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ABSTRACT 
 

Skin cancer can spread fast to nearby tissue and other parts of the human body if it's not diagnosed 
early. Most are curable only if skin cancer is found and treated in the early stages. Therefore, it's 
essential to seek a casual way of early diagnosis.   This paper assesses a prototype system for skin 
cancer detection using an Arduino with an ArduCam Mega 5MP, benchmarked against smartphone 
diagnosis. Bandpass filters capture skin images at red (650 nm), green (532 nm), and blue (450 
nm) wavelengths, measuring reflectance values. The approach aims to quantitatively determine 
skin melanin, oxyhemoglobin, and deoxyhemoglobin levels, aiding in various skin lesions' 
diagnosis. Evaluation involves comparing pixel reflectance values of images taken by smartphones 
and the prototype using a 3D mesh grid. Applying the modified Lambert-Beer law to reflectance 
values of moles, pimples, scars, scabs, and traces predicts relative levels of skin components. The 
system shows an 87% match with the smartphone standard, demonstrating high reliability. Further 
study might be needed to clarify the confirmation with clinical cases.  

 

 

Original Research Article 



 
 
 
 

Kim; J. Int. Res. Med. Pharm. Sci., vol. 19, no. 1, pp. 37-47, 2024; Article no.JIRMEPS.11992 
 
 

 
38 

 

Keywords: Lambert-beer law; reflectance value; skin cancer diagnosis; skin melanin; webcam based 
microcontroller system. 

 

1. INTRODUCTION AND HYPOTHESIS 
 
Skin cancer, particularly melanoma, requires 
early detection for effective treatment, with 
survival rates dropping significantly once it 
spreads [1,2]. Despite advancements in 
diagnosis and treatment since the 18th century, 
the disease's varied appearances complicate 
early detection. Traditional methods, such as 
dermoscopy, have limitations, leading to the 
exploration of more accessible diagnostic tools 
like microcontroller systems, which promise to 
enhance early detection efforts without requiring 
direct consultations [3,4]. 
 
Early detection of melanoma is crucial for 
survival, with rates dropping from nearly 100% to 
35% once it spreads [5]. Traditional diagnostics, 
relying on dermatologists' expertise, such as 
dermoscopy, have their limits, particularly in early 
detection, despite a high sensitivity. 
Technological advances have prompted the 
search for alternative methods, such as 
algorithm-based diagnostics, but these still lack 
accessibility and require face-to-face 
consultations [6]. This highlights the demand for 
more accessible, reliable diagnostic tools, 
leading to innovative approaches like using a 
microcontroller system for early skin cancer 
detection. 
 
The history of skin cancer dates all the way back 
to the 5th century BC. This was when the first 
record of melanoma, a type of skin cancer, was 
recorded by Hippocrates, and it was 
described as black tumors [7]. In 1787, Jack 
Hunter became the first person to diagnose and 
operate on a person with melanoma cancer, the 
deadliest skin cancer at the time. Rene Laenec 
was the first to distinguish melanoma as a 
disease separate from others in 1804 [8]. As time 
passed, more knowledge was gained about 
melanoma. In the 20th century, doctors 
diagnosed skin cancer in two main ways. The 
first method was through the diagnosis of 
lymphatic disorders. William Handley used the 
"lymph angioplasty" method, which used silk 
threads subcutaneously to create a conduit for 
lymphatic drainage [9]. However, this method 
was soon abandoned due to postoperative 
infections and spontaneous ejection of the 
foreign material [10]. The second way 20th-
century doctors diagnosed skin cancer was 
through prophylaxis, which was used by Herbert 

Snow [11]. This eventually led to the technology 
that exists today, the Vectra WB180 [12]. 
However, dermoscopies are still not 100% 
reliable today, and diagnosing skin cancer early 
is still a challenge even with dermoscopy [13]. 
Despite this, the diagnosis of skin cancer today is 
more advanced than ever. But, we would like to 
introduce a new testing method for skin cancer 
that might provide a more accessible method for 
people to use at home as a cost-effective 
diagnostic test. Traditionally, the government has 
approved many of these skin cancer diagnosis 
devices. Similarly, the systems and designs we 
might develop in the future must also be 
approved. To get FDA permission for a medical 
device, the inventor must first classify the device 
into three classes: I, II, or III. Classes I, II, and III 
are separated because Class I is reserved 
for low-risk devices. The applicant would have to 
develop a prototype of the device to test for 
ethicality and functionality. After the prototype 
may be created, they would need to apply to the 
device depending on its class. They would need 
to fulfill both FDA validation and verification 
requirements to apply. After, they would need to 
wait for the FDA to review and approve their 
device. However, even after the applicant 
receives FDA approval, they must maintain FDA 
compliance [14].  
 
The discussion on melanoma diagnosis 
emphasizes the significance of melanin, 
deoxyhemoglobin, and oxyhemoglobin in 
differentiating melanoma from benign skin 
conditions [15]. Melanoma lesions exhibit 
increased melanin levels, while changes in blood 
supply, influenced by angiogenesis, affect 
oxyhemoglobin and deoxyhemoglobin levels. 
The balance between these components offers 
insights into melanoma metabolic activity, with 
the relative ratio of oxyhemoglobin to 
deoxyhemoglobin acting as a potential 
melanoma indicator [16]. 
 
Building on this foundation, the aim is to enhance 
melanoma detection through a prototype system 
designed for early-stage skin cancer diagnosis. 
This system leverages optical RGB images and a 
band-filter lens to measure skin reflectance 
accurately [17]. Applying the Beer-Lambert 
equation quantifies the concentrations of 
hemoglobin, deoxyhemoglobin, and melanin. 
This approach facilitates a more accessible 
means for individuals to evaluate the likelihood of 
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skin cancer, encouraging early medical 
consultation based on preliminary findings [18]. 
 
Our technique might be widespread in the future 
for home diagnosis and machine-learning 
devices to be mass-produced and for more 
people to use these different devices to reduce 
the rates of skin cancer deaths worldwide. 
Ultimately, this actualizes the optimal 
individualization of treatment for each patient and 
the detection of various types of skin cancer at 
an early stage [19]. In addition, these 
technological advances will be optimized for 
early diagnosis of cancers, especially melanoma, 
which is a potentially aggressive cancer with a 
high tendency for lymphatic and visceral 
metastasis [20]. Home diagnosis is considered 
the final destination of cancer diagnosis 
technology, and it may greatly help those living in 
remote areas and areas without ready access to 
healthcare [21]. Through detection using mobile 
devices, patients living in geographically remote 
areas can take advantage of teledermatology 
services or possibly even be trained to use 
Mobile Teledermoscopy (MTD) as an adjunct to 
Skin Self-Examination (SSE) [22]. Thinking 
intuitively about these methods and technologies 
should also help to reduce the morbidity and 
mortality of skin cancer.   
 
From the point of accuracy side, 3D full-body 
imaging in hospitals is far superior to home 
diagnosis. A further extension of the dermoscopy 
method is the 3D total body photography imaging 
system, which captures multiple snapshots to 
create a 3D model of the patient’s body [23]. 
Vectra WB180, installed in  The Waldman 
Melanoma and Skin Cancer Center, located in 
New York City, takes 92 photos of the patient 
and then compiles all of these photos into one 
3D image of the patient. This 3D image shows 
the growth or lesions by size, shape, and color of 
the skin cells [24]. However, despite its high 
accuracy, it is not accessible. Thus, in the early 
stages of cancer, it is improbable that the patient 
decides to take a complete body picture through 
this machine.  
 
To address this accessibility problem, companies 
worldwide seek reliable and accurate cell phone-
based biopsies for skin and skin cancer [25]. Cell 
phone-based biopsies need a high-resolution 
camera on the phone in order for the picture to 
capture every part of the skin [26]. 
 
Together, these insights and technological 
advancements highlight the potential of using 

specific wavelengths, imaging techniques, and 
quantitative measures to improve early skin 
cancer detection. Further research and 
development in this area promise to yield 
effective, noninvasive diagnostic tools that will 
significantly impact patient outcomes by enabling 
timely treatment of melanoma. 
 
To test the system's effectiveness, the 
experiment will use optical images from a 
smartphone with a band-filter lens, serving as a 
benchmark. These images will be assessed 
using the modified Beer-Lambert law, supported 
by studies validating smartphone images for skin 
cancer diagnosis. The aim is to compare 
melanin, deoxyhemoglobin, and oxyhemoglobin 
levels in the images' Regions of Interest              
(ROIs) with those taken by the system to 
evaluate variance and diagnostic accuracy for 
skin cancer. 
 

2. MEDHODS 
 

2.1 Experimental Components 
 
ASCD(Arduino skin cancer diagnosis) System is 
an embedded ArduCam Mega 5MP and Arduino 
Uno to capture Skin ROI images. The ArduCam 
Mega 5MP model features a powerful 5MP 
CMOS image sensor for enhanced image-
capturing accuracy. The ASCD System aims to 
use RGB color channels to detect and 
differentiate between moles and melanoma cells, 
employing OpenCV for image processing. 
Subsequently, All images are saved through the 
ArduCam Mega (v2.0) - (updated 2023/04/24 -
b0cb3b1) before image processing. To assess 
the accuracy of the ASCD System, images of 
various body parts were captured, referred to as 
the ROI (Region of Interest). This prototype aims 
to represent essential parameters for melanoma 
diagnosis—melanin, deoxyhemoglobin, and 
hemoglobin—within the skin tissue of the ROI as 
3D images. If it's possible to measure the 
concentrations of these three parameters in 
specific normal skin areas (moles, pimples, 
scabs), it indicates the potential of the ASCD 
System for melanoma detection. 
 
In this experiment, the smartphone is used as the 
gold standard to compare the diagnostic 
capabilities of the ASCD System. Smartphones' 
optical skin cancer diagnosis ability has already 
been verified and is being used for commercial 
purposes. All experiments are conducted 
identically with both the smartphone and the 
ASCD System. 
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Fig. 1. ASCD system (left), Pin connection with Arduino UNO and Ardu Cam Mega(Right) 
 

 
 

Fig. 2. Comparative Specification of Smartphone and Arducam Mega 5mp 
image: www.comptones Cameng-Gel-No1011155 Nipadam.com/Aaduino-SlamaVEGA-SI 1 MEGA-SM 

 

 
 

Fig. 3. Red,Green, Blue band filter film SAKOLLA Transparent Color Correction Lighting Gel 
Filter[Left] Color Cap for ASCD 

maspx/www.com/ 

 

 
 

Fig. 4. Schematic Representation of Converting Reflectance Values from RGB Channels into 
an Optical Color Map 
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Three color caps are used when shooting the 
Region of Interest (ROI). These color caps are 
equipped with band filter color transparent paper 
that filters light at 650 nm, 532nm, and 405 nm 
wavelengths, respectively, and are installed at 
the front. Their diameter is about 35mm. 
 

2.2 Our Step-wise Procedure  
 

1. Setup & Calibration: Ensure the ASCD System 
is ready and attach a color cap to the ArduCam 
Mega 5MP camera. Capture a calibration image 
of a white paper with the red color cap to create 
a reference image (img white red). 
 

3. Capture Normal Skin Images: With the red 
cap, capture three photos of normal skin without 
distinct features. Capture the normal skin near 
the ROI, which will be photographed later. Use 
the cv2.imread method to specify the pixel values 
as an array, saving this array as 
img_normal_red. 
 

4. Feature and ROI Capture: Using the red color 
cap, capture the skin feature (dot) as the ROI. 
Ensure each feature is captured with all color 
caps and save these images for analysis. Use 
the cv2.imread method to specify the pixel values 
as an array, saving this array as 
img_sample_red. 
 

5. Reflectance Calculation: Insert the following 
formula into the algorithm to calculate 
reflectance. All operations must be performed as 
array calculations: 
 

reflect_i_red = img_sample_red/img_white_red 
reflect_bg_red = img_normal_red/img_white_red 
reflect_hat_red =reflect_i_red/reflect_bg_red 
 

6. Repeat Steps 2-5 for other color caps to obtain 
reflect_hat_green and reflect_hat_blue. 
 

7. Data Analysis: Use the modified Beer-Lambert 
law formula to calculate the concentration of 
oxyhemoglobin (HbO2), deoxyhemoglobin (Hb), 
and melanin (m) in the skin based on the 
reflectance values obtained from the images. 
The formulas are as follows: 
 

HbO2 = -0.024 ln (reflect_hat_blue) - 0.033 ln 

(reflect_hat_green) + 0.145 ln (reflect_hat_red) 

Hb = 0.057 ln (reflect_hat_blue) - 0.024 ln 

(reflect_hat_green) - 0.128 ln (reflect_hat_red) 

m = -0.806 ln (reflect_hat_blue) + 0.408 ln 
(reflect_hat_green) - 0.806 ln (reflect_hat_red) 
Citation: Delpy, D. T., et al. (1988). Physics in 
Medicine & Biology. 

8. Repeat Steps 2-7 for different ROIs. Display 
all analyzed images using the colormap "hot" in a 
surface mesh 3D map. 
 

9. Smartphone Comparison: Follow the same 
method to Repeat Steps 1-8 using a smartphone 
instead of the ASCD System. 
 

10. Verification and Comparison: Validate that 
the hemoglobin, deoxyhemoglobin, and melanin 
concentrations in each ROI match the findings 
presented in professional articles. Confirm that 
the biometric information of moles, pimples, and 
scabs in normal skin tissue matches the research 
descriptions. Perform a t-test with the dataset of 
all reflectance array data to statistically compare 
the reflection values obtained from the 
smartphone and the ASCD System. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Mole Images and Graphic 
Interpretation 

 

The analysis of melanin, oxyhemoglobin (HbO2), 
and deoxyhemoglobin (Hb) in a normal mole 
through RGB channel reflectance ratios shows 
distinct patterns, as seen in Fig. 5. Melanin 
concentration peaks in the mole area due to its 
light-absorbing property. In contrast, HbO2 and 
Hb display opposite values, aligning with their 
theoretical opposition. The area surrounding the 
mole shows a consistent distribution of HbO2 
and Hb, unlike the pronounced peak. 
Smartphone photography failed to confirm 
smoother peak variations, whereas ASCD 
outlined peak shapes but didn't capture the 
normal skin tissue's uniform distribution around 
them. Additionally, HbO2 and Hb values weren't 
exact opposites, indicating noise. The Hb peak 
was unclear and appeared smeared. 
Nonetheless, the precise melanin peak 
representation suggests the potential to detect 
increased melanin in melanoma. 
 

3.2 Pimple Images and Graphic 
Interpretation 

 

In pimple-affected areas, as in Fig. 6 an 
inflammatory response leads to increased blood 
flow, elevating HbO2 and Hb levels. In contrast, 
melanin levels remain relatively unaffected due 
to pimples' weak association with melanin 
increase. Smartphone imaging shows lower 
reflectance values, and while ASCD presents 
lower values for HbO2, it more accurately reflects 
the high levels of HbO2 and Hb associated with 



 
 
 
 

Kim; J. Int. Res. Med. Pharm. Sci., vol. 19, no. 1, pp. 37-47, 2024; Article no.JIRMEPS.11992 
 
 

 
42 

 

pimples' physiological characteristics. Despite 
some discrepancies in reflectance distribution, 
both methods indicate elevated HbO2, with 
ASCD offering a slightly more accurate depiction 
of HbO2 and Hb levels in pimples. 
 

Melanin, HbO2, and Hb distribution in a normal 
scab (Fig. 7) reflect the physiological changes 
during wound healing. The formation of a scab 
results from the coagulation of blood 
components, which does not directly affect 
melanin concentration, but melanin production 
can increase in the skin surrounding the scab. 
This could be a response from the skin to protect 
itself from the wound. Both smartphones and the 
ASCD have been shown to represent this 
melanin production effectively. Meanwhile, the 
formation of new blood vessels for wound 
healing increases the concentrations of HbO2 
and Hb, particularly noticeable in the area with a 
scab. 
 

3.3 Scar Images and Graphic 
Interpretation 

 

The comparison between smartphone and ASCD 
device images for moles, pimples, and scabs 

shows no significant differences in                     
melanin, HbO2, and Hb levels, with                        
most p-values indicating no statistical 
significance. An average p-value of 
approximately 25.38% suggests a 74.62% 
likelihood of no significant difference between the 
two imaging methods, indicating their 
interchangeability for diagnostic and                  
monitoring purposes, the difference between the 
images taken with smartphones and ASCD 
devices. 
 

3.4 Statistical Analysis  
 
The comparison between smartphone and ASCD 
device images for moles, pimples, and scabs 
shows no significant differences in melanin, 
HbO2, and Hb levels, with most p-values 
indicating no statistical significance. An average 
p-value of approximately 25.38% suggests a 
74.62% likelihood of no significant difference 
between the two imaging methods. This shows 
their interchangeability for diagnostic and 
monitoring purposes—the difference between the 
images taken with smartphones and ASCD 
devices. 

 

 
 

Fig. 5. Comparative 3D Visualization of Melanin, Oxyhemoglobin, and Deoxyhemoglobin 
Distributions in a Mole: Smartphone vs. ASCD System[x: Width of ROI, y: Length of ROI, z: 

Relative concentration parameter] 
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Fig. 6. Comparative 3D Visualization of Melanin, Oxyhemoglobin, and Deoxyhemoglobin 
Distributions in a Mole: Smartphone vs. ASCD System [x: Width of ROI, y: Length of ROI, z: 

Relative concentration parameter] 
 

 
 

Fig. 7. Comparative 3D Visualization of Melanin, Oxyhemoglobin, and Deoxyhemoglobin 
Distribution in Scars: Smartphone vs. ASCD System [x: Width of ROI, y: Length of ROI, z: 

Relative concentration parameter] 
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Table 1. T-test Statistical Analysis of Reflectance Ratios: Comparing Smartphone and ASCD 
System in Imaging Skin Conditions 

 

 
 
This comprehensive analysis across various skin 
conditions—moles, pimples, and scabs—reveals 
significant insights into the diagnostic capabilities 
of smartphone and Advanced Skin Condition 
Diagnosis (ASCD) devices. It highlights the 
intricacies of melanin, oxyhemoglobin (HbO2), 
and deoxyhemoglobin (Hb) distributions under 
different skin conditions, offering a window into 
the physiological processes at play. 

 
For moles, the analysis underscores the elevated 
melanin concentration, a characteristic feature 
that both imaging methods can capture, albeit 
with nuances in their accuracy. The expected 
theoretical patterns for HbO2 and Hb 
concentrations demonstrate the challenge of 
capturing exact physiological responses, with 
noise interference impacting the clarity of results. 
This suggests a nuanced approach is necessary 
when interpreting such data, especially in the 
context of melanoma detection. 

 
In the case of pimples, the analysis points to an 
increase in HbO2 and Hb levels due to the 
inflammatory response, a condition that 
smartphones and ASCD devices can detect. 
However, the device's ability to accurately reflect 
the elevated levels of these markers varies, 
indicating a need for careful consideration of the 
chosen method for specific diagnostic               
purposes. 

 
The examination of scabs reveals how 
smartphones and ASCD devices capture the 
physiological changes of wound healing, such as 
increased melanin production around the scab 
and the formation of new blood vessels. The data 
suggests both devices can reflect these changes, 
with nuances in their ability to delineate between 
normal skin and scab tissue, particularly for 
HbO2 and Hb concentrations. 

The statistical analysis, indicating no significant 
difference in the performance of smartphones 
and ASCD devices across a range of p-values, 
suggests a high degree of interchangeability 
between these imaging methods for diagnosing 
and monitoring skin conditions. This conclusion, 
supported by an average p-value translating into 
a 74.62% likelihood of no significant difference, 
underscores the potential of using readily 
available smartphone technology alongside more 
advanced devices in dermatological 
assessments. 
 
Ultimately, this analysis highlights the potential 
and limitations of current imaging technology in 
capturing key physiological indicators across 
different skin conditions and opens the door for 
further research. It calls for developing more 
refined imaging techniques and algorithms that 
can improve the accuracy and reliability of skin 
condition diagnosis, leveraging the ubiquity and 
accessibility of smartphone technology to 
enhance patient care in dermatology. 
 

4. CONCLUSION 
 
This study explores the diagnostic capabilities of 
smartphones & ASCD devices by analyzing 
melanin, HbO2, & Hb distributions in skin 
conditions like moles, pimples, & scabs. For 
moles, both methods captured higher melanin 
concentration but faced challenges in capturing 
the theoretical patterns of HbO2 & Hb 
distributions, suggesting noise interference 
impacts accuracy. The analysis of pimples 
highlighted an increase in HbO2 & Hb levels due 
to the inflammatory response, with ASCD 
showing a superior ability to distinguish these 
changes more accurately than smartphones. In 
the case of scabs, both smartphones & ASCD 
effectively captured physiological changes 
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associated with wound healing, like increased 
melanin production around the scab & the 
formation of new blood vessels. However, there 
were subtle differences in their capabilities to 
capture HbO2 & Hb concentrations, an important 
consideration when comparing device 
performance. Statistical analysis showed no 
significant difference in performance between 
smartphones & ASCD, suggesting the two 
imaging methods can be interchangeably used 
for the diagnosis & monitoring of skin conditions. 
In conclusion, ASCD has performed satisfactorily 
enough to replace the diag capabilities of 
commercially available smartphones potentially. 
This signifies a promising direction for the future 
of dermatological assessments, indicating that 
ASCD can be considered a viable alternative to 
conventional smartphone-based diagnostics. 
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