and 600 times lesser than the models based on CNNs

and deep neural networks (DNNs), CNN with long short-term memory (LSTM) network, con-

volutional recurrent neural network (CRNN), and CNN respectively. The proposed model

neither requires concatenation with previous frames for anomaly detection nor any addi-

tional training data creation needed for other comparative deep learning models. It needs to

check almost 360 times fewer chunks for the presence of rare events than the other baseline

systems used for comparison in this paper. All these characteristics make the proposed sys-

tem suitable for real-time applications on resource-limited devices.

Introduction

Over the past few years, the rise in crime rate and the resulting requirement of stringent secu-

rity at many public and private places e.g. banks, automatic teller machines (ATMs), bus sta-

tions, café, public transport, offices, shopping malls, homes, etc. has resulted in a large scale

installation of security cameras to monitor the surroundings automatically and avoid any
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unpleasant situation. The recordings of these cameras are not only used for avoidance but also

help in later investigations, in case any unusual event occurs. However, the use of visual moni-

toring may not always work due to any obstruction in the line of sight of the camera, large

unlit areas at night, bad weather conditions, occlusions that occur at overcrowded places, or

events occurring outside the field of view of the camera [1–3]. Also, some events are not easy

to spot on a video: for instance, a gunshot, a person screaming, or a tire skidding, but they

have a very distinctive audio signature [1]. For this reason, there is a growing interest in refin-

ing audio surveillance methods for more accurate event detection. In comparison with video

surveillance, one of the main advantages of audio surveillance is that they are not affected by

variations in illumination and are equally effective at both day and night timings [1]. Also, the

inexpensive equipment of audio surveillance as compared to video cameras has favored their

usage [4]. However, the problem of designing audio surveillance models in an open environ-

ment is very challenging as the event of interest is superimposed to a significant level with the

background noise [1]. Other challenges include inherent acoustic variability of the sounds

belonging to the same event class, overlapping (simultaneously occurring) sound events, envi-

ronmental noise, variability in the acoustic characteristics of the background acoustic scene,

and rarely occurring sound events [5].

Sound plays a key role in identifying a rare event, whether it’s the anomalous machine

sound classification [6,7], environmental sound classification [2], surveillance at public places

(e.g. railway stations [2], subway stations [8], public squares [3], roads [4,9–11] and homes

[12]), anomalous health conditions [13,14] or management of cowsheds with low manpower

support [15]. Many studies detecting and classifying rare sound events have been proposed

and are still underway. They are using signal processing, machine learning, deep learning, or

their various combinations. A few models (e.g. [16]) have also combined video event detection

(VED) with sound event detection (SED), as SED gets over most of the limitations of VED dis-

cussed above. The purpose of SED systems is to temporally locate and classify the rare event

present in an acoustic signal [5]. The classification step is commonly called ‘audio tagging’.

In our proposed SED system, wavelets are used both for anomalous event detection and

classification in an open environment. Wavelet-based rare event detection offers unique

advantages over time and frequency-domain techniques. It is found that the impulsive parts of

the audio, caused by the occurrence of a rare acoustic event are better characterized by wave-

let-based features [17]. In time domain techniques, it is difficult to resolve the peaks arising

due to the occurrence of sudden sound events. The time-domain features (e.g. zero-crossing

rate (ZCR), amplitude envelop, and root mean square energy) are extracted directly from the

raw signal so they are easy to implement [18]. However, they are not preferred for non-station-

ary signals as the statistical properties of these signals change over time. Secondly, as these fea-

tures are calculated from signal amplitude values, so any interference acquired through

recording comes as another disadvantage for them [19]. However, they are useful for measur-

ing onset time and usually complement the frequency domain features. Under low signal-to-

noise ratios, the frequency domain features (e.g. Fourier transform (FT), and short-time Fou-

rier transform (STFT)) provide differentiation between environmental noise and the desired

signal embedded inside it [20]. However, these features have their own drawbacks e.g. the Fou-

rier transform lacks localization ability and is computationally slow for singular (rare) points,

resulting in the Gibbs effect. Gibbs effect is the oscillating artifacts at the points of discontinui-

ties, when the discontinuous functions are approximated by a truncated Fourier series [21].

STFT, on the other hand, is limited by the trade-offs involved in time and frequency resolution

[22]. Also, it is not stable against time-warping deformations [23]. Among the spectral features,

the Mel frequency cepstrum (MFC) and the Mel frequency cepstral coefficients (MFCCs) have

been used for rare event classification (e.g. in SED models of [16,24]), due to their logarithmic
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representation which results in better separation of different signals with similar frequency

contents [25]. However, it was found that in the case of MFC, the high-frequency spectrogram

coefficients are not stable to time-warping distortions [26]. The MFCCs stabilize them by aver-

aging them over the Mel band, but this averaging operation results in information loss (e.g.

vibratos and attacks) [26], which degrades the classification accuracy. Another reason for the

loss of information is due to discarding the higher frequencies in MFCC, which makes the dis-

tinction between the signals with similar timbre difficult. To reduce this information loss,

MFCCs are usually computed over a smaller window, which makes the extraction of large-

scale features challenging, limiting the performance of sound classification. In contrast, there is

no requirement for the duration of the analysis window in the wavelet scattering network

(WSN). In WSN, the time scattering coefficients are cascaded with frequency scattering coeffi-

cients to generate a feature representation of the signal [19]. The wavelet scattering coefficients

(WSC) offer a stable and invariant signal representation for classification, without the loss of

information associated with the Mel transforms. The most striking feature of wavelets is their

astonishing similarity with the physiological models of the cochlea and auditory pathways.

From the application’s perspective, there exists a multiplicity of information at different time

scales, e.g. pitch and timbre at the scale of milliseconds, rhythm of music and speech at the scale

of seconds, and urban sounds at the scale of minutes and hours. While MFCCs are efficient

local descriptors for intervals shorter than 25ms, they fail to capture large-scale structures e.g.

timbral structures such as attacks, frequency and amplitude modulations, and interference in

musical chords. The coefficients of the wavelet transform, on the other hand, are calculated over

larger window sizes thus allowing these larger structures to be captured without loss of informa-

tion [23]. The accuracy of the sound classification task is found to improve with WSC as com-

pared to STFT and MFCC [25]. Another advantage of wavelet coefficients is their flexibility in

choosing their order [26]. Another advantage of wavelet coefficients is their flexibility in choos-

ing their order [26]. WSN is equivalent to a convolutional neural network (CNN) with multiple

stages (equivalent to CNN layers). Each stage of WSN is formed by the cascade of wavelets,

modulus nonlinearities, and low-pass filters. The output of one stage becomes the input of the

next stage. The number of such cascaded stages is called the ‘order’ of WSN. The order is usually

kept low, to achieve low computational complexity suitable for resource-limited devices [27].

Energy dissipates as the signal moves from one stage to another. Research shows that the energy

of the 3rd-order coefficients can fall below 1%, making the 2nd-order WSN sufficient for most

of the applications [27]. WSN enables derivation of low-variance features from the real-valued

time-domain signals. These features are insensitive to the translations of the input on an invari-

ance scale defined by the user and also stable against time-warping deformations [28].

For the classification of the features extracted by the WSN, a support vector machine

(SVM) classifier is used in our proposed model. As compared to other machine learning classi-

fiers, SVM offers higher accuracy and computation efficiency with better generalization and

also it requires less memory as it uses only a subset of samples during the decision phase [29].

Wavelets have long been used to detect anomalies from auscultation signals e.g. in

[13,14,30], and recently for the detection of other health anomalies e.g. abnormal blood sugar

levels [31], arrhythmia [32] and examine the functional connectivity in different brain regions

in electroencephalogram (EEG) [33]. For the physiological time series data, e.g. brain and

heart signals which are typically non-stationary, the wavelet transform has been used over

recent years as a powerful tool to manipulate such signals [33]. Apart from these slowly varying

medical signals, wavelets have been used for other time domain signals e.g. speech denoising

[34], and anomaly tagging in machine sounds [35,36]. As compared to other feature extraction

methods (time and frequency domain), wavelets are more suitable for the analysis of transient

signal changes and irregular data patterns, where impulses may occur at any instant [37].
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Recent work using wavelets for sounds recorded in open environment:
In the case of an open environment, the features extracted by wavelets are found to be bene-

ficial in improving the accuracy of acoustic scene classification (ASC) tasks. In [38,39], the

Mel-frequency discrete wavelet coefficients (MFDWC) are used for ASC to extract features

from an acoustic scene to be later classified by the SVM network. Similarly, the wavelet-based

spectrograms (scalograms) offer better multi-resolution analysis as compared to MFCC due to

its suitability in adjusting both temporal window length and the wide frequency range [30]. In

[40], scalograms are used for extracting the sound features to be processed by a cascade net-

work comprising a two-dimensional pre-trained CNN model and gated recurrent neural net-

works (GRNNs) with a highway network layer and a softmax layer for ASC. In [41], ASC is

carried out by an ensemble classifier (consisting of two random sub-space classifiers), trained

on the features extracted from audio signals by WSN. The outputs of the two classifiers are

combined by using the mathematical formula whose parameters are determined by a genetic

algorithm. In the case of environmental sounds, the model of [23] uses WSN in fusion with

the self-attention mechanism for ASC. In the ASC model of [23], WSN is used to extract fea-

tures that are processed by the classical feed-forward neural network. The gunshot localization

and classification model proposed in [42] uses wavelet MRA for denoising the acoustic signals

contaminated by wind noise recorded by four microphones. The model then uses time-

domain cross-correlation to localize the source and extreme learning machine (ELM) to clas-

sify the type of shot. A very recent work using WSN is a lightweight model [25] designed for

the classification of infant baby cries. This system uses the features extracted by WSN and

inputs them in a series of convolutional neural network (CNN) and residual blocks, where the

CNN blocks provide the depth-wise and point-wise 2D convolutions to reduce the computa-

tional complexity during the training process, and residual blocks serve to strengthen the pat-

tern recognition and avoid the gradient vanishing problem. However, this model only

provides information about the presence of the rare event in an audio clip, without its time of

occurrence. The model in [43] proposes the use of an SVM to cluster the features extracted

from the audio by WSN for detecting any change in the ambient routine of elderly people.

However, neither results are reported in their paper, nor any comparison is made with other

models. The paper of [32] uses scalograms to fine-tune a pre-trained image classification net-

work for the bird’s song classification. The use of pre-trained networks requires less training

time and samples. However, this network is only able to classify these rare events but unable to

detect their onset time.

Contribution of this paper: The main contribution of our work can be summarized as

follows:

1. Although wavelets have been used for denoising the recordings of the open environment

for rare event detection (e.g. [42]) or its tagging (e.g. [23,25,32,38,39,41]) but not simulta-

neously for both purposes. In this study, to the best of our knowledge, this is the first time

that wavelets are being used both for the rare event detection and its classification, for the

events occurring in the open environment.

2. Unlike the models [42] (for gunshot) and [25] (for baby cry), which can classify only a sin-

gle type of acoustic event, our proposed model is trained and tested for three types of acous-

tic events namely gunshot, glass break, and baby cry. Also, these models need additional

deep learning modules (for example CNN and residual blocks in [25] and ELM in [42]),

which results in an increased number of learnable parameters and computational cost as

well as longer training duration and datasets, as opposed to our proposed network which

has no learnable parameters and so it is faster and computationally more efficient. Also, the

models [25,42] have been tested in only one kind of background noise (i.e. wind and
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domestic environment respectively), our proposed model is tested for 15 different kinds of

background noises.

3. Although the model of [43] is designed for SED and is very much similar to our proposed

system in using the WSN for feature extraction and later SVM for their classification, the

main difference lies in the fact that their model uses no denoising mechanism before

extracting features by WSN. Also, as they have not reported their results and have trained

their model on their self-recorded dataset, it is not possible to compare our proposed algo-

rithm with [43].

The rest of the paper is organized as follows. In next section, an overview of our proposed

system is presented. After that, the experimental setup, the evaluation criteria, and the brief

introduction of the comparison algorithms are given. The experimental results are given in the

‘experiment and results’ section and the conclusions are drawn in the last section.

Proposed methodology

Our proposed SED system is named ‘DEW’, the acronym for ‘Detection of rare Events by

Wavelets”. In the discussion below, the important steps of DEW are described.

Feature extraction and support vector machine (SVM) classifier’s training

Before processing the signal by DEW, its SVM classifier needs to be trained. WSN is used to

extract the important features from audio clips of the ‘anomalous’ or ‘rare event’ class(es)

and the ‘background’ class to train our SVM network. All the notations and equations used

in this subsection are adopted from [44]. Let f(t) be a 1-second audio sample of the training

dataset for the SVM classifier. It may belong to any of the rare event classes (baby cry, glass

break, gunshot) or the background class. The low-pass filter ϕ and the wavelet function ψ
are designed to build filters, which can cover the whole frequencies contained in the signal.

Let ϕJ (t) be the low-pass filter that provides local translation invariant descriptions of f at a

predefined scale T. The family of wavelet indices is denoted by Λk, having an octave fre-

quency resolution Qk. The multi-scale high-pass filter banks fcjk
g
jk2Lk

can be constructed

by dilating the wavelet ψ.

WSN iterates over three operations: 1) wavelet transform, 2) nonlinear modulus, and 3)

averaging operation. The convolution S0f ðtÞ ¼ f ∗�JðtÞ generates a local translation invariant

feature set of f, but also results in the loss of high frequency information. These lost high fre-

quencies can be recovered by a wavelet modulus transform

jW1ðf Þj ¼ fS0f ðtÞ; jf ∗cj1ðtÞjgj12L1

ð1Þ

where ‘*’ shows the convolution operator. The first-order scattering coefficients are obtained

by averaging the wavelet modulus coefficients with ϕJ as:

S1f ðtÞ ¼ fjf ∗cj1ðtÞj∗�JðtÞgj12L1

ð2Þ

To recover the information lost by averaging, note that S1f(t) is a low-frequency component

of |f*ψj1(t)|, from which the complementary high-frequency coefficients are extracted as given

in Eq (3)

jW2jjf ∗cj1j ¼ fS1f ðtÞ; jjf ∗cj1j∗cj2ðtÞjgj22L2

ð3Þ
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Following the same pattern, the second-order scattering coefficients are defined as:

S2f ðtÞ ¼ fjjf ∗cj1j∗cj2ðtÞj∗�JðtÞgji2Li
ð4Þ

Iterating the above process defines the wavelet modulus convolutions Umf(t) as:

Umf ðtÞ ¼ fjjf ∗cj1j∗ . . . . . . :cjmðtÞjgji2Li
; i ¼ 1; 2; . . . . . . ::m ð5Þ

Averaging Umf(t) with ϕJ gives the mth-order scattering coefficients Smf(t)

Smf ðtÞ ¼ f jjf ∗cj1j∗ . . . ::j∗cjmðtÞ
�
�

�
�∗�JðtÞgji2Li

; i ¼ 1; 2; . . . . . . ::m ð6Þ

The final scattering matrix Sf(t) aggregates scattering coefficients of all orders to describe the

features of input signal as given in Eq (7):

Sf ðtÞ ¼ fSmf ðtÞg0�m�l
; ð7Þ

where l0 is the maximal decomposition order.

The WSN is invariant to translations up to the invariance scale, which can be potentially

large, due to the average operation determined by the low-pass filter ϕJ. The invariance scale

establishes the time-scale of the low-pass filter and hence plays an important role in audio clas-

sification tasks [25]. Due to the properties inherited from wavelet transform, the features Sf(t)
are stable to local deformations. The structure of a WSN is similar to the convolutional neural

network (CNN), but there are two major differences: 1) the filters are not learned but are set in

advance and 2) the features are not only the output of the last convolution layer but also the

combination of all those layers. The energy of scattering coefficients decreases rapidly as the

layer level increases, with almost 99% of the energy contained in the first two layers [45].

Therefore, most of the networks, including ours, are confined to second-order to extract

important features of audio signals. This also results in a significant reduction in computa-

tional complexity.

The extracted features are then used for training a multiclass SVM classifier. The SVM clas-

sifier is configured in one-against-all (OAA) mode. This mode of SVM constructs one SVM

model per class, which is trained to discriminate the samples of one class from the samples of

all other remaining classes. In OAA mode, the overall classification is achieved by using major-

ity voting, where each SVM model votes for one class [35]. It is found that the OAA approach

produces higher accuracy than the one-against-one (OAO) method but its training and testing

take longer [46]. One sample of an audio clip from each class, used for the training of the SVM

classifier is shown in the time domain as in Fig 1. The trained SVM is then inserted in the

DEW network to do the audio tagging.

DEW testing. After the insertion of a trained SVM classifier, the signal flow diagram of

DEW during the testing phase is shown in Fig 2. The boldfaced Roman numbers (enclosed in

parenthesis) inside each dotted sub-block show the important steps involved. The audio signal

(containing the rare event) is processed according to the sequence of steps given in this figure.

Eqs (8) to (11) used in this subsection are adopted from [34] and Eqs (12) and (13) from [47].

Step (I): Multiresolution analysis (MRA) of an audio clip

The input audio clip, represented by x(t), has two main components, the rare event r(t) and

the background b(t), as given by Eq (8).

xðtÞ ¼ rðtÞ þ bðtÞ ð8Þ

where t is the sampling time.
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This input signal x(t) is decomposed into multiple levels by using discrete wavelet trans-

form (DWT) by the formula given in [34] as:

DWTxða; bÞ ¼
Z 1

� 1

xðtÞc∗
ðtÞ ð9Þ

Where c
∗
ðtÞ ¼ cm;nðtÞ ¼ 2� mcð2mt � nÞ is the dilated and translated version of mother

wavelet ψ, a = 2−m, b = n2−m and m, n2Z+.

With this choice, there exists a multiresolution analysis (MRA) algorithm, which decom-

poses the signal into scales with different time and frequency resolutions. MRA refers to break-

ing up a signal into components, which can produce the original signal exactly, when added

back together. The term MRA is often associated with wavelets or wavelet packets, but there

are non-wavelet techniques that also produce useful MRAs. Real-world signals are composed

of many components. Often, only the first few are enough [22]. MRA allows us to narrow

down our analysis by separating the signal into components at different resolutions. MRA pro-

vides a way of avoiding the need for time-frequency analysis while allowing us to work directly

in the time domain. MRA can help localize and detect transient features like impulsive events.

These changes are more easily visualized in the components of MRA than in the raw data [48].

The wavelet decomposition results in multiple levels of approximated and detailed coefficients.

Let’s represent each level by levelo, where o = 1,2,. . .. . .. . ..O. The decomposition of x(t) into O
levels (where O = 5 in our case) is shown in Fig 3.

Fig 1. Audio samples of different classes, used for SVM training.

https://doi.org/10.1371/journal.pone.0300444.g001
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DWT decomposes the signal by convoluting it with the coefficients of high-pass and low-

pass filters. These two filters are quadrature mirror filters (QMF) [49]. The outputs of a low-

pass filter are known as the approximated coefficients, and the results of high-pass filters are

known as the detailed coefficients. The DWT begins by finding the approximated and detailed

coefficients from the input signal. For higher decomposition levels, the approximation coeffi-

cients are further filtered at every layer into approximated and detailed coefficients following

dyadic sampling. A wavelet basis function must be able to decompose and reconstruct the sig-

nals efficiently. Orthogonal wavelet basis functions are found to have such characteristics, so

they can be a good choice for anomaly detection.

Step (II): Denoising the MRA levels

In the class of adaptive filters, wavelet-based denoising has shown promising results [42].

The levels obtained from MRA get sparser as one goes up the levels, keeping only the most

important signal details (transitions). Each level o has a different number of samples N. How-

ever, the signal information is embedded in noise (background signal b(t)), and so it is neces-

sary to denoise these levels to retrieve the embedded information. Let W(.) denote the forward

wavelet transform operator and D(.,λ) the denoising operator with threshold λ. The two steps

involved in the denoising process of levelo by wavelets are given as in [34] by Eqs (10) and (11):

Y ¼WðleveloÞ ð10Þ

Z ¼ Dðlevelo; lÞ ð11Þ

Fig 2. Signal flow inside DEW.

https://doi.org/10.1371/journal.pone.0300444.g002
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There are four common rules for selecting the threshold λ. These are 1) ‘heursure’, 2) ‘mini-

max’, 3) ‘rigsure’ and 4) ‘sqtwolog’. The first two of them are more conservative and would be

more convenient when small details of the signal lie near the noise range. The last two of them

remove the noise more efficiently. The threshold λ is either dependent only on the number of

samples N (e.g. in minimax) or it can be data-adaptive (e.g. in Stein’s Unbiased Risk Estimator

(SURE)), which depends not just on N but also on data. There are two types of thresholding; 1)

hard and 2) soft. In hard thresholding, the elements whose absolute values are less than λ, are

set to zero. In soft thresholding all those elements whose absolute values are less than λ are set

to zero, while those above it are shrunk towards 0. Hard thresholding is the simplest method

and provides edge preservation, but the soft one has nice mathematical properties [34] and

provides smoother results [50]. The package of [51], implementing the soft thresholding, is

used for level denoising.

Step (III): Peaks detection

The rare events are usually impulsive and result in a transitional increase in the energy of

surroundings. These transitions are well captured by the peaks of the decomposed levels of

DWT. Not all peaks are necessarily linked with the onset of an event. However, some of them

may contain useful information about the onset time of rare events. To detect them, the nega-

tive portion of each denoised level is clipped off and the peak finder algorithm of [47] is

applied, where the threshold above the surrounding peaks is kept large for the algorithm to be

more selective in finding the peaks. The clipping-off process on any level levelo and the

Fig 3. Audio clip decomposition into five levels by DWT.

https://doi.org/10.1371/journal.pone.0300444.g003
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threshold value ȿ set in the peak finder algorithm [47] are given by Eqs (12) and (13) respec-

tively.

levelo ¼ maxð0; leveloÞ ð12Þ

ȿ ¼ maxðleveloÞ � minðleveloÞ
2

ð13Þ

However, the algorithm [47] has resulted in producing many peaks in the surroundings of

an actual peak, even after keeping the threshold ȿ to a very high value, due to the very high

sampling rate of the recorded clips. To overcome this problem, the K-medoids algorithm is

applied to narrow down the peak search to only a few prominent peaks. Although there are

other unsupervised clustering algorithms e.g. density-based spatial clustering of applications

with noise (DBSCAN) and spectral clustering to find the core points of clusters, but as they are

computationally more expensive than the K-medoids, they are not considered here for solving

this problem. To overcome this problem, the K-medoids algorithm is applied to narrow down

the peak search to only a few prominent peaks. Although there are other unsupervised cluster-

ing algorithms e.g. density-based spatial clustering of applications with noise (DBSCAN) and

spectral clustering to find the core points of clusters, but as they are computationally more

expensive than the K-medoids, they are not considered here for solving this problem. Also, the

K-medoids clustering offers lower execution time, reduced cluster overlapping, and improved

clusters due to selecting a representative object instead of a non-representative object as done

in K-mean clustering where the mean value of cluster is taken as its centre. The K-medoids

clustering is also more robust to noise and outliers than the K-means clustering [52]. For K-

medoids, the number of clusters that exist in each level must be known beforehand, which of

course varies according to the audio clip and the MRA level under consideration. As the num-

ber of clusters cannot be set apriori in K-medoids, the algorithm of data partitioning for spec-

tral clustering [53] is used, to find the appropriate number of clusters for the K-medoids

algorithm. This results in reducing the total number of peaks to only a few prominent ones. As

all MRA levels do not generate the peaks that are representative of the occurrence of rare

events, only those levels are selected which help in the detection of rare events and others are

discarded. Other constraints for selecting the optimal MRA levels will be discussed in the

‘experiment and results’ section. The denoising and peak detection operations are applied only

on these selected levels to save computational resources and time. The process of peak finding

for the 3rd and 5th denoised MRA levels is shown in Fig 4.

Step (IV): Marking and cropping the audio clip

After finding peak locations, only on selected levels of MRA, by step (III), these locations

are converted to the time domain, their list is merged, and they are marked on our original

time domain signal x(t) as shown in Fig 5. The merging of lists is not required in case a single

MRA level is selected.

The location of these peaks over the original signal may indicate the onset of a rare event

and so, they must be checked for its presence. The original signal x(t) is cropped into chunks

of one-second duration, where each chunk will begin at one of the marked peak points as

shown in Fig 5.

As many chunks are generated by cropping the input signal x(t) as there are peaks marked

on the original signal. Assume there are total ‘P’ chunks generated from an audio clip of 30 sec-

onds. The value of ‘P’ is not fixed for all clips and varies according to the number of peaks

detected by step III. However, the duration of these chunks is fixed. All these one-sec duration

chunks, each starting at one of the marked peak locations, are called the ‘candidate chunks’,
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from which the features are extracted by WSN to check for the presence or otherwise of the

anomaly.

Step V: Chunk tagging

The features from each of the ‘P’ candidate chunks are extracted by the WSN as described

in subsection ‘feature extraction and support vector machine (SVM) classifier’s training’ and

then passed to the trained multiclass SVM classifier to classify each chunk as either an ‘event’

or ‘background’, according to the majority voting rule.

Experimental evaluation parameters

This section includes the dataset, metrics, and parameter settings for different component net-

works and a brief description of the comparative algorithms used in this paper to evaluate and

compare the performance of our proposed SED model DEW with other models.

Dataset

The dataset used for training and evaluation of DEW is the detection and classification of

acoustic scenes and events (DCASE) 2017 challenge, task 2: “Detection of rare sound events”

[54]. The dataset is composed of 3 classes i.e. baby cry, glass break, and gunshot. Each audio

sample is 30 seconds in duration. The rare events in these clips are already mixed with any of

the 15 different backgrounds, including beach, bus, café, car, city center, forest path, grocery

store, home, library, metro station, office, park, residential area, train, and tram. The mixing is

done at the event-to-background ratio (EBR) of 0, +6 dB, and -6 dB, resulting in 500 audio

clips belonging to each of the three categories of baby cry, glass break, and gunshot

Fig 4. Peak finding on the 3rd and 5th level.

https://doi.org/10.1371/journal.pone.0300444.g004
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respectively. Half of these clips have only the background sound and the remaining half con-

tains the rare event mixed with background. In each audio clip, the rare event occurs only

once during the entire 30-second duration, however at variable time instants. The sampling

frequency of each audio file is 44.1 kHz. A Meta file is accompanied by the training data, con-

taining the presence or otherwise of the rare event, its starting time, duration, EBR, and the

background with which it is mixed in the clip. The evaluation dataset, however, is not accom-

panied by any Meta information. Also, it was found that the clips in the evaluation dataset are

picked randomly from the training dataset, so testing DEW on the entire training dataset

ensures that the evaluation dataset is included in the testing phase.

First, the dataset is divided according to the classes (baby cry, glass break, or gunshot) and

then further according to the presence or absence of a rare event. After the split, 6 folders are

created, containing 250 files each. Three of them have audio clips, containing the rare events

belonging respectively to any one of the 3 classes: baby cry; glass break, and gunshot, mixed

with different background types, and the remaining three folders contain only the back-

grounds without the rare event. In the second data split, the samples in the last three folders

(audio having only background without rare events) are first combined and then divided into

15 different folders, each belonging to one category of background.

For each background, a separate SVM classifier is trained. Each SVM network is trained on

4 classes i.e. 1) baby cry, 2) glass break, 3) gunshot, and 4) a particular background as shown in

Fig 1. A total of 250 samples of each class are used for training the classifier. From the first

three folders obtained after the first data split, in which the rare event exists, 1-second clips are

Fig 5. Peak marking from 3rd and 5th levels on original signal. ‘*’ shows the peaks detected by 3rd level and ‘+’ shows the peaks detected 5th by

level.

https://doi.org/10.1371/journal.pone.0300444.g005
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cropped according to the rare event onset information obtained from its associated Meta file

to create the dataset for the three rare event classes required for SVM training. Although the

duration of the rare event varies in each of the 30-second audio clips (as shown in Table 1), the

cropping duration is kept fixed to one second to ensure a uniform length training dataset for

the SVM classifier. So, in these 1-sec clips, the inclusion of background is inevitable in all those

cases, where the duration of the rare event is shorter than one second. Also, the type of back-

ground varies in all those cases, where it is included. Despite the risk of including some back-

ground in the dataset of rare event classes and deteriorating its quality, which in turn would

affect the classifier accuracy, the training samples for SVM training are not taken from their

source (the freesound.org; used by DCASE for preparing the dataset [54]), as the recordings

there may contain the silence zones. These zones are already removed in the DCASE dataset.

Also, our network is required to be trained on acoustic variability (different EBRs) which of

course is not labeled on the recordings of freesounds.org. Apart from these 1-sec chunks taken

from the training dataset of DCASE, no audio clip (either entirely or any of its cropped por-

tions) is used for the training of DEW.

The fourth class for the SVM classifier contains 250 samples of background of a single type.

One background folder is chosen from the 15 folders, obtained after the second data split.

From the clips in this folder, 250 random portions each of one-second duration are extracted

for the training of the SVM classifier dedicated to that background.

For the evaluation of DEW, instead of using the evaluation dataset, the training dataset of

DCASE is used for two main reasons. The first is that our system has not seen this complete

30-second dataset during the training phase, so it is not an artifice to use it. The second is that

the accuracy of detection of the rare event onset time can be checked by its Meta file which is

not available with the DCASE 2017 evaluation dataset.

Evaluation metrics

For the evaluation and comparison of our model with other models, the metrics used are error

rate (ER) and F1 score. These metrics are the standard metrics to be used for the evaluation of

models designed for Task 2 of the DCASE 2017 challenge [54]. Both metrics are calculated on

the event basis as defined in [55], using a collar of 500ms taking into account only the onset

time of the rare event. The event-based metrics measure the onset/ offset detection capability

of a system in detecting the correct temporal position of an event [56]. Event-based ER and F1

can be calculated in two ways: 1) using onset conditions only, and 2) using both onset and off-

set conditions. As our main concern is in the correct estimation of the onset time of the rare

event, so in this paper, the ER and the F1 scores are calculated using only the onset conditions

[56] according to the prescription of the DCASE 2017 challenge [54].

Comparison algorithms

DEW is compared with five other rare event detection algorithms that have used the DCASE

2017 dataset. The first three of them i.e. [5,55,57] are among those that have participated and

Table 1. Duration of rare events in DCASE dataset.

Rare event duration in DCASE 2017 dataset Maximum (sec) Minimum (sec) Mean (sec)

Baby cry 4.82 0.48 1.8

Glass break 2.16 0.24 0.8

Gunshot 2.28 0.2 0.9

https://doi.org/10.1371/journal.pone.0300444.t001
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were ranked as the top three methods at the DCASE 2017 challenge, while the last one is the

SED algorithm presented in [58]. A brief introduction to these models is given below.

In [55], the authors use 1D CNN to extract the features from each time-frequency (TF) unit

of the 2D log amplitude Mel-spectrogram of an audio clip. These features are then given as an

input to a unidirectional backward long short-term memory (LSTM) network, to determine

the precise onset timings. CNN is used for the extraction of localized features while LSTM is

used to extract the long and short-term temporal dependencies in the extracted features [59].

The backward LSTM is used because it is found that for the accurate detection of onset, the

information after the onset is more important compared to the information before it [55]. The

output of the LSTM layer is then input into a fully connected layer terminated by a single neu-

ron with a sigmoid activation function, which gives the probability of the presence of the target

event. In [5], a convolutional recurrent neural network (CRNN) is used for SED. The convolu-

tional neural network (CNN) of CRNN is useful to overcome the problem of intra-class acous-

tic variability by using the max pooling operation and the shared weight connections, and the

recurrent layers of CRNN are useful for extracting the long-term temporal context of an audio

clip for accurate rare event localization. In [57] both CNN and deep neural network (DNN)

are tested for SED. Two networks (i.e. two DNNs for a DNN-based system and two CNNs for

a CNN-based system) are used for background rejection and classification respectively. It was

found that the CNN-based network performs better for baby cry and the DNN-based system

for the other two classes. Finally, the model of [58] uses a set of input features comprising log

Mel coefficients, WSN coefficients, and their first-order derivatives, along with WSN coeffi-

cients filtered by a linear prediction error filter and their first-order derivatives given to a two-

stage event detector, where each stage is composed of CNN. The first stage acts as a binary clas-

sifier which proposes a set of contiguous blocks to the second stage, which refines the classifi-

cation of the first stage by discarding the blocks wrongly classified as containing rare events.

Among the leftover contiguous frame chunks classified as “event”, the first frame from the left

side generating the highest network output is regarded as the event onset time. In the SED

model of [60], a CRNN-based temporal-frequential attention model is proposed focusing

simultaneously on important frames and their frequency contents. The input features

extracted from small chunks of audio are extracted by log-energy filter bank and given to

CRNN having an architecture similar to the one used by the SED model [5] except that [5]

uses an ensemble of networks which produce the lowest error rate results while [60] does not.

Hyper-parameter settings

The hyper-parameters settings for the processes occurring in DEW are listed in Table 2.

Hyper-parameter optimization is the search for the set of hyper-parameter values that

achieves the best performance on a given task in a reasonable amount of time [62]. Normally

there are two main methods of hyper-parameter optimization 1) manual search and 2) auto-

matic search algorithms e.g. grid search method, genetic algorithm, and Bayesian optimizer.

Manual search requires background knowledge and is difficult for non-expert users. In the

hyper-parameter settings for different modules, a manual search method is adopted for finding

the number of MRA decomposition levels required by DEW. The model in [22] discusses the

importance of hyper-parameter tuning of discrete wavelet transform used to extract the fea-

tures from the audio which were then used as input to an artificial neural network. They sug-

gest that the wavelet decomposition level must not exceed 2, but as our model fails to detect a

large number of rare events with a decomposition level setting of 2, the decomposition levels

are gradually increased from 1 to 5 and finally good performance is achieved with 5 levels.

Except for the ‘coiflets’ and ‘reversebior’ families where the accuracy of detection is very low
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for high levels, it is shown in [22] that all wavelet families give a similar performance for high

decomposition level settings. So, the ‘symlets’ family is used in DEW as in [51]. All other wave-

let denoising parameters are kept the same as in [51] except the multiplicative threshold level

which is ‘mln’ instead of ‘sln’ as a nonwhite noise is suspected, and so the thresholds must be

rescaled by a level-dependent estimation of the level noise [63].

The dataset of 1s audio clips, belonging to three “rare-event” classes and a single ‘back-

ground’ class are stored in four folders (with class labels as their names). The number of sam-

ples is the same in each folder. The data inside each folder is shuffled randomly and split into

two parts. 80% of data is reserved for training and 20% for testing. Then 5-fold cross-validation

is used for training the SVM classifier. In the SVM classifier’s settings, two-time windows and

a simple majority voting rule over these windows are used to assign the class label to an event.

If there is no majority, the class "NoUniqueMode" is assigned and it is considered a classifica-

tion error [61]. All hyper-parameters of the SVM classifier and WSN are adopted from [61].

Matlab supports three types of SVM kernels 1) Gaussian (radial basis function (RBF)) 2) linear

and 3) polynomial. Gaussian and linear kernels do not apply to our problem as these kernels

are meant respectively for one and two-class learning models [64] and in our case, the SVM

Table 2. Hyper-parameter settings for different operations.

Process Parameters Values

MRA [51] Mother wavelet ‘sym6’

Detailed levels 5

Number of coefficients in level 1 661501

Number of coefficients in level 2 330751

Number of coefficients in level 3 165376

Number of coefficients in level 4 82688

Number of coefficients in level 5 41344

Wavelet denoising [51] Denoising method ‘rigsure’

Type of thresholding Soft

Mother wavelet ‘sym6’

Detailed levels 5

Multiplicative threshold rescaling ‘mln’ (level-dependent estimation

of noise)

SVM classifier hyper

parameters [61]

Kernel function Polynomial

Polynomial order 2

Kernel scale Auto

Box constraint 1

Training samples per class 250

Duration of each training sample 1 sec

Training mode 5 folds cross validation

Wavelet scattering network

[61]

Sampling frequency 44100 Hz

Invariance scale 0.5

Number of samples 44100 = 1 sec

Number of scattering paths 300

Number of coefficients for each scattering

path

11

Time windows in subsampled scattering

framework

2

Number of features extracted per time

window

418

Batch size 64

https://doi.org/10.1371/journal.pone.0300444.t002
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classifier has to classify four class datasets (baby cry, glass break, gunshot, and background).

So, a second-order polynomial kernel function is used for the SVM classifier of DEW.

As already stated above to reduce the computational load and enable the model implemen-

tation on a resource-limited device, WSN is limited to second-order in DEW. Also, to stabilize

the network to local deformations (time translations and frequency transpositions); the invari-

ance scale is set to 0.5 as in [61].

Experimentation results and comparison

In this section, the performance of our proposed model DEW is evaluated and compared to

other SED models.

Case 1: Selecting the optimal levels of MRA

As shown in step (I) of the proposed methodology, MRA results in multiple levels. How-

ever, not all of them are useful for SED. In this experiment, each level is tested for three condi-

tions; 1) its ability to detect the ‘rare event’, 2) its ability to reduce the computational cost, and

3) its precision in calculating the onset time of the event. The more these three conditions are

fulfilled by any level, the more it becomes eligible for selection. There are 250 files, each of 30

seconds, containing the rare events in the 3 folders, obtained after the first data split (see sub-

section ‘Dataset’). MRA is used to decompose each audio clip into 5 levels as shown in Fig 3

and the candidate chunks are extracted from each clip according to the peaks marked on it

according to these levels. However, the peak finding method described above fails to discover

any peak in levels 1, 2, and 4 for most of the audio clips, resulting in the failure of SED on these

levels. In this paper, this type of failure would be called a ‘Type 1’ failure. Apart from this fail-

ure, there is also another type of failure in the detection process, where the DEW fails to detect

the peak within the given 500ms collar of the rare event onset time given in its associated

record in the Meta file. Here this type of failure is called a ‘Type 2’ failure. In Type 2 error,

peaks are detected but none of them has any useful information (rare event), as their locations

are outside the predefined collar of 500ms of the event’s onset time. Both types (1 and 2) of

these errors can be regarded as ‘detection failure’. The number of detection failures due to

either type 1 or type 2 errors for all the MRA levels, along with the failure count breakdown

according to the EBRs, is listed in Table 3 for all the rare event classes.

As compared to other levels, very few type 1 and type 2 errors occur at the 3rd and 5th MRA

levels and this count is lowest when both of them are combined. This combination results in

the reduction of type 2 errors, as the rare events missed by the 3rd level are detected by the 5th

level and vice versa. The failure rate is the ratio of the total number of audio clips failing the

detection test to the total number of audio clips containing rare events (750 in our case). It is

lowest when the 3rd and 5th levels are combined. At any individual level, most of the detection

failures occurred at the EBR of -6dB. Event detection by the merger of the 3rd and 5th levels

benefits this ERB the most. So our proposed algorithm is checked only at the 3rd and 5th levels

and at their combination.

Apart from the detection failure, the computational cost and the precision of event onset

timings generated by any level are also checked. For this, the total number of candidate chunks

P generated by each decomposed level (or by their combination e.g. by combining 3rd and 5th

levels) is calculated. As there is a single event in each audio clip of 30 seconds, so more the can-

didate chunks generated for an audio clip, the more time would be required to check them one

by one for the presence of an event. If multiple chunks are tagged as ‘rare event’ chunks, the

winning chunk, among all the P candidates, would be the one, whose onset time is the closest

match to the time given in the Meta file. For all MRA levels, the average deviation of the
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‘winning chunk’ from its Meta file timings is given in Table 4. Note that these values are calcu-

lated for the audio clips that do not fall victim to detection failure test (Type 2 errors).

The lowest values for each class are boldfaced. Although the value P and the average onset

time deviation at the 1st, 2nd, and 4th levels are the lowest for various classes, they are not pre-

ferred due to their very high detection failure rate.

In the next three experiments, the performance of DEW is evaluated at the 3rd and 5th level

and at the combination of these two levels.

Case 2: Evaluation of DEW at 3rd level

Table 5 shows the performance of DEW for baby cry, glass break and gunshot in 15 differ-

ent backgrounds at the 3rd decomposed level.

Here and in the forthcoming tables, the best results are boldfaced and only the audio clips

having Type 2 errors are included in the calculation of ER and F1 score. DEW performs best

for the ‘glass break’, better for ‘gunshot’, and worst for the ‘baby cry’. This is because, the glass

Table 3. Type 1 and 2 errors for MRA levels according to class and according to EBR.

Class Level 1st 2nd 3rd 4th 5th 3rd & 5th

Baby cry Type 1 failure 34 4 0 1 0 0

Type 2 failure 90 240 35 86 26 9

EBR wise Type 1 & 2 failures

0 dB 38

0 dB 79 0 dB 12 0 dB 25 0 dB 7 0 dB 2

+6 dB 37 +6 dB 93 +6 dB 8 +6 dB 31 +6 dB 4 +6 dB 2

-6 dB 49 -6 dB 72 -6 dB 15 -6 dB 31 -6 dB 15 -6 dB 5

Total 124 244 35 87 26 9

Glass break Type 1 failure 4 3 0 16 0 0

Type 2 failure 5 239 23 25 71 20

EBR wise Type 1 & 2 failures 0 dB 3 0 dB 76 0 dB 4 0 dB 17 0 dB 27 0 dB 2

+6 dB 0 +6 dB 85 +6 dB 3 +6 dB 14 +6 dB 11 +6 dB 5

-6 dB 6 -6 dB 81 -6 dB 16 -6 dB 30 -6 dB

33

-6 dB 13

Total 9 242 23 61 71 20

Gunshot Type 1 failure 14 2 0 3 1 1

Type 2 failure 14 242 37 52 42 20

EBR wise Type 1 & 2 failures 0 dB 8 0 dB 86 0 dB 12 0 dB 19 0 dB 13 0 dB 10

+6 dB 7 +6 dB 75 +6 dB 7 +6 dB 10 +6 dB 5 +6 dB 2

-6 dB 13 -6 dB 83 -6 dB 18 -6 dB 26 -6 dB 25 -6 dB 9

Total 28 244 27 55 43 21

Type 1 & 2 failures Failure rate 0.214 0.973 0.113 0.271 0.186 0.07

https://doi.org/10.1371/journal.pone.0300444.t003

Table 4. Average number of candidate chunks generated and the average onset time deviation of the winning chunk for each MRA level.

Class Level 1st 2nd 3rd 4th 5th 3rd & 5th

Baby cry P 2.59 2.6 4.2 2.4 3.52 7.7

Average onset deviation of the winning chunk from its Meta file time (sec)

0.572

0.489 0.543 0.67 0.6 0.5

Glass break P 1.2 1.46 2.996 1.78 3.5

6.57

Average onset deviation of the winning chunk from its Meta file time (sec) 0.06 0.19 0.09 0.05 0.14 0.12

Gunshot P 1.61 2.03 3.98 1.94 3.35 7.33

Average onset deviation of the winning chunk from its Meta file time (sec) 0.13 0.45 0.092 0.075 0.16 0.125

https://doi.org/10.1371/journal.pone.0300444.t004
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break and gunshot have an impulsive nature [55], and so the rapid transitions in the time

domain at their onset were well captured by the wavelet MRA, which has already proven its

effectiveness in capturing the transitions due to anomaly in electrocardiogram (ECG) signals

[65], financial data [48] and earthquake data [48]. It is concluded from Table 5 that our pro-

posed algorithm is not very effective at the 3rd level for the ‘baby cry’ class.

Case 3: Evaluation of DEW at 5th level

Table 6 shows the performance of DEW for the three classes at the 5th decomposed level.

Table 5. 3rd level results.

Background Baby cry Glass break Gun shot

ER F1 (%) ER F1 (%) ER F1 (%)

Beach 0.42 64.28 0.05 96.97 0.29 81.48

Bus 0.23 86.67 0 100 0.27 84.2

Café 0.56 60.87 0.267 84.61 0.21 86.95

Car 0.34 80 0.095 95 0.23 88.23

City-Centre 0.35 75.86 0.133 92.85 0.21 86.95

Forest-Path 0.31 76.19 0.71 62.22 0.52 56

Grocery-Store 0.45 61.54 0.1 94.74 0.47 63.15

Home 0.37 53.334 0.09 80 0.4 63.63

Library 0.15 88.9 0.05 96.55 0.125 90

Metro-Station 0.18 83.34 0.22 86.66 0.25 84.61

Office 0.3 75 0.053 96.97 0.23 82.76

Park 0.5 64.28 0.06 96.29 0.36 78.26

Residential-Area 0.35 72 0 100 0.21 85.7

Train 0.59 58.33 0.1 94.74 0.25 85.7

Tram 0.6 57.14 0.04 97.67 0.14 91.67

Average 0.38 70.52 0.13 91.69 0.28 80.6

https://doi.org/10.1371/journal.pone.0300444.t005

Table 6. 5th level results.

Background Baby cry Glass break Gun shot

ER F1 (%) ER F1 (%) ER F1 (%)

Beach 0.375 74.28 0.1 92.86 0.53 60.87

Bus 0.34 75 0.06 96.56 0.23 86.49

Café 0.56 47.06 0.2 84.21 0.57 60

Car 0.34 77.78 0 100 0.47 73.34

City-Centre 0.35 78.78 0.2 80 0.07 94.74

Forest-Path 0.44 53.34 0.125 75 0.47 63.16

Grocery-Store 0.18 83.34 0.2 66.67 0.4 66.67

Home 0.42 55.56 0 100 0.3 72.73

Library 0.46 70 0 100 0.19 85.71

Metro-Station 0.36 75 0.06 95.24 0.25 75

Office 0.4 71.43 0.11 91.67 0.5 64.52

Park 0.45 66.67 0.06 95.65 0.21 82.35

Residential-Area 0.5 58.34 0 100 0.5 69.57

Train 0.47 69.23 0.25 84.85 0.25 83.87

Tram 0.6 57.14 0.09 94.74 0.21 86.96

Average 0.42 67.53 0.097 90.5 0.34 75.06

https://doi.org/10.1371/journal.pone.0300444.t006
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Expect the ER of glass break, there is a significant drop in performance for all the classes at

the 5th level when compared to the 3rd level. The underlying reason is the presence of more

audio clips with Type 2 errors at the 5th level, which has resulted in more events being unde-

tected by the system and consequently generating more false negatives (FNs), causing higher

ER values and lower F1 scores.

Case 4: Combination of 3rd and 5th levels
The list of candidate chunks P from both the 3rd and 5th levels are now merged as shown in

Figs 4 and 5 and all of these chunks are checked for the presence or otherwise of the rare event.

The results of different classes in different backgrounds are shown in Table 7.

The combination of the 3rd and 5th levels causes an average improvement in results for all

classes when compared to the cases where the 3rd or 5th level is applied alone. The 5th level,

although a weak event detector itself, helps strengthen the 3rd level by detecting the events

missed by it, at extremely low EBR values, as shown in Table 7.

In the next experiment, the performance of DEW is compared with other baseline systems

trained and evaluated on the DCASE 2017 dataset.

Case 5: Comparison of DEW with other state-of-the-art models

The comparison of DEW with other SED algorithms, described in subsection ‘comparison

algorithms’, is given in Table 8. All comparison algorithms have been trained and tested on the

dataset used by our proposed model. So, results are directly reported from their papers.

As clear from Table 8, our proposed system DEW fails to surpass all the models in terms of

F1 score and the models in [5,55,60] in terms of ER. However, its ER is comparable to the

models [57,58]. The best performer in terms of ER and F1-score is [55], and our proposed

algorithm lags it by 0.11 and 9% respectively. The reasons for falling behind other models may

be: 1) due to failure of the detection system, and 2) due to failure of the classification system.

These reasons will be investigated in depth in the next section. However, it outperforms all

other models in terms of computational resources and the amount of data required for the

model training. All the baseline models listed in Table 8 are using DNNs, thus requiring more

training data, more computational resources, and more computational time to run multiple

Table 7. 3rd and 5th level combination.

Background Baby cry Glass break Gun shot

ER F1 (%) ER F1 (%) ER F1 (%)

Beach 0.25 85.7 0 100 0.35 78.57

Bus 0.17 90.3 0 100 0.18 90.48

Café 0.56 60.87 0.13 92.31 0.14 92.3

Car 0.34 80 0 100 0.23 88.24

City-Centre 0.35 80 0.13 92.86 0.14 90.91

Forest-Path 0.375 75 0.5 78.95 0.67 64.28

Grocery-Store 0.36 75 0.1 94.7 0.53 63.64

Home 0.37 66.67 0.09 66.7 0.3 75

Library 0.23 85.71 0.05 96.55 0.18 87

Metro-Station 0.27 82.35 0.16 90.32 0.25 84.6

Office 0.35 75.86 0.05 97.14 0.36 76.5

Park 0.5 70.59 0.06 96.55 0.28 83.34

Residential-Area 0.35 75.86 0 100 0.28 83.334

Train 0.41 74.07 0.1 94.74 0.25 85.7

Tram 0.53 63.64 0 100 0.28 84.6

Average 0.36 76.11 0.09 93.4 0.29 82

https://doi.org/10.1371/journal.pone.0300444.t007
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epochs on the training dataset. The detection procedure in all models requires checking almost

360 (= 2583/7.2) times more chunks than those required for DEW. As DEW is not a DNN-

based architecture, it is computationally fast, and there are no learnable parameters (weights

and biases), so it can be implemented on resource-limited lightweight devices. Also, as DEW is

using an SVM classifier, it requires very little data for training as compared to the models

using deep learning classifiers. All baseline models have reported the use of GPU for training

their networks, while DEW does not require any GPU. To detect the anomaly, all algorithms

require concatenation of the current frame with previous frames to determine precisely the

point of onset, while DEW does not need any concatenation with the previous data to deter-

mine the onset time of a rare event. Except the model [57], which does not require additional

data creation, all competitive networks have been trained by creating additional training data

by utilizing the synthesizer provided by DCASE 2017 [60]. It has already been mentioned that

DEW does not even require the data given by DCASE for training purposes except for 1s

chunks required for training its SVM classifier. It would be interesting to compare the perfor-

mance of all algorithms on the same processor and on the same amount of data to highlight

the true benefits of DEW.

Discussion

Our best-performing DEW system (where the 3rd and 5th levels have been combined) is now

analyzed to find the main reason for falling behind other SED systems listed in Table 8. There

are two types of errors: 1) detection failure and 2) classification failure. The results for different

backgrounds are shown in Fig 6.

Table 8. Comparison of ER, F1 score and computational complexity of different SED algorithms.

Algo. DNN Av.

ER

Av. F1

(%)

Total chunks/ 30

sec clip

Total network learnable

parameters

Training

epochs

Concatenation with previous

frames required?

Additional data samples

created for training

[55]. CNN

+LSTM

0.13 93 2583 6200K 10 ✓ 60,000

[5]. CRNN 0.17 * 2583 756K 200 ✓ 4767

[57] CNN &

DNN

0.22 88.2 2583 2100K 5 ✓ None

[58] CNN 0.22 88.5 2583 108K 600 ✓ 5246

[60] CRNN 0.13 93 2583 756K 210 ✓ 9000

DEW Wavelets 0.24 84 7.2 0 1 × None

* NA (Not Available).

https://doi.org/10.1371/journal.pone.0300444.t008

Fig 6. Number of detection and misclassification errors for each type of background.

https://doi.org/10.1371/journal.pone.0300444.g006
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Of the total 24% ER, 6% is contributed due to detection failures (Type 1 and Type 2 errors),

and the remaining 18% is caused by misclassification by the SVM network. Networks like

logistic regression, SVMs, and naive Bayes will generalize well to small quantities of data [66].

The reason for the high ER in DEW due to ‘misclassification’ needs further investigation, but

it may be due to the inclusion of background in the training dataset of an SVM classifier. The

background is included in the dataset of ‘rare event’ classes due to the duration of an event

lesser than the one-second interval in the original clip from where the event is extracted. Also,

the background varies in different samples of the same rare event class. The duration of the

rare event is variable in the audio clips of the DCASE dataset (as given in Table 1), but those

variable length chunks of rare events are not suitable for the SVM training. But as these train-

ing chunks are extracted from the given audio files of rare events, the inclusion of background

in a 1-sec extracted rare event’s chunk is unavoidable in all those cases, where the duration of

the rare event is shorter, hence reducing the classifier’s ability to differentiate between the rare

event and background effectively. To support this argument, an experiment is performed next,

where the duration of chunks given as an input to an SVM classifier is changed and its effect

on the accuracy of classification for different classes is observed.

Case 6: Effect of chunk’s duration on SVM accuracy

In this experiment, the effect of changing the duration of extracted chunks on the SVM out-

put is observed. Accuracy (in percentage (%)) is used as a metric for this purpose. Till now,

accuracy has been the primary metric for assessing the performance of any classifier. Among

many available metrics (e.g. kappa statistic, F-measure, mean absolute error, root mean square

error, the area under the precision-recall curve, and the area under the receiver operating

curve), the SVM classifier achieves better performance on the accuracy metric than on other

metrics [67]. The accuracy is checked for 1, 1.5, and 2s duration and the results are averaged

for different classes over all the 15 types of background in Table 9. As the WSN of [61], does

not support the size (in terms of the number of samples) of a chunk smaller than the sampling

frequency, it is not possible to see the effect of reducing the chunk duration below 1s.

As clear from the table, the classifier’s accuracy for the class ’baby cry’ is highest for chunks

of 1-sec duration, while the other classes exhibit higher accuracy at 1.5s. The classifier’s overall

accuracy also improves by increasing chunk duration from 1s to 1.5s. The improvement in the

system’s overall accuracy is mainly contributed by the improvement in accuracy of the ‘back-

ground’ class, which has no traces of other classes in its training dataset, supporting the postu-

late that the cleaner chunks of other classes too would have a positive impact on accuracy.

Replacing the samples of the included background with zeros in the chunks of rare event clas-

ses would create silent zones in these clips. Filtering them out would also modify the features

of rare events embedded in the clip.

Conclusion

Rare event detection by sound is needed in situations where the event detection by camera is

not fully effective or too costly. In this paper, a novel wavelet-based approach for rare event

Table 9. SVM classifier accuracy for different durations of chunks.

Average accuracy in (%)

Duration (sec) Baby cry Glass break Gun Shot Background Overall System

1 87.5 81.3 77.9 93.9 85.6

1.5 86. 1 82.5 80.6 97 86.7

2 86.9 78.7 78.2 96.4 85

https://doi.org/10.1371/journal.pone.0300444.t009
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detection and classification is proposed by using only the audio recordings. The proposed

model is computationally inexpensive in terms of the number of epochs and the candidate

chunks that are required to be checked for the presence of rare events. Compared to other

deep learning-based competitive networks, our proposed system has no learnable parameters,

so it adheres well to real-time needs and can be easily implemented on the lightweight devices.

It is anticipated that the availability of purified training data, without any portion of back-

ground noise in it, for training the SVM classifier and the proposed model’s integration with

VED systems may improve the performance further.
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