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Abstract: In this paper, we introduce a novel method to formally represent elements of control
engineering knowledge in a suitable data structure. To this end, we first briefly review existing
representation methods (RDF, OWL, Wikidata, ORKG). Based on this, we introduce our own approach:
The Python-based imperative representation of knowledge (PyIRK) and its application to formulate
the Ontology of Control Systems Engineering (OCSE). One of its main features is the possibility to
represent the actual content of definitions and theorems as nodes and edges of a knowledge graph,
which is demonstrated by selected theorems from Lyapunov’s theory. While the approach is still
experimental, the current result already allows the application of methods of automated quality
assurance and a SPARQL-based semantic search mechanism. The feature set of the framework is
demonstrated by various examples. The paper concludes with a discussion of the limitations and
directions for further development.

Keywords: Lyapunov theory; Lyapunov function; formal knowledge representation; imperative
knowledge representation; knowledge graph; ontology; Python

1. Introduction

This paper presents and discusses an approach to facilitate the transferability of control
engineering knowledge, both within the field (i.e., between different niches of control theory)
as well as from the field into potential fields of application.

A major motivation is the following: over the past years, the first author received
many requests regarding support in controller design from other mechanical or electrical
engineers in the process of developing new or improving existing devices. The questions
raised indicate that those experts in their respective application domains typically lack
control-related knowledge that would be beneficial for their creative work. For instance, in
one of such consultations, only after answering several questions on model predictive control
was it revealed that there was a misunderstanding (due to wrong terminology) and actually
model-based control (of a nonlinear system) was the topic of interest.

This anecdotal evidence can be underpinned by structural considerations: Contempo-
rary control engineering is characterized by wide and heterogeneous spectra of methods
(such as advanced linear algebra [1], differential geometry [2,3], functional analysis [4]) and
domains of application (such as robotics [5], automotive systems [6], process engineering [7],
chemical engineering [8]). This inherent two-dimensional interdisciplinarity makes it hard
for outsiders to obtain a systematic overview. However, such an overview is necessary to
identify and examine suitable solution approaches for the respective problem at hand.

Furthermore, the number of control-related publications (i.e., the amount of relevant
knowledge) is rapidly growing (see, e.g., the bibliometric study [9] for the specific subfield
of fractional order control and [10,11] for the general trend), which, together with the limited
capacity of human brains, creates the necessity of increasing specialization (in mathematics,
the problem is known as “one brain barrier”, cf. e.g., [12]). In other words, the field of
control engineering is fragmenting into specialized niches, each of which naturally develops
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its own methods, notation and jargon. With the progression of this effect, knowledge
transfer between these niches (which can be very fruitful as the transfer of the backstepping-
method from ODE to PDE systems demonstrates [13]) is significantly handicapped.

To facilitate knowledge transfer, it is worthwhile to consider the representation of
that knowledge. Currently, the prevalent representation is in the form of textbooks and
scientific papers. In other words, knowledge is represented by an accumulation of text of
natural language possibly enriched by formulas and graphics. Such documents are tailored
to be consumed directly by humans, and thus, computers can only be of limited use by
providing access to the very specific knowledge that is needed in a particular use case
in research and development. Of course, this insight is far from new, and consequently,
formal knowledge representation and semantic technologies (such as knowledge graphs
and ontologies which are discussed in Section 2) have been investigated and applied for
decades [14,15]. Recently, in the Strategic Research and Innovation Agenda (SRIA) of the
European Commission [16], semantic technologies were identified as important to achieve
interoperability between disciplines, i.e., to foster knowledge transfer [17].

These technologies have had huge impact on life sciences, see, e.g., [18], and also some
influence on engineering (see [19] for a general overview and [20] for the example of the
robotics field). However, they rarely have been used in control engineering. To the author’s
knowledge, the frame-based approach described in [21,22] is the only serious attempt to apply
semantic technologies to control-theoretic knowledge, apart from our own work [23–28].

Our initial endeavors to encode serious pieces of linear and nonlinear control theory
with the established standard Web Ontology Language (OWL) and related technologies (see
Sections 2 and 3.1) revealed that they lack the expressive power to precisely formulate the
actual relevant content of control theory, i.e., definitions, theorems and similar constructs.

To overcome this specific problem and in general facilitate knowledge transfer, within
this paper, we make the following contributions:

• Firstly, we present the PyIRK framework [29] for imperative representation of knowledge.
• Secondly, we present the Ontology of Control Systems Engineering (OCSE, [30]) which is

based on that framework, and focus on how contents from Lyapunov’s theory can be
modeled.

• Thirdly, we demonstrate possible applications of that formally represented knowledge.

Besides many foundational concepts from mathematics and control engineering, the
OCSE contains a relevant fraction of concepts, definitions and theorems from Lyapunov’s
theory, all of which are related to stability analysis of linear and nonlinear dynamical
systems. This choice was made because Lyapunov’s theory forms a good compromise: On
the one hand, it is not “trivial” knowledge, like the stability analysis of linear SISO systems,
which would have called into question the necessity of formal knowledge representation in
general. On the other hand, it is not a specialized niche result as, for instance, controlling
a vertical gradient freeze crystal growth process [13] or distributed converter circuits [31],
where the unfamiliar content might distract from understanding the representation method.
Furthermore, established approaches like quantifier elimination [32,33] based on Lyapunov’s
theory make heavy use of formal logic and sophisticated computational methods, therefore
a certain amount of receptiveness for our formal approach can be presumed.

To anticipate the conclusion, this paper does not claim to present the definitive solution
on how to formally represent control engineering knowledge, nor does it claim to provide
results that can already undoubtedly be called useful. To the best of the authors’ knowledge,
it demonstrates a novel and “engineering-compatible” method of formal knowledge repre-
sentation (PyIRK) and its application to control engineering (OCSE). While it is very far
from completely covering Lyapunov’s theory—let alone the whole field of control theory
in absolute terms—it is in relative terms the most complete approach that currently exists.

Critically examining our approach (and formal knowledge representation in general),
the major questions are (1) whether it actually enables improvements in knowledge transfer
(see above) and (2) whether so-called large language models [34] are not better suited to
reach this goal. Answering these questions is beyond the scope of this paper, and is left
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to further research. Instead, in this contribution we demonstrate that formal knowledge
representation is indeed an approach worth considering and that PyIRK can serve as a
backend for a possible future assistant system (i.e., frontend) to facilitate knowledge transfer.

The rest of the paper is structured as follows: Section 2 briefly reviews existing
approaches to formal knowledge representation, whereas Section 3 motivates and presents
our own approach (PyIRK and OCSE) in more detail. Next, Section 4 recapitulates the
relevant aspects of Lyapunov’s theory from the established literature while Section 5
demonstrates how this knowledge can be formalized by our approach, before Section 6
discusses how this formalization can provide some use. The paper closes with Section 7,
which draws a conclusion and discusses possible future developments. The Appendix A
contains a list of implemented concepts that are related to Lyapunov’s theory.

2. Formal Knowledge Representation
2.1. Overview

Traditionally, human knowledge is mostly represented by words (including numbers,
formulas, etc.), which can be accumulated in texts and books. For some kinds of knowledge,
more specialized representations evolved such as tables. They have the advantage of being
easily processable (e.g., searchable), especially if they are implemented as a relational
database in a computer. However, tables are very inflexible because of their fixed column
structure. In contrast, texts are extremely flexible, i.e., they have a high expressive power
but are much more difficult to process by computers.

Undoubtedly the field of natural language processing has made huge progress in
recent years, mostly driven by so-called large language models (LLMs); see, e.g., [34] for a
recent overview. However, such approaches rely on the consumption of huge amounts of
texts as training data, which makes it practically impossible to ensure the factual quality
of the input. Issues arise, for example, from outdated or wrong sources or simply the
ambiguous character of natural language.

An alternative method of knowledge representation is knowledge graphs (KGs). A KG
is a digitally represented directed graph, i.e., a collection of labeled nodes and labeled edges.
Roughly speaking, the nodes are the “things” to which the knowledge refers, while the
edges specify the relations between these nodes. In principle. a KG can have (almost) the
flexibility and expressive power of a natural language text but also possesses the precision
and suitability for automated processing like tabular knowledge.

Although LLMs currently dominate the artificial intelligence (AI)-related headlines,
for the representation of complex scientific knowledge such as Lyapunov’s theory, a KG
seems to be the adequate approach because of its explicit data representation. Of course,
this by no means prevents LLM-based technology from being used in combination with a
KG, e.g., for pre- or post-processing.

2.2. Established Knowledge Graph Concepts: Semantic Triples and Computational Ontologies

Each edge of a KG, along with its start and end node, can be considered a “semantic triple”
with a subject–predicate–object structure. A significant aspect of knowledge representation
involves converting complex knowledge structures into a large collection of such triples.

A closely related (and partially overlapping) concept is a (computational) ontology. The
Greek-stemming word literally translates as “the study of being” and originally refers to a
branch of theoretical philosophy. In the context of computer science, an ontology is a formal
(i.e., machine-actionable) specification of a shared conceptualization (semantic coverage) of
a knowledge domain [35]. In other words, an ontology specifies which concepts do exist in
a domain and how they are related to another [18,36,37].

Different technical approaches for the machine-actionable representation of ontologies
have been proposed, such as the Ressource Description Framework (RDF) for semantic
triples, the Web Ontology Language (OWL, [38]) or the Knowledge Interchange Format
(KIF, [39]). Therefore, OWL can be interpreted as an additional layer on top of RDF and
enables knowledge representation by means of so-called Description Logics [40,41] which
are so-called decidable fragments of first-order predicate logic. The added value of such
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an ontological formalization is that it enables automatic reasoning for a knowledge base.
However, while the decidability requirement ensures favorable computational properties,
it drastically restricts the expressive power of OWL, which makes it unpractical to represent
complex mathematical knowledge.

As is the case with programming languages, the choice of an optimal representation
method depends (a) on the task (or problem field) and (b) on individual factors such as a
priori knowledge. Another analogy to programming languages can be drawn: while due to
different strengths and weaknesses there is no objectively best formalism (and probably never
will be), it is worthwhile to innovate on representation frameworks (i.e., the “language”) to
achieve better results. In any case, the ability to retrieve the formalized knowledge through
suitable queries is a key feature of a useful representation method.

2.3. APIs and SPARQL Interface

To be of use to a wide audience, knowledge graphs such as Wikidata [42] have to
provide suitable access to potential users. This typically is conducted via an application
programming interface (API), via a so-called SPARQL interface or both (“SPARQL” is a so-
called recursive acronym which expands to “SPARQL Protocol and RDF Query Language”).

An API allows fine-grained access to specific features of the knowledge base and thus
depends on the concrete backend. For example, the ORKG-API [43,44] allows the retrieval
of an entire subgraph of a certain entity as a so-called bundle, whereas the Wikidata API
does not offer this particular functionality.

In contrast to the backend-dependent API, SPARQL is a widespread standard to
retrieve data stored in RDF format [45–47]. This query language is explicitly designed
to make use of the triple structure, where the subject, predicate and object are typically
so-called uniform resource identifiers (URIs) or literal values (such as strings or numbers).
The strength of this approach is that via a boolean combination of such atomic queries,
results can be retrieved which are not explicitly present in the knowledge base. For example,
the simple SPARQL in Listing 1 retrieves a list of persons who have Aleksandr Lyapunov
in their “academic lineage”.

Listing 1. SPARQL Example: “academic lineage” of A. Lyapunov.

1 # find people (and their birth date) with a "doctoral advisor"−relation (P184)
2 # to Aleksandr Lyapunov (Q310788)

3 SELECT DISTINCT ?person ?personLabel ?dateOfBirth WHERE

4 {

5 # ?person wdt:P184 wd:Q310788. # direct relation −> 2 results
6 ?person wdt:P569 ?dateOfBirth.

7 ?person wdt:P184* wd:Q310788. # arbitrary path length −> 212 results
8 SERVICE wikibase:label { bd:serviceParam wikibase:language "en". }

9 }

10 ORDER BY DESC(?dateOfBirth)

Remark 1. The relation between an API and a SPARQL endpoint can be summarized as follows:
while many objectives can be achieved either by using the API or the SPARQL interface, both
interfaces are tailored towards different use cases and thus have different strengths and drawbacks.

3. Imperative Knowledge Representation with PyIRK and OCSE
3.1. Imperative versus Declarative Knowledge Representation

Typically, knowledge representation is declarative or passive, e.g., as XML- or RDF-files
which need to be interpreted by some program to actually interact with the contained
knowledge [48–50]. This has the advantage of clearly separating the knowledge from the al-
gorithms to process it. However, when developing a new knowledge representation system,
this separation has the disadvantage that one needs to co-develop both the processing code
and the representation format. This has to be solved without a priori knowing specifically
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regarding what features both components might need because this would imply already
having a consistent formalization of the domain knowledge available. Furthermore, it
poses an additional usability hurdle that potential users or contributors have to familiarize
themselves with the representation format (or some adequate interface).

Thus, after some not so successful experiments with declarative approaches, we opted
for a different approach which we call imperative representation of knowledge. It basically
means to express the respective knowledge as part of the source code of the knowledge
processing software. This is obviously possible since hard-coded strings or variable values
are a standard technique in software development. While it is usually a good idea to separate
this kind of data from the actual program logic because it might be subject to change inde-
pendently (e.g., error correction or translation), this separation can be achieved not only by
loading declarative data files but also by suitable modularization of the programming code.

The main advantages of the imperative representation of knowledge are (a) that it
allows automation of the construction of semantic triples and thus allows for a more
compact formulation (in terms of the size of the source code) and (b) that it spares the user
from learning an additional declarative language like, e.g., the OWL Manchester syntax
(assuming that potential users are familiar with the respective programming language).

Remark 2. Our wording “imperative representation of knowledge” should not be confused with the
word group “imperative knowledge” which is in use as a synonym of “procedural knowledge” and
refers to knowledge which can be demonstrated by exercise, e.g., by using a specific tool or playing
an instrument which might be hard to be expressed using words. The respective counter-term is

“descriptive knowledge” for which the synonym “declarative knowledge” is in use and which should
also not be confused with the “declarative representation of knowledge”.

3.2. Basic Concepts of PyIRK

As the name “PyIRK” suggests, this framework for the imperative representation of
knowledge is implemented in the Python programming language. That is because Python
has been proven useful in many applications of science and engineering, and thus a high
degree of dissemination in the target group can be assumed. Also, the dynamic features of
Python (e.g., creating new functions and classes at runtime) support the compact representa-
tion of complex knowledge, like evaluated ternary operators such as Lie derivatives.

In Python, “everything” (apart from reserved words such as if or for) is an object and
thus has a type. The important types (i.e., classes) for PyIRK are Entity (with subclasses
Item and Relation), and Statement.

A Statement models a branch of the knowledge graph, i.e., a subject–predicate–object
triple. Therefore, the predicate is always a reference to a relation, while the subject and
object role can be taken by all entities.

For unambiguous identification of objects in knowledge graphs or ontologies usu-
ally one of two paradigms is used: either (a) “unique identifier and arbitrary label”
(e.g., BFO_0000006 for the class with label ‘spatial region’ in the Basic Formal Ontology
BFO [51]) or (b) “unique descriptive label” (e.g., TransferFunctionSystemModel in [22]).
While (b) is favorable for usability, variant (a) clearly has scalability advantages for example
when modeling concepts that are homonymous like “distribution” or “field” or supporting
multiple languages. In PyIRK, variant (a) is chosen: Every entity has a URI, which specifies
the module and the concrete object within that module via a short key I<n> (for items)
or R<n> (for relations), where <n> can be replaced by any string consisting of at least one
digit. Nevertheless, to achieve the favorable usability of having consistent labels present
in the source code, every entity accepts a valid label as “index”, which is implemented
like a dictionary lookup, i.e., using square brackets. Thus, the two lines in Listing 2 are
practically equivalent PyIRK source code: in both cases, the function called is_true receives
the exact same arguments and thus return the same value (True). However, the second line
has the advantage that the entity references are both precise for a computer and directly
understandable for a human. Technically, this behavior is achieved by overloading the
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__get_item__method of the class Entity. This method checks the label (see Section 3.8) and
then returns self, i.e., the object itself.

Listing 2. Unlabled and labled identifiers in two semantically equivalent lines.

1 is_true(I5359, R4, I4895)

2 is_true(I5359["determinant"], R4["is instance of"], I4895["mathematical operator"])

The possibility of using such labeled identifiers enables users to directly understand
and create PyIRK source code without the help of additional tools (of course, auxiliary tools,
e.g., for autocompletion and visualization are very useful but they are not necessary). This
property allows us to make use of established technologies and best practices for source
code version control. In particular, the distributed version control system git is the de facto
standard and public repository hosting services such as github, gitlab or codeberg provide
useful functionality for collaborative source-code-related work such as tracking the change
history, parallel branches, merge requests, and code reviews. Most importantly managing
the source-code-based knowledge base in a public git repository makes it easy to create
a fork of the whole project, i.e., an independent copy that can be changed and extended
without the consent of the original authors. Apart from technical measures, this is also
facilitated by the appropriate open-source license (GPLv3+). This “forkability” is important
because it prevents the individual control of the knowledge and thus encourages people to
experiment with their own fork and eventually exchange contributions.

The approach of representing knowledge as (versioned) software is also consistent
with the principle of “continuous provisionality”. This means to accept that the knowledge
base will never be complete and that it likely will contain bugs, as is the case with most
complex software systems, but nevertheless might be useful for some task.

3.3. Modules

The knowledge represented in PyIRK is structured in modules. A PyIRK module is
a Python file containing source code which, when executed, creates PyIRK entities and
statements. Modules can import other modules and collections of closely related modules
can be bundled to form a PyIRK package. Such a package consists of at least one module,
a configuration file, some documentation and unit tests.

3.3.1. Builtin Entities

The most basic module is builtin_entities which is an integral part of the
PyIRK framework. It creates abstract items like I1["general item"], I2["Metaclass"],
I11["general property"], I12["mathematical object"] and fundamental relations like
R1["has label"], R2["has description"], R3["is subclass of"], R4["is instance of"],
R17["is subproperty of"] etc.

Apart from the mere definition of items and relations, the module also provides
auxiliary Python classes and functions such as instance_of. (Note that there is also the
notion of PyIRK classes, which is a category of PyIRK items. Thus, we make the intended
meaning explicit, when it is not obvious from the context.) This function creates a new
item with the generic label (R1) and description (R2) and an R4["is instance of"] statement
edge to the provided class (PyIRK item). For example, this allows to create matrix instance;
see Listing 3.

Listing 3. Demonstration of PyIRK instantiation.

1 A = instance_of(ma.I9904["matrix"])

Note that I9904["matrix"] is not defined in builtin_entities but in math1 which is
part of the OCSE package (see Section 3.3.2).
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3.3.2. Ontology of Control Systems Engineering (OCSE)

Obviously, control theory is not the only field of science for which formal knowledge
representation might be worthwhile. It is, therefore, sensible to separate between the PyIRK
framework and the actual domain-specific content. From the perspective of ontology engi-
neering, builtin_entities is an upper-level ontology [52], whereas the Ontology of Control
Systems Engineering (OCSE) represents a domain ontology.

From a pragmatic perspective, the OCSE is just a PyIRK package containing three
different modules:

• agents1 which contains humans, institutions and source documents, which might
be referenced by the other modules. It also contains corresponding relations such
as R3474["has ORCID"] and R8439["is described by source"] and auxiliary functions
like create_person.

• math1 which contains mathematical concepts and relations such as I9904["matrix"],
I6709["Lipschitz continuity"], R4963["is neighborhood of"]. It also contains auxiliary
Python classes like IntegerRangeElement and functions like symbolic_expression_to
_graph_expression.

• control_theory1which contains concepts and relations such as I7208["BIBO stability"],
I1347["Lie derivative of scalar field"], R5031 ["has trajectory"], I1664["limit cycle"].
This module is also the place where the Lyapunov-related knowledge is implemented,
mostly in form of instances of the builtin items I14["mathematical proposition"] and
I20["mathematical definition"]; see Section 5.

The first use case for the OCSE was to serve as controlled vocabulary for tagging
models of dynamical systems in the context of the model catalog which is part of the
“Automatic Control Knowledge Repository” [23,25,28].

3.4. Qualifiers

As explained in Section 3.2, basic statements in PyIRK are modeled as triples of the
form (subject, predicate, object). For example, using the respective entities from the OCSE
module math1, the PyIRK snippet to express that A. Lyapunov worked at the National
University of Kharkiv is shown in Listing 4. Note that, in contrast to natural languages for
a semantic triple, the predicate does typically not carry any temporal information.

Listing 4. Single statement without qualifiers.

1 I2151["Aleksandr Lyapunov"].set_relation(

2 R1833["has employer"], I6514["National University of Kharkiv"])

Expressing more complex knowledge artifacts by just using triples is not trivial. Wiki-
data popularized an approach called qualifiers. Thereby, for every statement (i. e. triple),
which should be further described an additional “statement item” is introduced by using
the original predicate URI but in a special name space. This statement item can then serve as
subject for those further statements. For details see [53]. PyIRK follows a similar approach
where Statement instances (Python objects) are used to serve as nodes in the knowledge
graph. Together with some auxiliary functions like start_time and end_time, it is possible
to make the statement from Listing 4 more precise; see Listing 5.

Listing 5. Single statement with two qualifiers.

1 I2151["Aleksandr Lyapunov"].set_relation(

2 R1833["has employer"], I6514["National University of Kharkiv"],

3 qualifiers=[start_time("1885"), end_time("1902")])

Therefore, the objects start_time("1885") and end_time("1902") are placeholders which
are interpreted by PyIRK such that the appropriate builtin relations R48["has start time"]
and R48["has end time"] are used together with the provided literal arguments once the
primary statement object has been created.
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3.5. Operators and Representation of Formulas

Representation of mathematical knowledge requires modeling of the application of operators.
In PyIRK this is achieved by making those items which have a R4["is instance of"] relation to
I4895["mathematical operator"] callable. This allows expressions like I5177["matmul"](A, B),
which create new items. In this example snippet, a new I9904["matrix"] instance is created,
because I5177["matmul"] defines this via R11["has range of result"]. This instance is then
related to the operator item via R35["is applied mapping of"] and to the arguments via
R36["has argument tuple"] and thus carries all necessary information. Note that operators
can have an arbitrary (but fixed) number of arguments.

While this mechanism allows the representation of arbitrary mathematical expressions
as part of the knowledge graph, it is inconvenient for humans to read and write a formula
like l2

a + l2
b with an expression like in Listing 6.

Listing 6. Formula representation with direct operator calls.

1 square_sum = I6043["sum"](I5916["product"](la, la), I5916["product"](lb, lb))

The flexibility of Python-based imperative knowledge representation allows us to
solve this problem by facilitating the computer algebra package SymPy [54]. In particular,
the module math1.py defines the functions items_to_symbols and symbolic_expression_to_
graph_expression (short: se_to_ge) to convert between SymPy and PyIRK objects in both
directions; see Listing 7. While this requires a prior definition of the symbols (line 1),
the actual representation of the formula is much easier to understand (line 2).

Listing 7. Formula representation via SymPy.

1 la, lb = items_to_symbols(la, lb)

2 square_sum = se_to_ge(l_a**2 + l_b**2) # in Python ‘x**y‘ means x^y

Remark 3. It is worth mentioning that SymPy also supports parsing LATEX strings. This offers the
possibility to denote formulas in a more widely used syntax if desired.

3.6. Scopes

Many knowledge artifacts (such as theorems or definitions) consist of multiple simpler
statements which are in a specific semantic relation to each other. Consider the following
version of the well known Pythagorean theorem:

Theorem 1. Let (a, b, c) be the sides of a triangle, ordered from shortest to longest, and (la, lb, lc) the
respective lengths. If the angle between a and b is a right angle, then the equation l2

c = l2
a + l2

b holds.

Such a theorem consists of several “semantic parts”, which in the context of PyIRK are
called scopes. In particular, we have the three following scopes:

1. setting: “Let (a, b, c) be the sides of a triangle, ordered from shortest to longest, and (la,
lb, lc) the respective lengths”.

2. premise: “If the angle between a and b is a right angle”.
3. assertion: “then the equation l2

c = l2
a + l2

b holds”.

The concepts “premise” and “assertion” are usually used to refer to parts of theorems
and similar artifacts and can be considered self-explanatory. The “setting” scope is used to
refer to those auxiliary statements which “set the stage” to properly formulate the premise
and the assertion (e.g., by introducing and specifying the relevant objects). In the literature
(formulated in natural language), much of this information is usually provided by the text
preceding the actual theorem or by introductory phrases like “Let . . . ”.

To represent the actual content of a theorem in PyIRK, this theorem has first to be
created as an item. In Listing 8, we continue the example of the simplified Pythagorean
theorem for demonstration purposes.
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Listing 8. Creation of the theorem item as implication instance.

1 I6117 = p.create_item(

2 R1__has_label="simplified Pythagorean theorem",

3 R2__has_description="asserts formula for the sides of a right−angled triangle",
4 R4__is_instance_of=p.I15["implication proposition"],

5 )

Now, we can create three scope items as instances of I16["scope"], associate them to the
theorem item by means of R21["is scope of"] and specify them with R64["has scope type"]
as setting, premise, and assertion. These scope items can then be “attached” via a
R20["has defining scope"] qualifier to a statement, to express that this statement is not a
“top level statement” but instead a part of a theorem structure. For example, a statement
which has an R20 qualifier edge to a premise scope is considered to express a condition.
In principle, all these item and qualifier creations could be expressed directly but to provide
a more convenient way PyIRK makes use of Python’s context managers—indented code
blocks introduced by a with statement. Listing 9 shows this technique being applied to
the Pythagorean theorem. The whole process of representing a theorem in PyIRK, i.e., the
content of Listings 8 and 9, is summarized by the flow chart in Figure 1.

Figure 1. Flow chart for the PyIRK representation of a theorem as given in Listing 8 and 9.

Listing 9. Specification of the content of the Pythagorean theorem.

1 # create context manager object cm which handles all the qualifier creation, etc.

2 with I6117["simplified Pythagorean theorem"].scope("setting") as cm:

3 # the theorem should hold for every planar triangle,

4 # thus a universally quantified instance is created

5 cm.new_var(ta=p.uq_instance_of(I2917["planar triangle"]))

6 # now, this triangle instance is available as~cm.ta

7
8 sides = I9148["polygon sides ordered by length"](cm.ta)

9 a, b, c = sides.R39__has_element

10 la, lb, lc = items_to_symbols(a, b, c, relation=R2495["has length"])

11
12 # create new context manager object (again named cm) for new scope

13 # this cm, however, has access to the variables created previously

14 with I6117["simplified Pythagorean theorem"].scope("premise") as cm:

15 cm.new_equation(lhs=I9192["angle between sides"](a, b), rhs=I1570["half pi"])

16
17 se_to_ge = symbolic_expression_to_graph_expression # abbreviation

18
19 # create final context manager

20 with I6117["simplified Pythagorean theorem"].scope("assertion") as cm:

21 cm.new_equation(lhs=se_to_ge(la**2 + lb**2), rhs=se_to_ge(lc**2))

3.7. Rule-Based Reasoning

One major advantage of description-logic-based ontologies (represented in OWL) is
the availability of so-called reasoners or inference engines. These are pieces of software that
are able to infer logical consequences from a set of “facts”, i.e., asserted statements [55]. In
addition to OWL, the Semantic Web Rule Language (SWRL) is supported by some reasoners.
However, even the expressiveness of both approaches combined is not sufficient for a
meaningful representation of mathematical knowledge. For example, while such reasoners
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can easily infer new statements (edges in the knowledge graph) involving already known
entities (nodes in the knowledge graph, “individuals” in OWL-terminology), it is impossible
to infer the existence of new entities. A different reasoning approach which overcomes this
limitation is known as “existential rules” see, e.g., [56,57].

Being an experimental knowledge representation framework, PyIRK has the flexibility
to use its own rule-based inference engine (the alternative would have been to implement
an interface to an existing inference engine, which possibly would compromise flexibility
and expressive power). It follows the principle that the rules themselves should be part of
the overall knowledge graph (instances of I41["semantic rule"]). The content of each rule
can be expressed (analogously to a mathematical theorem) by means of “setting”, “premise”
and “assertion”; see Figure 1. Therefore, the first two scopes define to which entities (nodes)
the rule matches, whereas the third scope defines the consequences of such a match, i.e.,
the creation of new statements or items. Listing 10 shows a simple example that expresses
the transitivity of being a subproperty: if P2 is a subproperty of P1 and P3 is a subproperty
of P2, then P3 should also be a subproperty of P1.

Listing 10. Definition of a Semantic Rule.

1 I4731 = p.create_item(

2 R1__has_label="subproperty rule 1",

3 R2__has_description=("specifies the ’transitivity’ of R17_is_subproperty_of"),

4 R4__is_instance_of=p.I41["semantic rule"],

5 )

6
7 with I4731["subproperty rule 1"].scope("setting") as cm:

8 cm.new_var(P1=p.instance_of(p.I54["mathematical property"]))

9 cm.new_var(P2=p.instance_of(p.I54["mathematical property"]))

10 cm.new_var(P3=p.instance_of(p.I54["mathematical property"]))

11
12 with I4731["subproperty rule 1"].scope("premise") as cm:

13 cm.new_rel(cm.P2, p.R17["is subproperty of"], cm.P1)

14 cm.new_rel(cm.P3, p.R17["is subproperty of"], cm.P2)

15
16 with I4731["subproperty rule 1"].scope("assertion") as cm:

17 cm.new_rel(cm.P3, p.R17["is subproperty of"], cm.P1)

In order to apply such a rule, PyIRK uses the VF2 algorithm [58] implemented in the
package NetworkX [59] to find so-called subgraph monomorphisms. These are subsets of
nodes and edges of the overall knowledge graph which match the structure defined by the
scopes “setting” and “premise”. For all such subgraph monomorphisms, the relations of
the scope “assertion” are created (with the respective bindings). For example, without ap-
plying any rule, the property I9642["local exponential stability"] is only a subproperty
(R17) of I4900["local asymptotic stability"]. However, after applying rule I4731 from
Listing 10, this property is also a subproperty of I2931["local Lyapunov stability"] and
Item I5082["local attractiveness"]. As a consequence, it is possible to find systems that
have a locally exponentially stable equilibrium point via a SPARQL search even when
searching for the more general property local Lyapunov stability. For a control theory
expert, this might seem trivial, but for users who are not familiar with the subtle relations
between different stability concepts, this is a significant facilitation.

To implement existential rules, i.e., rules that have new nodes as consequence, PyIRK
offers the mechanism of so-called “consequent functions” which are attached to an item
in assertion scope. They can contain arbitrary code and thus can be used to create new
items or relations. A similar mechanism, called “condition function” (attached to an item
in premise scope), can be used to improve or simplify the subgraph matching for finding
all relevant subgraphs for a given rule.
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Remark 4. In the current development state of PyIRK, it is not yet possible to convert the infor-
mation contained in condition and consequent functions into semantic triples when exporting the
graph to RDF format. However, implementation is planned as one of the next development steps.

The main applications of semantic rules in PyIRK are (a) to derive “new” knowledge
and (b) to implement measures of quality assurance (see Section 3.8). While it would
be possible to implement these types of algorithms directly in the source code of the
framework, one must recognize that such algorithms are also relevant knowledge and thus
should be a regular part of the overall knowledge graph.

To demonstrate the capabilities (and remaining limitations) of the rule engine, a
formalized version of “Einsteins zebra riddle”—a famous and comparatively hard logical
puzzle attributed to Albert Einstein [60]—is included as part of the PyIRK test suite; see [29]
(unfortunately, the relevant code is too long to be included here). A logic puzzle was chosen
to explain how “new” knowledge is meant: creating new relations between entities that
follow logically from given ones. In other words, the knowledge has already been there,
but only in implicit form, and thus hard to access, for example, for use in query-answering.

3.8. Quality Assurance via Type and Consistency Checking

From our own experience in research and teaching, it is obvious that intellectual
activity is, in principle, error-prone: texts and formulas contain typos, calculations contain
errors, and software contains bugs. Mechanisms like careful double-checking and peer
review can reduce this effect, but formal knowledge representation additionally allows for
automatic checks (similar to unit tests in software engineering). In particular, PyIRK offers
several automated checks:

Firstly, almost every labeled identifier (cf. Listing 2) in an expression like
I38["positive integer"] is checked for consistency against the actual label (R1) of the
referenced entity. In this example snippet, this is not the case, as the correct label for item
I38 would be "non−negative integer". In other words, this mechanism prevents mistak-
enly using the wrong items in the modeling process. It is worth mentioning that this
mechanism is compatible with the multilinguality of PyIRK. For example, the expression
I39["positive Ganzzahl"@de] is valid. One exception to this label validation mechanism
are the “magic” item I000 and the “magic” relation R000, because they can be used with an
arbitrary label. Their purpose is to allow (temporary) reference to entities which are not
yet existing.

Secondly, due to the inheritance (via R3["is subclass of"]) and instantiation (via
R4["is instance of"]), it is possible to check the types of relations or operator items (see
Section 3.5) which are applied to other items.

Finally, semantic rules (see Section 3.7) can be used for more specialized consistency
checking, e.g., ensuring that only matrices are multiplied according to their column and
row numbers.

3.9. Modeling Strategy and Implementation State

A major challenge in knowledge representation is to define the limits of the domain of
discourse or, in other words, to answer the question “Where to begin and where to end?”.
This becomes increasingly difficult if the principal ambition of the framework is, like in
the case of PyIRK, the capability to consistently represent all relevant scientific knowledge
traditionally contained in books or articles.

PyIRK approaches this challenge in a pragmatic way: items can be introduced as
instances of I50["stub"] which indicates that this item is not yet completely modeled
and serves as placeholder. This is inspired by Wikipedia’s practice of stub articles, see https:
//en.wikipedia.org/wiki/Wikipedia:Stub (accessed on 30 December 2023). Nevertheless,
such stub items can be used in semantic triples with other items and thereby already model
valuable knowledge. If deemed necessary, the stub items can be modeled more precisely
at a later time point, e.g., by introducing other stub items and thereby pushing the limits
“outwards”, away from the more relevant items.

https://en.wikipedia.org/wiki/Wikipedia:Stub
https://en.wikipedia.org/wiki/Wikipedia:Stub
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For instance, the example in Listing 9 refers to I2917["planar triangle"]. In a first
step, this could be introduced as a stub item. Later, this could be made more precise by
introducing a new stub item “planar polygon” and making I2917 a subclass of it. Finally,
one might decide to introduce an elaborated taxonomy of geometric objects and integrate
triangles and polygons into it. The major advantage of the stub approach is that non-trivial
taxonomic modeling effort can be deferred when the current focus is on some concrete
problem like representing the lengths of the sides of a triangle.

Having properly set taxonomic relations via R4["is instance of"] and R3["is subclass of"]
often is not enough to formally explain what a concept really means. PyIRK handles this
challenge by instances of I20["mathematical definition"], which, like propositions or rules,
can have setting, premise and assertion scopes. For example, I5325["Hurwitz polynomial"] is first
introduced as an instance of item I4239["abstract monovariate polynomial"] and then
made more precise via I5325["Hurwitz polynomial"].set_relation(p.R37["has definition"],
I4455["definition of Hurwitz polynomial"]), where I4455 specifies (via the three scopes)
that, if the set of roots of that polynomial is a subset of the open left half-plane of C, then it
is a Hurwitz polynomial.

Obviously, this approach is tedious, especially in the beginning. However, once a
“critical mass” of items and relations is accumulated, it becomes easier as fewer new entities
have to be introduced to express the actual intention, e.g., a new theorem.

At the time of writing, the OCSE (version 0.3) and the underlying framework PyIRK
(version 0.12) are still under heavy development. When all three OCSE modules are loaded,
the knowledge graph contains ≈850 items, of which ≈450 are automatically created, e.g.,
scope items, applied operators, etc. Between nodes, there exist ≈7600 edges (statements),
each of which is specified by one of ≈140 relations. Additionally, there are ≈600 quali-
fier statements.

Ironically, despite the resulting data structure being called knowledge graph, a mean-
ingful depiction of the whole data is surprisingly difficult, as Figure 2 demonstrates. A more
useful visualization can be achieved when considering only a sub-graph, as, e.g., in Figure 3.

Figure 2. Visualization of the whole knowledge graph. While it is impossible to extract meaningful
details from this picture, it illustrates the high degree of interconnection. Edges of type R3["is
subclass of"] are blue, R4["is instance of"] are orange and all other edges types are black.
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In its current development state, however, a PyIRK knowledge graph can be exported
to the RDF standard without the qualifier statements. This is not a limitation in principle
but is simply not yet implemented.

The RDF export is the basis for the SPARQL interface, which can be used to perform
a semantic search; see Section 6.3. As for other knowledge management systems, the full
functionality of the framework is only available via the API, i.e., using the Python library;
see also Remark 1.
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Figure 3. Visualization of a sub-graph with I9904["matrix"] as the center and only direct neighbors.
For the sake of displayability, only some of the automatically created instance items (key starting
with Ia...) are displayed. The arrow colors correspond to the respective relations.

4. Lyapunov Theory

The study of nonlinear dynamical systems revolves around a number of nonlinear anal-
ysis tools. Usually, the stability of a feedback system is of particular interest. One widely
used concept for the analysis of nonlinear systems is Lyapunov’s stability theory. This sec-
tion presents the basic concepts of Lyapunov’s theory, starting with time-invariant systems.

The following definitions and theorems are based on the extensive descriptions in [61]
(Section 4.1), [62] (Section 3.4.2) and [63] (Chapters 1–3).

4.1. Stability of Equilibrium Points

Consider the nonlinear time-invariant dynamical system

ẋ = f (x), (1)

where the map f : D → Rn is a local Lipschitz map and maps from D ⊂ Rn to Rn.
Assume x∗ ∈ D is an equilibrium point of system (1), meaning that it satisfies f (x∗) = 0.
Without loss of generality, we can assume that the equilibrium point is the origin x∗ = 0.
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Definition 1. The equilibrium point x∗ = 0 of (1) is called stable (in the sense of Lyapunov), if for
any ε > 0 there exists a δ(ε) > 0, such that ||x(0)|| < δ(ε) =⇒ ||x(t)|| < ε, ∀t ≥ 0 .

Definition 2. The equilibrium point x∗ = 0 of (1) is called asymptotically stable, if it is stable
and there exists a δ > 0, such that ||x(0)|| < δ =⇒ limt→∞ x(t) = 0.

In order to assess whether an equilibrium point has any of these properties, a criterion
is needed. As an inspiration, we consider a pendulum near its lower equilibrium point.
The energy of the system is lowest in its (lower) equilibrium point and increases in an
environment around the equilibrium. Thus, if the energy of the system always decreases
along its trajectory, it will eventually reach the equilibrium point.

The same argument holds for other physical systems. One can examine the energy of
such systems along their trajectory to evaluate the stability of the equilibrium. Lyapunov
showed that this concept can be generalized to specific scalar functions that allow the
determination of stability of an equilibrium point, even if energy might not be a meaningful
concept for the given system.

We denote with L f h(x) := ∂h
∂x f (x) the Lie derivative of the scalar field h : D → R along

the vector field f of (1).

Theorem 2. Let x∗ = 0 be an equilibrium of (1) and D ⊂ Rn be an open environment of 0. If there
exists a scalar function V : D → R, then

• V is positive definite on D.
• V̇ = L f V is negative semi-definite on D.

x∗ = 0 is called locally stable (LS). If V̇ is an even negative definite, x∗ is locally asymptotically
stable (LAS).

Remark 5. Technically speaking, the previous theorem consists of two separate theorems. Since
most of the setting are the same, one usually formulates the statement like in Theorem 2. We will
recall this fact later in Section 5.

If such a function V exists, it is called Lyapunov function. Additionally, it is called
weak/non-strict, if V̇ is negative semi-definite and strong/strict, if V̇ is negative definite.

In order to generalize the concept of local asymptotic stability to the global case, one
has to make sure that the definiteness conditions of V hold not just in a neighborhood of
the origin, but in the entire state space. Additionally, the Lyapunov function V needs to be
radially unbounded.

Definition 3. Let x∗ = 0 be an equilibrium of (1). If there exists a scalar function V : Rn → R, then

• V is (globally) positive definite.
• V̇ = L f V is (globally) negative definite.
• lim||x||→∞ V(x) = ∞ (V is radially unbounded).

x∗ = 0 is called globally asymptotically stable (GAS).

4.2. Construction of Lyapunov Functions

In general, the previous theorems are only sufficient but not necessary, leading to the
problem of finding a suitable Lyapunov function for a given system. While there is no general
approach to finding a Lyapunov function, there is, however, a number of publications
regarding Lyapunov functions for specific systems or under certain conditions.

In the case of the linear system,
ẋ = Ax (2)

a candidate for a Lyapunov function is given by the quadratic form

V(x) = xTPx, (3)
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with the positive definite Matrix P. When evaluating the time derivative of V(x) along the
system’s trajectory, one obtains

V̇(x) = ẋTPx + xTPẋ = xT ATPx + xTPAx = xT (ATP + PA)︸ ︷︷ ︸
!
=−Q

x, (4)

with the symmetric matrix Q. Here,

ATP + PA = −Q (5)

is called the Lyapunov Equation.
To show that V is indeed a Lyapunov function, we have to prove that the matrix Q is

positive definite (see Theorem 2). To satisfy both conditions, one usually starts by choosing
a positive definite matrix Q and solves the Lyapunov Equation (5) for the matrix P. If P is
also positive definite, V(x) is indeed a Lyapunov function.

Theorem 3. System (2) has a globally asymptotically stable origin, if, and only if, for any positive
definite matrix Q, there exists a positive definite matrix P, satisfying the Lyapunov Equation (5).
In this case, the function V(x) = xTPx is a Lyapunov function for the system.

Remark 6. To make the universal quantifier in the previous statement more explicit, one might
reformulate the theorem in short notation

∀Q ≻ 0 ∃P ≻ 0 : ATP + PA = −Q ⇐⇒ x∗ = 0 is globally asymptotically stable. (6)

In the case of nonlinear systems, several approaches to construct a Lyapunov function
have been discussed (see [64] for an overview). Most of these methods make assumptions
about the system, limiting the applicability of the presented method to a certain class
of system.

For demonstration purposes w.r.t. knowledge transfer, our contribution aims at help-
ing to find the suitable method for a given system. To this end, the requirements and
assumptions of different approaches are of particular interest to the knowledge represen-
tation. Subsequently, we recall two methods of constructing Lyapunov functions with
different conditions.

4.2.1. Recursive Algorithm of Vannelli and Vidyasagar (Theorem 4 in [65])

This algorithm is applicable to time-invariant systems of dimension two or greater,
which can be written as

ẋ = f (x) =
∞

∑
i=1

F i(x), x ∈ Rn (7)

with homogeneous functions Fi of degree i and under the assumption, the linearized system

ẋ = F1(x) = Ax (8)

is asymptotically stable. Starting with solving the Lyapunov Equation for the linearized
system (which has a solution, since the linearized system is stable), a recursive system of
equations is defined. Solving these equations leads to a Lyapunov function. For details,
see [65] (Theorem 4).

4.2.2. Algorithm by Goubault et al. [66]

This algorithm can be used to examine time-invariant polynomial systems of the form

ẋ = f (x) = ( f1(x), . . . , fn(x))T, fi(x) ∈ R[x] for i = 1, . . . , n (9)

with an equilibrium in the origin. Now with the use of so-called Darboux polynomials, one
can search for so-called differential variants of the system via so-called Sum-Of-Squares
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programming. If a solution exists, the differential variant can be used to calculate a Lyapunov
function. What this means exactly is beyond the scope of this paper. It is only important that
some conditions on the applicability of the algorithm are imposed, which can be represented
in our KG.

In the following section, the implementation of some selected theorems in PyIRK will
be discussed.

5. Lyapunov-Theory-Related Knowledge Representation

As mentioned before (see Section 3.9), a challenge in knowledge representation is
where to begin. Therefore, for now, we focused only on implementing the necessary
mathematical basics that are needed to formulate important theorems in the context of
Lyapunov’s theory. That means that different concepts are implemented in different levels
of detail, meaning there will be items with rigorous (mathematical) definitions, items with
meaningful (semantic) descriptions and relations and stub items (see Section 3.9). As it
becomes necessary, new items or information about an item may be added on demand.

Consider Theorem 2. The theorem itself is represented by an item defined in the OCSE
module control_theory1; see Listing 11.

Listing 11. Theorem item for Lyapunov stability.

1 I4663 = p.create_item(

2 R1__has_label="theorem for local Lyapunov stability of state space system",

3 R2__has_description=(

4 "establishes a sufficient condition for the stability of an "

5 "equilibrium point of a state space system"

6 ),

7 R4__is_instance_of=p.I15["implication proposition"],

8 )

This item by itself only has a label (R1), a short description (R2) and the type
I15["implication proposition"] (assigned via R4). At this point, the item has no relation to
any of the concepts in Theorem 2, such as stability. To formally define the content of the
theorem and build the corresponding relations in the knowledge graph, we can use the
structure of scopes (introduced in Section 3.6) to formulate setting, premise and assertion.
To do so, we require the existence of various (mathematical) concepts, such as system,
equilibrium point, scalar function, positive definiteness and Lie-derivative, to name a few.
Some of these concepts need to be specified even more, e.g., the system (meaning system
of ordinary differential equations) has to have an associated vector field to calculate the
Lie-derivative and the concept of positive definiteness needs its own definition. Assuming
all of the above-mentioned items are defined, Theorem 2 can be implemented as shown in
Listing 12.

Listing 12 mainly consists of three scopes—setting, premise and assertion. In the first
scope, the setting, variables are defined that are needed in premise and assertion. Naturally,
we start by defining the system of equations (lines 3–5). Since Theorem 2 refers to the
autonomous time-invariant system (1), the statement is restricted to systems with these
properties by lines 6–7 (even though a similar statement can be made for systems without
these properties). The corresponding state space D of the system is defined in line 9 and is
immediately put into relation with its system via line 10. To specify the dimension of the
state space, some positive integer n (line 13), is put into relation with the state space (line 14).
Next, the origin of the state space (lines 15–16) is defined. As mentioned before, the system
is described by its drift vector field f , which is defined in lines 18–19. To prepare the discus-
sion of properties of the scalar field V and its derivative in the premise, V and its Lie deriva-
tive are formally defined in lines 21–22. Note that I1347["Lie derivative of scalar field"] is
an item of type operator that takes the two arguments V, f and returns an evaluated map-
ping (see Section 3.5) of type ma.I9923["scalar field"] (not visible here). This first part
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of the code corresponds with the first two lines of Theorem 2. Now, all required tools are
available, to formulate the implication. The premise is rather short. Two conditions need to
be fulfilled for the assertion to be true: V(x) ≻ 0 (lines 25–26) and V̇(x) ⪯ 0 (lines 27–28).
These definiteness conditions need only hold in the neighborhood of the origin, which
we describe by adding a qualifier to the statement, which restricts the statement to the
condition of the qualifier. In the assertion, we create a new relation between the origin
of the system and the item for local Lyapunov stability (line 31). The last line 33 is not
necessarily part of the theorem and takes the place of a terminological remark, stating that
the function V is called a weak Lyapunov function.

Listing 12. Theorem for local Lyapunov stability of state space systems.

1 # some long strings are truncated by ‘...‘

2 with I4663["theorem for local Lyapunov stability ..."].scope("setting") as cm:

3 ode_sys = cm.new_var(

4 ode_sys=p.instance_of(I9273["explicit first order ODE system"])

5 )

6 cm.new_rel(ode_sys, p.R16["has property"], I7733["time invariance"])

7 cm.new_rel(ode_sys, p.R16["has property"], I5718["autonomy"])

8
9 D = cm.new_var(D=p.instance_of(ma.I5167["state space"]))

10 cm.new_rel(ode_sys, ma.R5405["has associated state space"], D)

11
12 n = cm.new_var(n=p.instance_of(p.I39["positive integer"]))

13 cm.new_rel(D, ma.R3326["has dimension"], n)

14
15 x0 = cm.new_var(x0=p.instance_of(ma.I1168["point in state space"]))

16 cm.new_rel(D, ma.R3798["has origin"], x0)

17
18 f = cm.new_var(f=p.instance_of(ma.I9841["vector field"]))

19 cm.new_rel(ode_sys, R4122["has associated drift vector field"], f)

20
21 V = cm.new_var(V=p.instance_of(ma.I9923["scalar field"]))

22 cm.new_var(LfV=I1347["Lie derivative of scalar field"](V, f))

23
24 with I4663["theorem for local Lyapunov stability ..."].scope("premise") as cm:

25 cm.new_rel(V, p.R16["has property"], ma.I3133["positive definiteness"],

26 qualifiers=[ma.on_set(cm.u)])

27 cm.new_rel(cm.LfV, p.R16["has property"], ma.I3137["local negative semidefiniteness"],

28 qualifiers=[ma.on_set(cm.u)])

29
30 with I4663["theorem for local Lyapunov stability ..."].scope("assertion") as cm:

31 cm.new_rel(cm.x0, p.R16["has property"], I2931["local Lyapunov stability"])

32
33 V.set_relation(p.R30["is secondary instance of"], I9208["weak Lyapunov Function"])

When adapting this definition for asymptotic stability, we can reuse the setting of
Listing 12 via cm.copy_from; see Listing 13.

Listing 13 copies the setting of the previous theorem. With the slight change of using item
ma.I3137["negative definiteness"] instead of ma.I3136["negative semidefiniteness"] in
line 15, one can formulate the statement for local asymptotic stability.

In a similar fashion, statements regarding the construction of the Lyapunov function
can be stated. For instance, Listing 14 is a PyIRK representation of Theorem 3.

Note that this is an equivalence proposition (I17) rather than an implication proposition
(I15), meaning that the statement is also true, if premise and assertion are switched. For the
sake of brevity, the creation of some items and relations is omitted here. Note further that
lines 9–12 feature three type-conversion operators to ensure type safety during the statement
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of matrix equations. Lastly, lines 14–16 use the “universally quantified” expression to create
the matrix Q, since the premise has to hold for all positive definite matrices Q.

Listing 13. Theorem for local asymptotic Lyapunov stability of state space systems.

1 I8733 = p.create_item(

2 R1__has_label=

3 "theorem for local asymptotic Lyapunov stability of state space system",

4 # ...

5 )

6
7 with I8733["theorem for local asymptotic Lyapunov ..."].scope("setting") as cm:

8 cm.copy_from(

9 I4663["theorem for local Lyapunov stability ..."].get_subscope("setting"))

10 V = cm.V

11
12 with I8733["theorem for local asymptotic Lyapunov ..."].scope("premise") as cm:

13 cm.new_rel(cm.V, p.R16["has property"], ma.I3133["positive definiteness"],

14 qualifiers=[ma.on_set(cm.u)])

15 cm.new_rel(cm.LfV, p.R16["has property"], ma.I3136["negative definiteness"],

16 qualifiers=[ma.on_set(cm.u)])

17
18 with I8733["theorem for local asymptotic Lyapunov ..."].scope("assertion") as cm:

19 cm.new_rel(cm.x0, p.R16["has property"], I4900["local asymptotic stability"])

20
21 V.set_relation(p.R30["is secondary instance of"], I9199["strong Lyapunov Function"])

Listing 14. Setting of Theorem 3.

1 I2613 = p.create_item(

2 R1__has_label="theorem for Lyapunov functions for linear systems",

3 R4__is_instance_of=p.I17["equivalence proposition"],

4 )

5 with I2613["theorem for Lyapunov functions ..."].scope("setting") as cm:

6 # define variables and relations similar to stability theorem

7 # n, D, ode_sys, x0, x, A, f = ...

8
9 x_mat = ma.I9489["vector to matrix"](

10 ma.I1284["point in vector space to vector"](cm.x))

11 # specify f(x) = Ax

12 cm.new_equation(f(x), ma.I4218["matrix to vector"](ma.I5177["matmul"](A, x_mat)))

13
14 Q = cm.new_var(Q=p.uq_instance_of(ma.I9906["square matrix"]))

15 cm.new_rel(Q, ma.R5938["has row number"], n)

16 cm.new_rel(Q, p.R16["has property"], ma.I3648["positive definiteness (matrix)"])

In the premise in Listing 15, a statement about the existence of a specific matrix P is
made.

Note the existential quantifier in line 3. Afterwards, additional conditions are imposed
on the matrix P. Therefore, the SymPy-based formula representation is used; see Section 3.5.

In the assertion (Listing 16), we assign the property of global asymptotic stability to
the origin and define the Lyapunov function V in relation to the matrix P.

Other approaches to finding a suitable Lyapunov function for a given system are
implemented in a similar fashion. In particular, it is made clear what the requirements of an
approach are and to what kind of system it is applicable to. Steps towards an application of
this knowledge are proposed in Section 6.3.
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Listing 15. Premise of Theorem 3.

1 with I2613["theorem for Lyapunov functions ..."].scope("premise") as cm:

2 P = cm.new_var(P=p.instance_of(ma.I9906["square matrix"],

3 qualifiers=[p.exis_quant(True)]))

4 cm.new_rel(P, ma.R5938["has row number"], n)

5 cm.new_rel(P, p.R16["has property"], ma.I3648["positive definiteness (matrix)"])

6 # −Q = A^T @ P + P @ A
7 As, Ps, Qs = items_to_symbols(A, P, Q)

8 E = cm.new_equation(se_to_ge(−Q), se_to_ge(As.T * Ps + Ps * As)
9 E.set_relation(p.R30["is secondary instance of"], I6338["Lyapunov Equation"])

Listing 16. Assertion of Theorem 3.

1 with I2613["theorem for Lyapunov functions ..."].scope("assertion") as cm:

2 cm.new_rel(x0, p.R16["has property"], I5677["global asymptotic stability"])

3 V = cm.new_var(V=p.instance_of(I9199["strong Lyapunov Function"]))

4 # V = x^T @ P @ x

5 xs, Ps = items_to_symbols(xs, Ps)

6 cm.new_equation(V, ma.I2328["matrix to scalar"](se_to_ge(xs.T*Ps*xs)))

In addition to the aforementioned theorems, many items and relations were imple-
mented in the context of Lyapunov’s theory (see Appendix A). Overall, in its current
development state the OCSE is comprised of ≈800 items (As mentioned in Section 3.9 there
are 848 total items, including 55 builtin items.).

6. Discussion: Benefits, Applications, Limitations and Reproducibility

With PyIRK and the OCSE, knowledge is formally represented in a way understand-
able for humans and machines alike. As announced in Section 1 the aim of the current
contribution is not to provide a doubtlessly useful product, but instead to present a possible
backend for such a knowledge-based application. Nevertheless, the current development
state enables some advantages of formal knowledge representation.

6.1. Hierarchies and Dependencies

By explicitly stating the relationships between items and having to explicitly de-
cide the type of every used item or variable in a theorem, the underlying knowledge
graph consists of densely connected nodes. This enables the user to infer information
about a node (an item) by examining its relations. With the R4["is instance of"] or
R3["is subclass of"] relations, a hierarchical structure is imposed on an item. For example,
I5677["global asymptotic stability"] is an instance of I5236["general trajectory property"],
which in turn is an instance of the metaclass I54["mathematical property"]. This catego-
rizes the item in a broad way. Additional relations, such as R17["is subproperty of"], relate
the item to other items in the graph. In this case, I5677["global asymptotic stability"]
is a subproperty of I8744["global Lyapunov stability"], I8059["global attractiveness"]
and I4900["local asymptotic stability"]. These relations are transitive, implying that,
if the property GAS applies, the property LAS applies as well. Or, in other words, if the
trajectory is not LAS, it cannot be GAS (see also Section 3.7).

In the context of learning and teaching, the graph of relations between different pieces
of information might be helpful to understand which concepts depend on each other, mean-
ing, e.g., what kind of mathematical concepts, such as positive definiteness, are necessary
to understand about Lyapunov functions. The careful reader might have noticed that in the
previous code snippets, two different items with the label “positive definiteness” were used
(I3133["positive definiteness"] and I3648["positive definiteness (matrix)"]). This is
because the concept of a positive definite scalar function differs from the concept of a
positive definite matrix, although the two are related.
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6.2. Quality Assurance

Even though written publications are usually proof-read multiple times, random
mistakes and typos, especially in formulas, might still occur. Such errors might include
confounding the vector field and scalar field in a Lie derivative, forgetting a transposition
sign on a vector or messing up an index notation. With the information in the OCSE
being machine-readable, we can automate the process of finding such errors. This can be
conducted by formulating dedicated rules (instances of I47["constraint rule"]), which
are part of the knowledge graph itself; see Section 3.7. Currently, three means of quality
assurance are applied, as summarized by Figure 4.

Figure 4. Process of quality assurance when adding data to the KG.

First, mathematical operators such as multiplication and addition, but also Lie
derivative and scalar field only accept arguments of specific types. For example, the
I1347["Lie derivative of scalar field"] takes two arguments, one of type vector field
and one of type scalar field. An erroneous implementation of Lh f , meaning the Lie deriva-
tive of a vector field along a scalar field, would result in a raised WrongArgType-error.

The second powerful means for quality control is to make sure, that, e.g., the matrix
multiplication operator only accepts matrices of adequate size. Keep in mind that PyIRK
does not evaluate any numerical multiplication, but it only stores the operation and its
arguments. The quality assurance is thus again carried out by the suitable rules (see
Section 3.7) and can be implemented for all kinds of operators.

A third tool for quality control is the detection of problematic statements, i.e., incom-
patible statements or logic errors. An example would be that the same equilibrium point
cannot be locally stable and unstable at the same time. Consider the exemplary statement
in Listing 17.

Listing 17. Contradicting statements.

1 I8303 = p.create_item(

2 R1__has_label="strict Lyapunov instability",

3 R43__is_opposite_of=I2931["local Lyapunov stability"],)

4 # ...

5 )

6 eqp = p.instance_of(I9820["equilibrium point"])

7 eqp.set_relation(p.R16["has property"], I2931["local Lyapunov stability"])

8 eqp.set_relation(p.R16["has property"], I8303["strict Lyapunov instability"])

9 # eqp.set_relation(p.R16["has property"], I5677["global asymptotic stability"])

This would result in an error, since strict Lyapunov instability and local Lyapunov
stability have opposite relations, meaning they cannot be true at the same time. Due to the
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transitivity of property relations, the same error would occur if line 8 was exchanged for
line 9.

6.3. Semantic Searchability

With the help of the SPARQL interface (see Section 2.3), we can query the KG for
specific information. One might be interested in finding a Lyapunov function for a given
system. This can be facilitated by defining the system and its important properties as part of
the KG and then running a SPARQL query to search for theorems that apply to this concrete
system. For instance, the system in question could be time-invariant and its differential
equations could be polynomial. One would define this system as shown in Listing 18.

Listing 18. Definition of test system.

1 testsys = p.instance_of(I7641["general system model"])

2 testsys.set_relation(R8303["has general system property"], I7733["time invariance"])

3
4 rep = p.instance_of(I2928["general model representation"])

5 rep.set_relation(R5100["has model representation property"], I5247["polynomial"])

6 testsys.set_relation(R2928["has model representation"], rep)

Remark 7. When speaking about dynamical systems, one usually attributes certain properties
to them. To avoid ambiguity, the OCSE distinguishes between properties of the system, such as
time-variance, properties of the mathematical representation of the system, such as linearity and
properties of a trajectory of the system, such as local stability.

With the item testsys in the KG, one can use the following SPARQL query (Listing 19)
to search for all theorems applicable to this system.

Listing 19. SPARQL query for applicable theorems.

1 # prefixes ...

2 SELECT ?th

3 WHERE {

4 ?th (:R4__is_instance_of|:R3__is_subclass_of)*:I14__mathematical_proposition.
5 ?th :R80__applies_to ocse:Ia2561__testsys.

6 }

Note that ?th matches all items in the KG with the two specified conditions: a) They
have to be related to mathematical proposition (I14) via an arbitrary combination of R4 and
R3, which includes, e.g., implication theorems and equivalence propositions. b) They have
to apply to the system of interest. Consequently, the result of the query, shown in Listing 20
consists of the two algorithms that are applicable to time-invariant polynomial systems.

Listing 20. Result of the SPARQL query.

1 [’I4274’, ’theorem by Goubault for Lyapunov functions ...’]

2 [’I8142’, ’theorem by Vannelli for Lyapunov functions ...’]

Analogously, all three algorithms of Section 4.2 would be returned if the test system
was a linear time-invariant system.

The logic behind the relation R80["applies to"] examines all theorems and makes sure
that conditions expressed in their setting scopes match with the conditions of all the systems
in the KG. Each match between the theorem and system is connected with the R80 relation.

Although this is a rather rudimentary example, the SPARQL interface can prove a
powerful tool, especially if compared to ordinary text-based search. This becomes even
more obvious in the next example, as shown in Listing 21.
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Listing 21. SPARQL query for affine systems with a stable and an unstable equilibrium.

1 # prefixes ...

2 SELECT ?sys WHERE {

3 ?sys ocse:R5031__has_trajectory ?traj1.

4 ?traj1 ocse:R7062__has_general_trajectory_property

5 ocse:I2931__local_Lyapunov_stability.

6
7 ?sys ocse:R5031__has_trajectory ?traj2.

8 ?traj2 ocse:R7062__has_general_trajectory_property

9 ocse:I8303__strict_Lyapunov_instability.

10
11 ?sys ocse:R2928__has_model_representation ?rep.

12 ?rep ocse:R5100__has_model_representation_property ocse:I6091__control_affine.

13
14 ?rep ocse:R2112__has_state_dimension ?dim.

15 FILTER (?dim >=4)

16 }

This query returns systems in the system model catalog [28] that have (at least) two
different equilibrium points—one stable and one unstable. Additionally, only control affine
models with at least four state components are selected. In this case, the model catalog
includes six matching results:

• Model of triple pendulum;
• Model of furuta pendulum;
• Model of cartpole system;
• Model of acrobot;
• Model of inertia wheel pendulum;
• Model of pendubot.

Remark 8 (Intermediate Summary). To summarize Sections 6.1–6.3, the formal representation
of control engineering knowledge in the OCSE along with the feature set of PyIRK allows to access
this knowledge in new ways. We stress that our goal is not to develop new methods, but rather to
facilitate the knowledge transfer within the field of control engineering and towards application
domains and enable the user to find the right method or theorem for the respective problem.

6.4. Limitations

While, until now, we have mainly discussed the advantages of our approach, we also
want to address the weaknesses—some of which might be solved in the future.

Two related issues are performance and scalability. With the current size of the KG,
the OCSE’s unit tests (which include the means of quality assurance described above) run
for 8 s (on an Intel Core i7-1360P processor in a 2023 consumer notebook), and the PyIRK
tests take about 30s. While an explicit performance analysis has not yet been carried out, it
was observed during development that these times increase with the size of the knowledge
graph, mainly caused by the rule-based reasoning tasks. This lets us estimate that scalability
issues might arise for KG sizes > 104 nodes. This number is significantly lower than the
currently ≈108 nodes of Wikidata [67]. Nevertheless, we are confident that PyIRK KGs
can be large enough to be useful in scientific niches such as control theory while still being
sufficiently performant. It should also be noted that possible future performance issues are
irrelevant for use cases that only aim at knowledge retrieval (rather than reasoning and
consistency checking) because the SPARQL interface operates on the RDF export of the KG.

We want to point out that the current focus of PyIRK and OCSE development is
to demonstrate the usefulness of formal knowledge representation. Given limited devel-
opment resources, progress towards this goal is made by accepting compromises with
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reference to performance and scalability. The most obvious example of this strategy is the
fundamental choice to drop OWL and its favorable description-logic-based computability
properties, and instead, to choose a (comparatively slow) Turing-complete programming
language for knowledge representation to achieve more expressive power.

Another issue is usability. To facilitate knowledge transfer, engineers should be able
to use PyIRK within a few minutes. A crucial point for using the framework is to have con-
venient access to all the keys such as I9820["equilibrium point"] or R16["has property"].
Again, Wikidata gives a good orientation that this challenge can be tackled by a combi-
nation of good documentation, a decent collection of examples and a user interface (UI)
with automatic syntax completion based on fuzzy search. A similar approach is used for
PyIRK: the documentation available at https://pyirk-core.readthedocs.io (accessed on
30 December 2023) covers the most important concepts, the unit tests contain several exam-
ples and there exist two approaches for key auto-completion-based on search results over
the labels and descriptions of entities (see https://github.com/ackrep-org/pyirk-django/
(accessed on 30 December 2023) and https://github.com/ackrep-org/irk-fzf/ (accessed
on 30 December 2023)). However, all three usability components have to be improved
significantly. Therefore, the biggest challenge is the creation of a suitable UI—both for
entering new knowledge and retrieving (and presenting) existing knowledge.

Finally, the fact that the OCSE in its current version only covers a very limited amount
of control engineering knowledge is obviously a limitation. A reasonable direction for
extension would be to incorporate concepts and statements for the stability analysis of
time discrete systems or distributed parameter systems. However, the main, yet unsolved,
issue in this regard is (apart from the technical scalability issues discussed above) how to
incentivize and organize the contribution process such that it becomes self-sustained.

6.5. Reproducibility

The major motivation for PyIRK and the OCSE is to facilitate knowledge transfer. Since
in our approach the knowledge is represented as source code, it is a crucial requirement
that this code is executable and produces the correct results on any system it runs on,
especially the local systems of possible users. This might sound trivial, but experience
from decades of computation-based research shows that it is not [25,68]. To ensure this, we
publish our source code along with the respective suite of over 100 unit tests. Furthermore,
we facilitate a continuous integration service to ensure that the tests not only pass on our
local development systems but also in an explicitly defined containerized test environment.

7. Conclusion and Outlook

In this contribution, we present a novel imperative approach for the formal repre-
sentation of control engineering knowledge with a focus on concepts and theorems from
Lyapunov’s theory. We demonstrate that it is possible to model this kind of complex infor-
mation in a way that enables subsequent applications such as automated quality assurance
and enhanced search. Therefore, the basic approach is to exploit the expressive power of a
full-featured programming language as opposed to the various OWL profiles, which are
optimized for reasoning computability and performance at the cost of expressiveness. This
facilitates techniques like scopes, applied operators, or convenient formulas. Nevertheless,
the resulting knowledge graph can be exported to RDF and thus is compatible with the
most widespread standard of the semantic web.

The benefits and applications shown (see Section 6) mainly serve as proof of concept.
The long-term goal is to develop assistance software, which, e.g., helps to find a suitable
Lyapunov function for a given dynamical system or to solve other control problems. Such
assistant software might improve the accessibility of the large corpus of control theory
and thus facilitate the knowledge transfer between various niches of control engineering,
as well as into (new) potential application domains.

In any case, the availability of an open and multilingual domain-specific knowledge
repository can be seen as a value by itself, as it helps to communicate progress (and formu-
late questions) precisely and with little effort (just by issuing a merge-request). The git-based

https://pyirk-core.readthedocs.io
https://github.com/ackrep-org/pyirk-django/
https://github.com/ackrep-org/irk-fzf/


Machines 2024, 12, 181 24 of 27

infrastructure greatly supports this usage as it makes it easy to have different (experimen-
tal) versions of the knowledge base available (in git branches) and also allows precisely
tracking every change to the knowledge with reference to the author, commit time and
commit message.

While this paper shows that formal representation of non-trivial control-engineering
content is possible, many questions remain open for future research and development,
for example:

• How can contributions to the OCSE (new entities and statements, but also manual
quality assurance) be incentivized?

• How exactly can the KG be processed to provide useful information and thus facilitate
the desired knowledge transfer?

• How can the computational performance be improved to maintain current loading
and reasoning times (some seconds) also when the number of nodes and relations
increases by an order of magnitude?

• Is there a relevant educational effect of formalizing knowledge or peer-reviewing for-
malized knowledge? (This question is based on the observation that the formalization
process requires a deep understanding of the respective propositions and the related
concepts.)

• Assuming that there will be a relevant number of external contributions, how should
the plurality of possible perspectives (different concepts, methods, notations, theories)
on scientific questions be dealt with?

However, based on the direct feedback we obtained over the last two years, the biggest
open question is how our KG-based approach (i.e., “symbolic AI”) compares to and can
be combined with learning-based approaches (“numeric AI”) such as LLMs. In recent
years, LLM-based systems (such as ChatGPT) have impressively demonstrated both their
capabilities as well as their shortcomings. Our expectation is that the availability of a
precise knowledge base such as a KG can be used to overcome the problem of neural
network hallucination, or at least to detect it.

Another possible combination is to use an LLM to extract distinct kinds of knowledge
directly from selected source files (such as papers) and convert it to PyIRK source code.
This could drastically reduce the manual effort necessary for formalizing knowledge.
Consequently, this could make it realistic to formalize a significant part of the control
engineering knowledge.

Answering the question of whether the symbolic-based (KG) or the numeric-based
(LLM) approach is better for knowledge representation will probably be very sensitive with
reference to the concrete task and the definition of “better”. In any case, a major advantage
of the symbolic approach will always be the explainability, i.e., the direct and transparent
link between the result and the source data (the knowledge graph).
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Appendix A. List of Items and Relations in the Context of Lyapunov Theory

The following list of items, which relate to Lyapunov’s theory, is implemented in
the OCSE.

Table A1. List of implemented items relating to Lyapunov’s theory.

I1347 Lie derivative of scalar field
I6229 Definition of Lie derivative of scalar field
I3133* Positive definiteness
I3134* Definition of positive definiteness
I3135* Positive semidefiniteness
I3136* Negative definiteness
I8492* Definition of negative definiteness
I3137* Negative semidefiniteness
I3648* Positive definiteness (matrix)
I6117* Definition of positive definiteness (matrix)
I5753* Radially unboundedness
I5082 Local attractiveness
I8059 Global attractiveness
I2931 Local Lyapunov stability
I8744 Global Lyapunov stability
I4900 Local asymptotic stability
I5677 Global asymptotic stability
I9642 Local exponential stability
I5100 Global exponential stability
I8303 Strict Lyapunov instability
I2933 Lyapunov Function
I9208 Weak Lyapunov Function
I9199 Strong Lyapunov Function
I5483 Control Lyapunov Function
I3369 Sontags formula
I4663 Theorem for local Lyapunov stability of state space system
I8733 Theorem for local asymptotic Lyapunov stability of state space system
I2983 Theorem for global asymptotic Lyapunov stability of state space system
I3503 Input-to-state stability
I6994 Chetaev instability theorem
I3303 Attractor
I5106 Repulsor
I9875 Region of attraction
I9903 LaSalle’s invariance principle
I6338 Lyapunov Equation
I3712 Theorem on Lyapunov Equation and Stability
I4432 Vannelli recursive algorithm to find Lyapunov function
I8142 Theorem by Vannelli for Lyapunov functions for homogeneous systems
I4274 Theorem by Goubault for Lyapunov functions for polynomial systems
I7006 Goubault algorithm to find Lyapunov function
I2613 Theorem for Lyapunov functions for linear systems

Note that items with an asterisk live in the math module. Note further that positive
definiteness appears twice since there are two different properties with this label (relating to
positive definite scalar function and positive definite matrix). The detail of the information
implemented differs for each item. Some items have rigorous definitions, most items are
sorted into the existing hierarchy, meaning they have a parent class and some relations to
other meaningful items, and some small amount of items are implemented as stub items,
with little more information than their label.
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42. Vrandečić, D.; Krötzsch, M. Wikidata: A Free Collaborative Knowledgebase. Commun. ACM 2014, 57, 78–85.
43. Jaradeh, M.Y.; Oelen, A.; Farfar, K.E.; Prinz, M.; D’Souza, J.; Kismihók, G.; Stocker, M.; Auer, S. Open Research Knowledge

Graph: Next Generation Infrastructure for Semantic Scholarly Knowledge. In Proceedings of the 10th International Conference
on Knowledge Capture, Marina Del Rey, CA, USA, 19–21 November 2019; pp. 243–246.

44. Auer, S.; Stocker, M.; Vogt, L.; Fraumann, G.; Garatzogianni, A. ORKG: Facilitating the Transfer of Research Results with the
Open Research Knowledge Graph. Res. Ideas Outcomes 2021, 7, e68513.

45. Pérez, J.; Arenas, M.; Gutierrez, C. Semantics and Complexity of SPARQL. In Proceedings of the International Semantic Web
Conference, Athens, GA, USA, 5–9 November 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 30–43.

46. World Wide Web Consortium and Others. SPARQL 1.1 Overview, 2013. Available online: https://www.w3.org/TR/sparql11-
overview (accessed on 11 February 2024).

47. Ali, W.; Saleem, M.; Yao, B.; Hogan, A.; Ngomo, A.C.N. A Survey of RDF Stores & SPARQL Engines for Querying Knowledge
Graphs. VLDB J. 2022, 31, 1–26.

48. Grimm, S.; Hitzler, P.; Abecker, A. Logic, Ontologies and Semantic Web Languages. In Semantic Web Services: Concepts, Technologies,
and Applications; Springer: London, UK, 2007.

49. Xue, Y.; Ghenniwa, H.H.; Shen, W. Frame-Based Ontological View for Semantic Integration. J. Netw. Comput. Appl. 2012, 35, 121–131.
50. Baader, F.; Horrocks, I.; Lutz, C.; Sattler, U. Introduction to Description Logic; Cambridge University Press: Cambridge, UK, 2017.
51. Arp, R.; Smith, B.; Spear, A.D. Building Ontologies with Basic Formal Ontology; MIT Press: Cambridge, MA, USA, 2015.
52. Munn, K.; Smith, B. (Eds.) Applied Ontology—An Introduction; De Gruyter: Berlin, Germany, 2008.
53. Wikibooks Contributors. SPARQL/WIKIDATA Qualifiers, References and Ranks—Wikibooks, The Free Textbook Project, 2021.

Available online: https://en.wikibooks.org/w/index.php?title=SPARQL/WIKIDATA_Qualifiers,_References_and_Ranks&
oldid=3967507 (accessed on 14 December 2023).
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