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Abstract

The role of reactive oxygen species (ROS) in the killing exerted by antibiotics on bacteria is

debated. Evidence attributes part of toxicity of many antibiotics to their ability to generate

ROS by interfering with cellular metabolism, but some studies dismiss the role of ROS. Bicy-

clomycin (BCM) is a broad-spectrum antibiotic that is the only known compound to inhibit E.

coli transcription terminator factor Rho with no known other cellular targets. In the present

study, we addressed this question by checking whether the induction of oxidative stress

could explain the increased sensitivity to Bicyclomycin in the hns deleted strain even in Δkil

background in E. coli. BCM evoked the generation of ROS in E. coli cells. BCM is known to

cause the cell filamentation phenotype in E. coli. Performing fluorescence microscopic anal-

ysis, we show that bicyclomycin-dependent cell filamentation is associated with SOS

response. RecA-GFP filaments were found to colocalize with the damaged DNA sites in the

cell. Further analysis revealed that the genomic DNA was partitioned but the cell septum for-

mation was severely affected under BCM treatment. Furthermore, we observed biofilm for-

mation by E. coli after BCM treatment. We hypothesize that ROS production after BCM

treatment could lead to cell filamentation in bacteria. A better understanding of the mode of

toxicity of BCM will help us design better antibiotic treatment regimes for clinical practices,

including combinatorial drug therapies. The cell filamentation phenotype observed after

BCM treatment makes this antibiotic a promising drug for phage-antibiotic synergy (PAS)

therapy.

Introduction

Many antibiotics are known to employ ROS as a means of their lethality against bacteria, and a

common ROS-dependent killing mechanism employed by antibiotics has been proposed [1–

4], However, some researchers have negated the role of ROS in the antibacterial properties of

antibiotics [5, 6]. To add to our knowledge of the involvement of ROS in antibiotic-mediated

killing of pathogens, we investigated whether an inhibitor of bacterial transcription terminator

Rho, bicyclomycin (BCM), causes oxidative stress in Escherichia coli cells. BCM (also known

as Bicozamycin) is an antibiotic obtained from several Streptomyces species (S. cinnamoneus,
S. aizunensis and S. griseoflavus) [7, 8]. It displays toxicity against numerous gram-negative
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bacteria, viz. E. coli, Salmonella, Enterobacter, Shigella, Neisseria, etc. [9]. BCM has been used

to treat traveler’s diarrhea [10], as well as used as a veterinary medicine to treat fish, calves, and

pigs in veterinary medicine [11–14].

BCM acts by inhibiting the transcription termination factor Rho [15], an essential protein

in most Gram-negative bacteria [12, 16]. Two modes of BCM toxicity have been proposed;

one is resulting from the inhibition of Rho function in E. coli, the activation of the kil gene

product, and another by the double-stranded breaks (DSBs). The kil gene is carried by Rac

prophage and codes for an inhibitor of cell division gene ftsZ [17–19]. kil is preceded by a rho-

terminator; thus, the transcriptional suppression of kil expression by Rho is released by BCM

[20]. Screening of single-gene knockout mutants revealed that the hns deleted strain is sensi-

tive to BCM even in Δkil background, suggesting that BCM toxicity has a mechanism other

than kil gene mediated [21]. DSBs are generated due to increased collision of replisome with

the transcription elongation complex (TEC) due to pervasive transcription after inhibition of

Rho function [16, 22]. By checking intracellular ROS levels using dihydroethidium (DHE) and

2´,7´-dichlorodihydrofluorescein diacetate (H2DCFDA) probes and the promoter activity of

soxS, ahpC, katG, and oxyR after BCM treatment, we probed whether BCM treatment could

lead to oxidative stress in E. coli cells. ROS production inside the cell may result in a change in

cell morphology. Cell elongation is a result of the SOS response [23]. DNA damage, the SOS

response, and cell filamentation are interlinked. Mutants for the protease encoding gene lon
were found to form filaments and were hypersensitive to ultraviolet radiation [24]. lon encodes

for a protease that acts on many proteins, including the cell division regulator sulA [25]. DNA

replication is halted for repair, and cell division is impaired when DNA damage occurs. This is

why cells are quite elongated when there is damage to DNA [26]. We checked the morphology

of E. coli in response to BCM using the lipophilic dye FM 4–64, which selectively stains the cell

membrane.

Microorganisms produce biofilms in response to oxidative challenges in the environment.

When subjected to oxidative stress Mycobacterium avium forms a biofilm [27]. Biofilm drives

genetic diversity in response to oxidative stress [28]. We checked biofilm formation by E. coli
after BCM treatment. Biofilm formation is dependent upon quorum sensing [28–30]. Quorum

sensing in E. coli is mediated by autoinducer-2 (AI-2) [31]. BCM treatment also led to the

expression of rdar (red, dry, and rough) colonies. The rdar morphotype is displayed by Entero-

bacteriaceae. It is a multicellular behavior of microorganisms resulting from the expression of

curli fimbriae and the adhesive components of extracellular matrix [32].

Results

BCM treatment leads to arrested cell growth and ROS production in E. coli
cells

Growth curve experiments were performed to check the effect of BCM on the growth of wild-

type BW25113 cells. Cells showed impaired growth profiles when grown in the presence of

BCM. The minimum inhibitory concentration (MIC) of BCM for the WT BW25113 strain is

37 μg/ml [33]. At a concentration of 25 μg/ml (0.7X MIC) of BCM, the wild-type cell showed

an extended lag phase, and at 50 μg/ml (1.4X MIC) BCM concentration, plateau-type growth

was observed without any log phase (Fig 1A). We suspected that apart from inhibiting the Rho

function, the reduced growth may be due to increased ROS levels in the cells after BCM treat-

ment. ROS levels in cells grown in the presence of BCM were probed using DHE and

H2DCFDA dyes. Many antibiotics are known to generate superoxide radicals by interfering

with cellular metabolism in bacterial cells [1]. In our study, approximately 3-fold higher levels

of superoxide were detected by DHE after antibiotic BCM treatment (Fig 1B). The soxS gene is
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induced when the intracellular levels of superoxide increase in the cells [34]. We found an

increased promoter activity of soxS after BCM treatment. In addition, the soxS promoter activ-

ity was decreased when superoxide quencher tiron (TI) was added to the media (Fig 1C). In

agreement with these findings, 1.8-fold increases in the SodA level were found after BCM

treatment (Fig 1D and 1E).

Furthermore, the global intracellular ROS species levels were probed using H2DCFDA dye,

which is pretty responsive to almost all major ROS species generated inside the cell [35].

Approximately 7-fold increases in intracellular ROS levels were detected by H2DCFDA dye

after BCM treatment (Fig 1F). The promoter activities of the genes involved in the mitigation

of ROS inside the cell were checked after BCM treatment using GFP-reporter constructs. We

observed an increase in the promoter activity of soxS, katG, ahpC, and oxyR genes under BCM

treatment (Fig 2A). The increase in the promoter activity of these genes was nullified when the

Fig 1. WT cells exhibit retarded growth and higher ROS levels after BCM treatment. A. WT cells show a retarded growth phenotype in the presence of

BCM, Data are means ± SD (n = 3). B. Higher levels of superoxide were detected after BCM treatment with DHE in WT. *, P< 0.05. C. Bar graph

showing higher levels of promoter activity of soxS after BCM treatment. **, P< 0.01. D. & E. Western blot showing1.8-fold increase in the expression

level of SodA (24 Kd) after BCM (50 μg/ml) treatment using anti-SodA antibody. Ponceau staining was performed to show equal loading of lysate in wells.

Data are means ± SD (n = 2). F. H2DCFDA dye fluorescence increased after BCM treatment in WT. Error bars in the panels are mean ± SD from the

three independent experiments. **, P< 0.01. *, P< 0.05, paired t-test.

https://doi.org/10.1371/journal.pone.0293858.g001
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hydroxyl free radical quencher thiourea was added along with BCM in the media (Fig 2A).

These results suggest that exposure to BCM also leads to the generation of highly deleterious

hydroxyl radicals in E. coli cells. Hydroxyl free radicals are most potent in damaging DNA.

After quantifying the intracellular ROS production after BC treatment, we checked whether

ROS generated by BCM is directly implicated in the retarded growth of E. coli cells. We exam-

ined the effect of BCM on the growth of ΔsodA ΔkatG ΔahpC triple mutant. In the absence of

BCM, the triple mutant and WT grew almost identically; however, the triple mutant strain dis-

played increased sensitivity compared to the WT in the presence of BCM (S1 Fig in S1 File),

establishing that ROS generation after BCM treatment resulted in the retarded growth profile

of E. coli cells in the presence of the antibiotic.

BCM treatment leads to the induction of SOS response and cell

filamentation

BCM is known to cause the cell filamentation phenotype in E. coli [36]. In addition, BCM

treatment leads to replication transcription conflicts and DNA damage [16, 22]. We checked

cell septum formation, genomic DNA organization, and SOS response after BCM treatment

using fluorescence microscopy. We grew WT E. coli containing recA-gfp reporter fused in the

chromosome and treated with BCM. Lipophilic FM 4–64 dye was used to stain the membrane

and DAPI for genomic material. Consistent with previous reports, E. coli cells exhibited fila-

mentous phenotypes after treatment with BCM. Cell length increased approximately 10-fold

after BCM (25 μg/ml) addition. Cell filamentation was almost abrogated when tiron was added

to BCM-treated cells (Fig 3A and 3B). Inhibition of cell filament formation by tiron in the

presence of BCM was in agreement with the increase in the fluorescence intensity of DHE and

the increase in the promoter activity of soxS in the BCM-treated cells (Fig 1B and 1C). This

Fig 2. BCM treatment leads to increase in promoter activity of ROS responsive genes and induction of SOS response. A. Around 2-fold increase in the

promoter activity of soxS, katG, ahpC, and oxyR genes was found after BCM treatment. **, P< 0.01. *, P< 0.05. B. Bar graph showing increase in RecA-GFP

fluorescence after BCM treatment, supplementation of thiourea resulted in a decrease in RecA-GFP fluorescence. ***, P< 0.001.

https://doi.org/10.1371/journal.pone.0293858.g002
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suggests that BCM treatment leads to the superoxide formation in the cells. The effect of thio-

urea, another ROS quencher, was examined on cell filamentation by BCM. Thiourea treatment

decreased the length of filamented cells treated with BCM (50 μg/ml) (Fig 4A and 4B). All

these observations suggest that along with superoxide, hydroxyl radicals are also formed in

BCM-treated cells, which lead to cell filamentation. We also checked whether ROS scavengers

tiron and thiourea had any effect on the growth of E. coli cells. WT cells grew almost identically

in the presence and absence of thiourea, and in the presence of tiron, WT cells displayed a very

minor growth defect (S2 Fig in S1 File).

Incomplete septum formation was observed in the presence of BCM by the lipophilic dye

FM 4–64 dye, which stains the membrane of bacteria (Fig 4C). When cells were stained with

both DAPI and FM 4–64 after BCM treatment, duplication of genetic material was evident

with incomplete septum formation in the cell filaments (Fig 4C). Similarly, the modulator of

FtsZ cytoskeletal protein EzrA coding gene was 13 fold upregulated, and ftsB, ftsX, and envC
genes involved in cell division were also moderately upregulated in microarray after BCM

treatment (S2 Table in S1 File) [20]. The addition of BCM resulted in an increase of RecA-GFP

fluorescence, indicating the induction of SOS response after BCM treatment (Fig 2B).

RecA-GFP filaments were found to colocalize with damaged DNA sites in the cell. The co-

localization of RecA-GFP foci with DAPI (Fig 4D) suggests DSBs, which is consistent with pre-

vious findings that antibiotics cause DSBs. In agreement with these results, the SOS-responsive

genes, such as dinB, umuD, sosD, uvrD, and ruvC were upregulated to 8, 6, 10, 3, and 1.5-fold,

respectively, after BCM treatment in the microarray data (S1 Table in S1 File) [20]. These

observations suggest that ROS produced after BCM treatment led to the induction of SOS

response in E. coli, due to which cell division was halted, and because of the impairment of cell

division, cells become highly filamented.

BCM treatment leads to biofilm formation

Microorganisms form a biofilm to combat environmental challenges, including oxidative

stress [16, 27, 28]. Thus, after the BCM challenge, biofilm formation was checked on a microti-

ter plate by staining with crystal violet dye. Biofilm formation was observed after the addition

of BCM. Biofilm formation increased with increasing concentration of BCM (Fig 5A and 5B).

Biofilm formation is dependent on quorum sensing [29, 30]. Quorum sensing in E. coli is

mediated by autoinducer-2 (AI-2) [31]. luxS synthesizes autoinducer-2 (AI-2) [37, 38]. No

Fig 3. Cells were highly filamented after treatment with BCM. A. Phase-contrast microscopy image showing cell filamentation after BCM (25 μg/ml)

treatment. Cell length increased approximately 10-fold in the presence of BCM. B. When tiron was added along with BCM, cell filamentation decreased. The

calculated mean ± SD values from 30 cells were plotted. ***, P< 0.001.

https://doi.org/10.1371/journal.pone.0293858.g003
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biofilm was formed in the ΔluxS strain (Fig 5A and 5B). Biofilm formation was quantified by

measuring the absorbance of the crystal violet dye at 550 nm recovered from the biofilm. The

absorbance of crystal violet increased with increasing concentrations of BCM, suggesting that

with a higher amount of BCM, biofilm formation by WT E. coli cells also increased (Fig 5B).

BCM treatment also led to expression of rdar (red, dry, and rough) morphotype in E. coli col-

ony (Fig 5C). In accordance with these results, the luxS and other genes involved in the biosyn-

thesis of adhesive appendages curli (csgA-G) and fimbriae (sfmA, sfmH, ydeT, yfcV, yadN, elfA)

were upregulated after BCM treatment in microarray in E. coli (S3 Table in S1 File) [20]. These

results suggest that BCM treatment leads to biofilm formation in E. coli.

Discussion

With ever-increasing antibacterial resistance, novel strategies and innovations are needed to

tackle emerging antibiotic-tolerant pathogens. For this, a detailed understanding of the mode

of action of antibiotics is crucial. A better understanding of the toxic effects of antibiotics will

help us design better strategies, such as synergic drug therapy and phage-antibiotic synergy

(PAS). Apart from potentiating the killing of bacteria by binding to their primary targets in

cells, ROS generated by perturbation of cellular pathways by antibiotics has been uncloaked as

an effective arsenal against bacteria. Norfloxacin caused superoxide-mediated oxidation of the

iron-sulfur cluster and subsequent generation of hydroxyl radical breakdown through the Fen-

ton reaction in E. coli [4]. Kanamycin, ampicillin, norfloxacin, and vancomycin were shown to

Fig 4. BCM treatment resulted in inhibition of septum formation. A., B. Cells became highly filamented after the addition of BCM (50 μg/ml), and after

supplementation with thiourea, cell filamentation decreased. ***, P< 0.001. **, P< 0.01. The cell in the inset is zoomed to show the inhibition of septa

formation and colocalization of DAPI and RecA-GFP fluorescence signals in the lower panels. C. Image showing partitioning of the genetic material stained by

both DAPI and FM 4–64 (left panel) and abrogation of septum formation in the membrane stained by FM 4–64 dye (right panel) in the presence of BCM. D.

RecA-GFP foci colocalized with damaged DNA stained by DAPI in presence of BCM.

https://doi.org/10.1371/journal.pone.0293858.g004
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induce hydroxyl radical formation and cell lysis in the case of ampicillin in E. coli cells [1].

Some studies that disapprove of the role of ROS in antibiotic-mediated killing of bacteria were

fairly evaluated by considering the experimental setup and some technical aspects of the stud-

ies [3, 5, 6, 39]. BCM belongs to the 2,5dikeopiperazinies class of peptide antibiotics. Rarely

observed for any antibiotic, BCM biosynthetic gene clusters are highly conserved and wide-

spread in both Gram-negative and Gram-positive bacteria. After the discovery of BCM from

Streptomyces species, BCM gene clusters were subsequently identified in hundreds of Pseuso-
monas aeruginosa isolates from different geographical regions, and putative BCM gene clusters

have been found in seven genera of Actinobacteria and Proteobacteria (Alphaproteobacteria,

Betaproteobacteria, and Gamaproteobacteria) [7, 40]. BCM treats diarrhea in humans, calves

and pigs [10, 13, 14]. It is also economically crucial for aquaculture as it is used in the treat-

ment of pseudotuberculosis in fish [11]. BCM is a single natural product that inhibits Rho

function, along with its tested safety in mammals and its toxic effects against clinically critical

pathogens like Klebsiella pneumoniae and Acinetobacter baumannii, making it an exceptionally

promising antimicrobial compound [12, 33]. The hope is further enhanced by the fact that

when BCM was combined with bacteriostatic concentrations of protein synthesis targeting

antibiotics, it displayed a high bactericidal synergy [33]. Further, a close inspection of the

structure of BCM revealed that its activity can be increased by alterations in its exomethylene

group [41, 42].

Although cell filamentation after BCM treatment was reported by its discoverers as early as

1979, the reason behind this was obscure. The toxic effect of BCM is attributed to the inhibi-

tion of bacterial transcription terminator factor Rho [16, 22]. Here, we report that free radical

generation is an important means of BCM toxicity, apart from the inhibition of Rho function.

We found an increased ROS levels by DHE and H2DCFDA dye in E. coli cells after treatment

Fig 5. E. coli form a biofilm in response to BCM. A. Image showing the formation of biofilm with increasing concentrations of BCM in WT

E. coli, but no biofilm formed in ΔluxS strain. B. Scatter plot showing the absorbance of crystal violet recovered from biofilm formed in

different concentrations of BCM from WT and ΔluxS strain. C. Expression of the rdar morphotype was visualized on LB without salt plates

supplemented with 40 μg/ml Congo Red and 20 μg/ ml Coomassie Brilliant Blue G-250 after addition of BCM.

https://doi.org/10.1371/journal.pone.0293858.g005
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with BCM. The promoter activity of soxS, katG, ahpC, and oxyR increased two-fold after BCM

treatment. SodA levels increased 1.8-fold inside the cells after BCM treatment. Cell filamenta-

tion decreased after adding the superoxide and hydroxyl radical quenchers tiron and thiourea,

respectively. These results suggest that cell filamentation observed after BCM treatment is the

result of ROS production in response to BCM. Cell filaments are formed as a result of the SOS

response when DNA is damaged due to environmental factors such as UV radiation or ROS

[24, 26]. The cell filamentation effect of BCM on bacterial cells makes it a promising antibiotic

for use in PAS in clinical practice. A previous study has demonstrated that filamentous cells

are more prone to phages because of their increased surface area [43]. Overall, previous find-

ings and our results suggest that BCM toxicity results from Rho inhibition as well as the gener-

ation of free radicals (Fig 6). The collisions between the transcription elongation complex and

replisome resulting from Rho inhibition and hydroxyl radical production evoked by BCM

converge to generate DSBs. The DSBs resulted in the activation of the SOS response pathway

and subsequently in cell filamentation due to inhibition of cell division. Although we did not

check the envelope stress after BCM treatment, it may be implicated in the generation of ROS

after BCM treatment. The unregulated expression of proteins due to Rho inhibition may per-

turb the tricarboxylic acid cycle (TCA) cycle. Earlier, the expression of misfolded proteins has

been shown to cause ROS production through the induction of envelope stress [2]. kil expres-

sion after Rho inhibition resulted in cell filamentation by inhibiting FtsZ function. Biofilm for-

mation was also observed in response to BCM-induced oxidative stress. Biofilm formation was

inhibited when luxS was deleted. Thus, biofilm formation due to BCM is luxS-dependent in E.

coli. In E. coli, the effect of AI-2 is delivered through SdiA, which is homologous to LuxR-type

transcriptional activators. AI-2-activated SdiA has been shown to regulate cell division in E.

coli in a ftsQAZ-dependent manner [44]. Two modes of free radical formation by antibiotics

have been deciphered. Quinolones, aminoglycosides, and β-lactams perturbed the TCA cycle,

leading to low NADH levels [1]. This stimulated damage of the iron-sulfur cluster, leading to

Fig 6. H. Model for the BCM mode of action. BCM evokes superoxide formation through the TCA cycle or envelope stress response pathway, which

is converted to hydroxy radicals through the Fenton reaction. Hydroxyl radicals and the collision between TEC and replisome cause DSBs in the E.

coli genome. At the DSBs, RecA protein is recruited and SOS response is induced. Because of the SOS response, cell division is halted and cells

become filamented. kil expression after Rho inhibition inhibits FtsZ function, leading to cell filamentation.

https://doi.org/10.1371/journal.pone.0293858.g006
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the leaching of ferrous iron, which participated in the Fenton reaction, forming hydroxyl radi-

cals, subsequently leading to cell death. Ribosome targeting andaminoglycoside-induced ROS

production was shown to be linked with misfolded proteins in membrane and periplasmic

space via envelope stress response two-component system [2]. ROS production after BCM

treatment may result from metabolic stress due to enhanced expression of proteins after inhib-

iting Rho function. Further studies are needed to unmask the events of BCM-mediated ROS

production.

Materials and methods

Bacterial strains and plasmids

The wild-type BW25113 (WT) strain of E. coli is from the KEIO collection [45]. recA-gfp was

freshly transduced into the WT genome by P1 phage transduction to obtain the BW25113::

recA-gfp strain [46]. The reporter plasmids pUA66_soxS, pUA66_ahpC and pUA66_katG

were provided by Dr. Csaba Pal, Biological Research Centre, Hungarian Academy of Sciences

[47].

Chemicals

Dihydroethidium (DHE) and 2´, 7’-dichloro-dihydrofluorescein diacetate (H2DCFDA), FM

4–64, Thiourea, Crystal violet, Congo red, 4,5-Dihydroxy-1, - 3-benzenedisulfonic acid

(Tiron) and Bicyclomycin were purchased from Sigma.

Growth conditions

The primary culture was grown overnight under shaking conditions at 37˚C. The overnight

grown primary culture of WT cells was inoculated into fresh LB broth at 100-fold dilution.

The secondary cultures were grown for 1.5 h at 37˚C till the O.D.600 reached approximately

0.3. BCM (25 μg/ml or 50 μg/ml) was added at this point and incubated for 3 h at 37˚C. The

bacterial pellets were collected, and different assays were performed.

Growth curve analyses

Saturated overnight culture of WT E. coli cells was diluted 100-fold in 1 ml of LB broth and

grown in the presence and absence of BCM (25μg/ml or 50 μg/ml) in triplicate. The growth

curves were followed for 16 h using an automated BioscreenC growth analyzer (Oy growth

curves Ab Ltd.) with shaking at 37˚C. The mean of the three OD at 600 nm were plotted

against time to obtain the growth profile of WT cells in the presence of BCM.

Checking ROS level and induction of SOS response by flow cytometry

The relative ROS level in WT BW25113 cells was probed using DHE and H2DCFDA dye.

DHE is sensitive to superoxide, and H2DCFDA is sensitive to hydroden peroxide and

hydroxyl radicals, and some other ROS species. Cells were grown for 4 h in the presence and

absence of BCM (25μg/ml or 50 μg/ml) and the pellet was washed with 1X PBS. One part of

the washed pellet was stained by 2 μM DHE, the other by 10 μM H2DCFDA for one hour, the

third was dissolved in 1X PBS. RecA-GFP fluorescence after BCM treatment was checked

using a specific E. coli strain that harbors an SOS responsive BW25113::recA-gfp fusion in the

genome. The data were acquired using FACS accuri (BD) with 0.1 million cells. FL1 filter was

used for H2DCFDA and RecA-GFP, and FL2 for DHE. Mean fluorescence intensity (MFI) val-

ues obtained from three experiments were plotted after subtracting background fluorescence.
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Checking promoter activity of ROS-responsive genes

GFP-mut2 containing reporter plasmids, pUA66_katG, pUA66_ahpC, pUA66_oxyR, and

pUA66_soxS, were transformed into the BW25113 WT strain. The transformed cells were

grown with or without supplementation of BCM at 37˚C in shaking. BCM (50μg/ml) was

added from starting with or without thiourea (70 mM),and tiron (40μM). The data were

acquired using FACS acuri (BD) at FL1 laser for 0.1 million cells. MFI values obtained from

two experiments were plotted after subtracting background fluorescence.

Checking intracellular SodA levels after BCM treatment

WT E. coli culture was grown overnight, inoculated in LB medium at 1:100 dilution, and

allowed to grow at 37˚C for 1.5 h under shaking conditions. BCM was added and incubated

for 3 h at 37˚C. Cells were pelleted and lysed using B-PER Reagent (Thermo scientific) supple-

mented with 100 μg/ml lysozyme and 1 mM PMSF, followed by sonication. 35 μg of lysate was

loaded on 10% SDS-PAGE after quantifying the protein concentration using Bradford assay

kit (Bio-Rad). After transferring the bands to nitrocellulose membrane, Ponceau S staining

was performed to check for equal loading of protein on SDS-PAGE. 5% skimmed milk was

used for blocking to avoid nonspecific binding. The membrane was incubated with polyclonal

rabbit primary antibodies raised against purified SodA protein. After washing 3 times with

TBST, the membrane was incubated for 1 h with HRP-conjugated anti-rabbit secondary anti-

body. Immobilon Forte Western HRP substrate (Millipore) was used to develop the blot.

Visualization of filament formation by confocal microscopy

WT cells harboring recA-gfp were grown for 1.5 h with or without 50 μg/ml of BCM. 10 μM of

Tiron and 70 mM of thiourea were added wherever required. Cell pellets were washed with 1X

PBS. Additionally, cells were stained with DAPI and FM 4–64 for half an hour to visualize

genetic material and cell membrane, respectively. After fixing the cells with 4% formaldehyde,

slides were prepared using 10 μl of sample and examined using Nikon confocal microscope

using 488 nm laser for GFP, 405 nm laser for DAPI and, 560 nm for FM 4–64. Image J. soft-

ware was used to measure the relative cell lengths from around 30 cells.

Checking biofilm formation after BCM treatment

Biofilm formation after BCM treatment was checked in a microtiter plate. WT cells were

seeded in 96 well plates in 200 μl LB medium with increasing concentration of BCM and incu-

bated at 37˚C. After 24 h the media was decanted and washed with distilled water to remove

any unattached cells. 125 μl of a 0.1% solution of crystal violet (CV) in water was used to stain

the biofilm for 10 min. The plate was rinsed with water 3 times and blotted on tissue paper to

remove any extra stain. The biofilm was photographed after drying the plate overnight. Next,

biofilm formation with increasing concentration of BCM was quantified by estimating the

amount of CV dye bound to it. CV was solubilized by adding 125 μl of 30% acetic acid to each

well of the microtiter plate and kept for 10 min. The solubilized CV was transferred to a new

96-well plate. Absorbance was measured using BiotekPowerWave ™ XS plate Reader at 550 nm

and plotted. To check the effect of BCM on colony morphology, LB without salt agar plates

were prepared. Expression of the (red, dry, and rough) rdar morphotype was visualized on LB

without salt plates supplemented with 40 μg/ml Congo Red and 20 μg/ ml Coomassie Brilliant

Blue G-250.
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Statistical analyses

Experiments were performed in triplicate. Data analyses and normalization were done using

Microsoft Excel, and graphs were plotted using GraphPad Prism software. Cell length mea-

surement and densitometry of western blots were done using imageJ software. P values were

calculated from the paired t- test, and the values < 0.05 were considered significant. Data are

plotted as means ± standaed deviation (SD).
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