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Abstract: In shear wall-frame systems, the foundation rotation that may occur under the shear walls
changes the displacements and interstory drift ratios and changes the internal force distribution. This
study investigates the effect of foundation rotations under shear walls on internal force distribution
in shear-frame systems. The originality of the study lies in considering parabolic loads and dynamic
analysis (first mode), in addition to static uniform or triangular distributed loads, when determining
the shear wall moment contribution ratio under the influence of foundation rotation. The shear wall
contribution ratio, a key parameter in many earthquake codes, is defined as the ratio of the sum of
bending moments taken by the shear walls at the base to the overturning moment. It plays a crucial
role in determining the building’s behavior. Depending on this ratio, the load-reduction coefficient is
changed. This study investigates the effect of foundation rotation on the moment distribution at the
base for three different static load cases and the first mode in the dynamic analysis. The multi-story
building is modeled as an equivalent sandwich beam. The moment contribution ratio (MCR) was
calculated with the help of analytical solutions of the differential equations written for three different
load cases in static conditions, and graphs were created for practical use directly calculating the MCR.
In the methodology of the study, the initial step involves the calculation of the equivalent sandwich
beam stiffness parameters and the foundational rotational spring. Subsequent to these calculations,
the MCR values can be directly obtained with the help of graphs. This approach facilitates the
rapid and practical determination of the MCR and can be used in the preliminary sizing phase to
eliminate possible errors in the data entry of software that performs detailed analysis. In addition,
in the presented study, it has been shown that taking a single mode into account is sufficient when
calculating MCR values in dynamic analysis.

Keywords: moment contribution ratio; shear wall frame; foundation rotation; equivalent sandwich
beam model; static analysis; dynamic analysis; finite element method

1. Introduction

During an earthquake, the interaction between foundation soils and the building plays
a crucial role in determining the structure’s response to seismic forces. The foundation soils
act as both a filter and a transmitter of the seismic shaking, transferring it to the building.
Simultaneously, the soil bears the vibrations induced by the building and transmits them
back into the depths of the soil. This dynamic exchange between the structure and the
supporting soil underscores the importance of considering their inter-play in the design
process [1–4].

A noteworthy phenomenon observed, especially in the foundations of multi-story
buildings during significant earthquakes, is the occurrence of unforeseen foundation ro-
tations. These rotations, stemming from the complex interaction between the building
and the underlying soil, can have a profound impact on the dynamic characteristics of the
structure. Neglecting to account for these foundation rotations in the design phase can
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lead to significant oversights in predicting the total displacements that the structure may
experience during seismic events [5–8].

In essence, the seismic performance of a structure is intimately tied to the intricate
relationship between the building and its foundation [9,10]. Engineers must carefully assess
and incorporate the potential for foundation rotations into the design process to ensure
the structural integrity and resilience of buildings in the face of seismic challenges. By ac-
knowledging the dynamic interdependence of soil and structure, engineers can implement
measures that enhance the earthquake resistance of buildings, ultimately contributing to
the safety and stability of the built environment.

Forcellini [11] extensively explored soil–structure interaction (SSI) effects using ad-
vanced numerical simulations despite their time-consuming nature. When comparing SSI
models with fixed-base counterparts, the study identified two key effects: period elongation
and damping increase. The study introduced numerical models to create calibrated fixed-
based models, enabling intricate SSI analyses. The proposed framework for evaluating SSI
with equivalent fixed-based models was validated through nonlinear dynamic numerical
simulations, employing Opensees to replicate nonlinear scenarios with considerations for
hysteretic materials and advanced soil models.

Carbonari et al. [12] examined the impact of soil–structure interaction on coupled
wall–frame structures with pile foundations during moderate earthquakes. Employing a
linear finite element procedure in the frequency domain, the analysis considered soil–pile
interaction and radiation damping for a comprehensive dynamic interaction study. This ap-
proach accommodated the actual deformability of the soil foundation system and adjusted
input motion due to the embedded foundation. The study utilized local response analysis
to derive free field motion, accounting for site amplification. Investigating compliant pile
foundations, the procedure assessed the seismic damageability of coupled wall-frame sys-
tems under varying soil profiles and real accelerograms. Results, including displacements,
interstory drifts, accelerations, and stress resultants, were compared with a traditional fixed-
base model, highlighting the importance of complete soil–structure interaction analyses for
accurate system behavior evaluation.

Carbonari et al. [13] aimed to explore soil–structure interaction effects on the seismic
response of modern seismic provisions-designed, pile-founded coupled wall-frame struc-
tures. The analysis method, rooted in the substructure approach, was refined, emphasizing
the modeling of pile group foundations. Nonlinear inertial interaction analysis, conducted
in the time domain using a finite element superstructure model, employed lumped pa-
rameter models to replicate frequency-dependent compliance of soil-foundation systems.
Assessing soil–structure interaction effects involved a realistic case study of a 6-story, 4-bay
wall-frame structure on pile foundations, exploring various two-layered soil deposits with
different properties. Simulated earthquakes facilitated comparisons between compliant
and fixed base models, focusing on displacements, base shears, and ductility demand.
The study investigated the evolution of dissipative mechanisms and shear redistribution
between the wall and frame under earthquakes of increasing intensity, emphasizing the
significance of both kinematic and inertial interaction on foundations.

Santrac et al. [14] outlined the efforts to strengthen the foundations of the Cathedral
of St. Theresa of Avila’s towers in Subotica and the resulting damages. Through an
examination of historical data, recorded damages, geodetic measurements, and insights
gained from rehabilitation efforts, the study highlighted a complex interaction problem
between a substantial structure and an inadequately load-bearing foundation.

Jiménez and Dias [15] examined the influence of dynamic characteristics on structures
by analyzing buildings of varying heights (three to seven stories). The study utilized a
linear elastic perfectly plastic model with a Mohr–Coulomb failure criterion to represent
soil behavior. It provided values for maximum lateral displacements, interstory drifts,
shear forces distribution in buildings, and foundation rocking. Comparing efforts and
displacements in different foundation systems, the results highlighted the significant impact
of support conditions on the seismic response, efforts, and displacements in rigid elements,
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depending on the foundation system. Toe-level efforts in rigid elements were highly
influenced by support conditions, with only a slight influence from the head connection.

Oz et al. [16], post-earthquake reconnaissance, highlighted existing buildings’ notably
low seismic performance, especially those on weak soils, indicating the adverse impact of
soil–structure interaction. This investigation involved constructing nonlinear models for
40 Turkish buildings, considering fixed-base and varying soil conditions (stiff, moderate,
and soft). Categorizing buildings as old and new based on pre- and post-1998 Turkish
Earthquake codes, different soil conditions were reflected using the substructure method.
Inelastic deformation demands were obtained through nonlinear time history analysis and
20 real acceleration records. Results revealed that soil–structure interaction significantly
affects the seismic response of old buildings, particularly in soft soil cases, with a notable
increase in drift demands in the first stories.

Bariker and Kolathayar [17] focused on the safety of high-rise buildings supported by
pile-mat systems, requiring robustness against lateral loads from earthquakes, wind, dredg-
ing, and machine vibrations, along with increased axial loads. The innovative finned pile
foundation system, proven to withstand 65% to 80% higher lateral loads than conventional
pile systems, was explored through a series of SSI analyses on a 25-story building. Utilizing
ABAQUS software (Version 6.21), seismic responses were assessed for different fin lengths
(0.2 Lp, 0.4 Lp, 0.6 Lp, and 0.8 Lp) and compared with a conventional piled mat. Results
showed a significant reduction in vibrations and seismic effects with FP-Mats, suggesting
0.6 Lp as the optimum fin length for seismic performance and construction efficiency.

Wang et al. [18] underscored the reliance of most regional seismic damage assessment
(RSDA) methods on the rigid-base assumption, leading to factual errors by overlooking
SSI. Addressing this challenge, the study proposed a one-dimensional convolutional neural
network (1D-CNN) model to efficiently predict the impact of SSI on interstory drifts and
base shear forces in RC frame buildings. Using an experimentally validated finite element
model, the study established a database with 1380 pairs of fixed-base and soil-supported
structures under earthquake loading. Training the 1D-CNN model on this dataset revealed
its superior performance, with absolute prediction errors for SSI influence coefficients
within 9.3% and 11.7% for maximum base shear and interstory drift, respectively, in 80% of
testing cases.

Shehata et al. [19] proposed a new methodology for time–domain analysis of buildings
on raft foundations, incorporating soil–structure interaction. The sub-structuring technique
divided the structure into the superstructure and underlying soil. While any numerical
method could model the superstructure, the study employed the boundary element method
(BEM) to consider the actual interaction between columns and slabs. Dynamic loads
were treated as earthquake acceleration records transformed into equivalent loads on
superstructure floors. The substructure was analyzed using the dual reciprocity boundary
element method in a closed domain. An innovative iterative coupling technique was
suggested to reduce computational effort.

Ali et al. [20] explored cost-effective seismic design methods, emphasizing SSI benefits
over fixed-base designs. While popular finite element methods for SSI incurred high costs
and long analyses, low-cost alternatives often neglected ground properties. This research
advocated a machine learning approach for efficient and comprehensive structural analysis.
Artificial neural networks and support vector machines were employed to assess SSI effects
on seismic responses across diverse earthquake scenarios.

The study by Gan et al. [21] investigated dynamic structure–soil–structure interaction
(SSSI) involving three adjacent structures with pile–raft foundations in a viscoelastic half-
space under earthquake excitation. The effects of SSSI were explored by considering
factors like the clear distance between structures, structure types, heights, and first natural
periods. Numerical simulations revealed significant variations in SSSI effects, and the
seismic response of structures is found to depend on structural characteristics rather than
their locations.
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Forcellini [22] assessed seismic risk and resilience in structures, emphasizing the im-
pact of base isolation. The research explored how losses from earthquakes can be minimized
by implementing base isolation strategies, considering soil deformability and SSI. Through
numerical simulations, various isolated configurations on diverse soil conditions were
evaluated, with computed resilience serving as a reference for comparing isolation models.

Lanes et al. [23] presented a numerical methodology for analyzing frame structures
on footing foundations subjected to slow strains from consolidation settlements. Using
the boundary element method with the Mindlin fundamental solution, they calculated
displacements resulting from pressure bulbs’ interference on the foundation. The study
incorporated the rheological Kelvin–Voigt model for soil–structure interactions, applying
Terzaghi’s theory of consolidation to match displacement time curves. The rheological
model was coupled with structural nonlinear geometric effects through an iterative process.
Results aligned with predicted settlement effects, emphasizing the potential for significant
increases in specific regions of the building structure due to the gradual distribution
of efforts.

The study by Zhang and Far [24] explored the impact of SSI on high-rise frame-shear
wall buildings with multiple basements. Traditionally, structures were assumed rigid,
neglecting SSI in design for perceived seismic benefits. However, recent findings suggested
potential drawbacks. The research, validated through shaking table tests, employed a
finite-element model to analyze various superstructure and sub-structure parameters.
Results showed that increased subsoil stiffness significantly amplifies base shear, and rising
foundation rotation increased interstory drifts while reducing base shears. SSI generally
amplifies interstory drifts, but its effects on base shear vary with foundation types and soil
conditions. The study provided minimum base shear ratios, considering the SSI reduction
effect, for structures with different foundation types.

The study by Zang and Far [25] challenged the conventional assumption that SSI is
universally beneficial during seismic loading. Using an enhanced numerical model in
ABAQUS, the research focused on high-rise frame-core tube structures and investigated
the impact of SSI. Analyzing buildings on soil class Ee according to Australian Standards,
the seismic responses of 20, 30, and 40-story structures under four earthquake records
were examined. Findings revealed that SSI significantly affects the seismic behavior of
these structures, increasing lateral deflections and interstory drifts while decreasing story
shear forces. Notably, seismic responses differed significantly between near and far field
earthquakes in soil–structure systems.

Colina et al. [26] examined the effect of foundation rotation on the behavior of a two-
story reinforced concrete frame. In the study conducted by applying harmonic load, it was
emphasized that foundation rotation may create additional torsion effects in buildings.

Koboevic and Murugananthan [27] investigated the effect of foundation rotation
on steel-braced frame buildings based on the Canadian seismic code and emphasized
that foundation rotation increases the displacements and interstory drifts. Therefore, this
increase should be taken into account in the calculation of displacements.

Adebar [28], stating that foundation rotations increase the displacement of buildings,
proposed a simple method for calculating the displacement and relative story drifts of
buildings under the influence of foundation rotation. The method he proposed was based
directly on hand calculation.

Kakhki et al. [29] examined the progressive collapse of shear wall-frame systems by
taking into account the structure–soil interaction. At the end of the study, it was shown
that the foundation thickness was the most critical parameter affecting the behavior.

Sadek et al. [30] investigated the effect of the nonlinear behavior of the ground on
shear walls, and, as a result, it was stated that the assumption that the ground behaves
elastically in the structure–soil interaction cannot adequately represent the behavior under
earthquake loads. Therefore, it was argued that the nonlinear behavior of the ground
should be taken into account in the analyses.
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Mohsenian et al. [31] underlined the potential impact of increased weight and stiffness
on tunnel-form buildings during seismic events. To address these challenges, the study
emphasized the critical importance of accounting for SSI in the modeling process. In
conclusion, the study suggested that in seismically active areas with soft soil, SSI effects
could impede tall buildings from achieving predefined performance standards.

Alexandre et al. [32] introduced a model that facilitates the coupled analysis of con-
crete and soil, incorporating time-dependent aspects such as hardening, creep, shrinkage,
cracking of concrete, and soil consolidation. The one-dimensional finite element modeling,
utilizing Kelvin chains for time-dependent behavior, demonstrated significant changes in
the effects of SSI, particularly in the study of a reinforced concrete continuous beam on
consolidating clay.

Tang et al. [33] investigated the redistribution of internal forces and the development
of plastic hinges in a multi-story building system with foundations at varying elevations,
considering torsional effects. The results uncovered significant redistributions of base and
story shear forces, with a more pronounced internal force redistribution along the slope
direction. As the seismic intensity increases, the damage was shown to be displaced from
upper floors to those beneath the upper embedding point, particularly affecting elements
above this embedding point.

Mishra and Samanta [34] investigated the structural response of nine-story buildings
with and without shear walls on soft soil, specifically in the seismic region of Patna, India.
Analyzing various conditions, including fixed and flexible bases, the research concluded
that shear and infill walls play a crucial role in reducing seismic responses, while base
flexibility increases vulnerability. Additionally, the study highlighted the significance of
aspect ratio in determining displacement ductility and identified higher interstory drift in
lower and mid-level buildings.

Choinière et al. [35] introduced a simplified linear method, based on Beauchamp,
Paultre, and Léger’s 2017 proposal, to calculate seismic demands in the gravity load resist-
ing system (GLRS) of shear wall buildings with consideration for foundation movement.
The study compared two approaches for modeling foundation movement in linear soil
media and evaluated them using nonlinear time history analyses for a 12-story concrete
shear wall building.

Noureldin et al. [36] introduced an expert system framework that used supervised
machine learning to predict seismic performance in low- to mid-rise structures while
considering soil-structure interaction. The framework, which was validated through
non-linear time history analysis, incorporated a novel global seismic assessment ratio,
resulting in more accurate outcomes compared to traditional methods. It demonstrated
high generalization potential, offering comprehensive seismic assessments and design
recommendations based on diverse engineering demand parameters.

Sharma et al. [37] employed an artificial neural network (ANN) model to establish a
relationship for the effective natural period of reinforced concrete (RC) frame buildings
with shear walls and pile foundations in seismic zones. The proposed relationship was
shown to be applicable to such structures, offering a more suitable alternative compared to
existing relationships designed for shallow foundations.

Requena-Garcia-Cruz et al. [38] investigated the impact of SSI on the seismic vulnera-
bility and losses of a 5-story reinforced concrete (RC) building constructed on soft alluvial
strata with shallow foundations. Using nonlinear static analysis (NLSA) and incremental
dynamic analysis (IDA) in the OpenSees finite-element framework, the research revealed a
significant effect of SSI on the fragility and performance of these structures, with potential
worsened damage by up to 38% when considering SSI.

Terzi and Athanatopoulou [39] explored the impact of soil–structure interaction on
structural eccentricity in both single-story and multi-story asymmetric buildings, con-
sidering the presence of a real elastic axis. The study derived mathematical formulas to
determine the coordinates of the elastic axis under flexible base assumptions, highlighting
that soil–structure interaction extinguishes the real elastic axis, necessitating the definition
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of an optimum torsion axis. Additionally, the research demonstrated that soil–structure
interaction reduces structural eccentricity at each story level.

Jesica et al. [40] investigated the impact of SSI on a 10-story reinforced concrete building
with a three-level basement during earthquakes in Surabaya, Indonesia. Dynamic time
response analyses using nonlinear hysteresis soil springs indicated inconclusive SSI effects,
with some scenarios showing increased base shears and inter-story drifts, while others
exhibit the opposite results.

Toutanji [41] investigated the effect of foundation rotation on displacements and
internal force distribution in shear wall-frame systems under uniform static load.

In a study by Di and Fu [42], the change in displacement and internal force distribution
of shear wall-frame systems was explored. This investigation considered the effects of
translation and rotation in the foundation under a triangular distributed load.

Both Toutanji and Di and Fu’s studies were limited to static analysis, lacking any
dynamic analysis components.

Bozdogan et al. [43] investigated the effect of foundation rotation on the dynamic
characteristics of buildings featuring various structural systems, including shear walls,
frames, and shear wall-frame combinations. The study concluded that foundation rotation
increases the displacements but decreases the base shear force. Notably, the study was not
examined in analyzing and investigating moment contribution rates.

In summary, the existing literature typically focuses on the impact of foundation
rotation on building behavior, and it is usually limited to static uniform or triangular
distributed loads. On the contrary, this research investigates the moment distribution at
the base, considering the foundation rotation rate, across a total of four distinct loading
cases. These cases include parabolic loads and dynamic analysis (first mode), in addition
to the previously mentioned loads. Notably, our study incorporates both static and dy-
namic analyses of moment contribution rates, distinguishing it from Bozdogan et al. [43].
Furthermore, unlike the existing literature, our research accounts for axial displacements
in columns and shear walls during analysis. This present study focuses on investigating
the impact of foundation rotation on the MCR in shear wall-frame systems. To address
this, the wall-frame system is modeled as an equivalent sandwich beam, and practical
graphs are generated for various behavior coefficients and rotation ratios. The novelty of
the approach proposed in this study lies in the fast and practical determination of the MCR
with the presented approach. The presented approach can be particularly useful in the
pre-dimensioning stage and for eliminating potential errors in the data entry of detailed
analysis software. Although the existing form of the proposed method may not be suitable
for analyzing complex buildings, the main emphasis of the study is on offering a rapid and
practical solution for preliminary estimates, particularly in the early stages of structural
design. From the graphs obtained by the presented method, it is seen that the increase in
the foundation rotation results in a decrease in the moment of the shear wall at the base,
whereas there is an increase in the frame moment. As a consequence, the predominant
structural behavior in systems originally designed as wall-frame configurations tends to
shift towards a more frame-centric behavior. In systems of this nature with foundation
rotation, the load reduction factor should be redefined, considering this behavioral shift. In
the development of the method, it is assumed that the geometry properties are constant
throughout the height of the building and that the building is symmetrical in plan.

2. Methods

In this study, the effects of foundation rotation on MCR were examined in detail.
Four specific loading scenarios representing wind and earthquake loads were selected for
analysis, including uniform static load, triangular distributed load, parabolic distributed
load, and dynamic load. Differential equations were derived for each loading case, and
the obtained non-homogeneous ordinary differential equations were made dimensionless.
Then, dimensionless differential equations were solved by applying boundary conditions,
and moment contribution ratios were obtained. The specified boundary conditions include
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that the displacement at the base is zero, the bending moment in the base is equal to the
product of the spring coefficient of rotation in the foundation and the rotation, and the shear
force and moment at the top are zero. The obtained moment contribution ratios were plotted
for different structural response coefficients and foundation rotation ratios. For static
loading cases, the solution of the differential equations was made analytically, while for
the dynamic loading case, the solution was obtained using the differential transformation
method [43]. The steps taken in this context are presented as a flow chart in Figure 1.
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Figure 1. Flowchart illustrating the sequential process steps involved in determining the MCR.

One of the methods used for the analysis of multi-story buildings is the continuum
system model. This model is based on the idea of representing multi-story buildings
with an equivalent beam to simplify and facilitate the analysis of the behavior of complex
multi-story structures [44,45]. The beam models utilized to represent multi-story buildings
are the pure flexural beam, the pure shear beam, the Timoshenko beam, and the sandwich
beam. In the pure flexural beam model, only the flexural behavior is considered, rendering
it particularly suitable for systems with only shear walls. In the pure shear beam model,
only the shear behavior is considered, neglecting the flexural behavior, which is more
suitable for frame systems where axial displacements can be neglected. The Timoshenko
beam model considers both flexural and shear behavior and is particularly suitable for
frames where axial deformation is significant. On the other hand, the sandwich beam
model fully considers bending, shear, and other deformations in both shear walls and
frames. Therefore, in this study, the sandwich beam model is preferred as an equivalent
beam model to analyze the behavior of a multi-story reinforced concrete building more
effectively. The representation of a multi-story reinforced concrete building as a sandwich
beam is shown in Figure 2.
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2.1. Ordinary Differential Equation for Uniform Static Load

The differential equation representing the behavior under uniform static load can be
given as follows:

EI
d4y
dz4 − Ks

d2y
dz2 = q0 (1)

Here, EI is the bending stiffness, Ks is the shear stiffness, q0 is the uniformly dis-
tributed load, y is the horizontal displacement function, and z is the vertical axis along
the height of the structure. Detailed calculations of the Ks and EI values can be found
in Bozdogan et al. [43]. If the following transformation is applied to make Equation (1)
dimensionless, the differential equation given by Equation (3) is obtained.

ε =
z
H

(2)

d4y
dε4 −

Ks

EI
H2 d2y

dε2 =
q0H4

EI
(3)

In this context, H represents the total height of the building, and ε denotes the di-
mensionless axis set. Substituting the building behavior coefficient (λ), as defined by
Equation (4), into Equation (3) yields Equation (5).

λ = H

√
Ks

EI
(4)

d4y
dε4 − λ2 d2y

dε2 = A (5)

Here, A is defined by Equation (6).

A =
q0H4

EI
(6)

By solving the differential equation presented in Equation (5), the displacement func-
tion seen in Equation (7) is obtained.

y(ε) = c1 + c2ε + c3cosh(λε) + c4sinh(λε)− Aε2

2λ2 (7)
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Under these circumstances, the integration constants c1, c2, c3, and c4 are determined
through the application of boundary conditions. The second derivative of the displacement
function, which is related to the bending moment function, is obtained as follows with the
help of Equation (7).

y′′ (ε) = c3λ2cosh(λε) + c4λ4sinh(λε)− A
λ2 (8)

2.2. Ordinary Differential Equation for Triangle Static Load

For the case of a triangular distributed load, the differential equation can be written
as follows:

EI
d4y
dz4 − Ks

d2y
dz2 =

q0x
H

(9)

Similar to the solution for a uniformly distributed load, making Equation (9) dimen-
sionless yields the following equation.

d4y
dε4 − λ2 d2y

dε2 = Aε (10)

Upon solving the differential equation represented using Equation (10), Equation (11)
yields the displacement function:

y(ε) = c1 + c2ε + c3cosh(λε) + c4sinh(λε)− Aε3

6λ2 (11)

To derive the bending moment, Equation (12) is utilized to obtain the expression for
the second derivative.

y′′ (ε) = c3λ2cosh(λε) + c4λ2sinh(λε)− Aε

λ2 (12)

2.3. Ordinary Differential Equation for Parabolic Static Load

The dimensionless form of the differential equation representing the static equilibrium
state for the parabolic loading case is expressed as follows:

d4y
dε4 − λ2 d2y

dε2 = Aε2 (13)

By solving Equation (13), the displacement function for the parabolic distributed load
case is obtained as follows:

y(ε) = c1 + c2ε + c3cosh(λε) + c4sinh(λε)− Aε4

12λ2 −
Aε2

λ4 (14)

The second derivative function related to the bending moment function, Equation (15),
is obtained using the displacement function given in Equation (14).

y′′ (ε) = c3λ2cosh(λε) + c4λ2sinh(λε)− Aε2

λ2 −
2A
λ4 (15)

2.4. Ordinary Differential Equation for Dynamic Load

In the case of free vibration, the differential equation can be written as follows:

EI
d4y
dz4 − Ks

d2y
dz2 −mω2y = 0 (16)

The differential equation presented above was previously solved in the literature
using the differential transformation method (Bozdogan et al. [43]). Therefore, without
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discussing the properties of the solution here, the shear wall moment contribution rate was
determined using the mode shape function found in the existing literature.

2.5. Boundary Conditions

Obtaining integration constants in the differential equation requires establishing
common boundary conditions for uniform distributed load, triangular distributed load,
parabolic distributed load, and dynamic load. These shared conditions encompass:

1. Displacement at the base equals zero:

ε = 0 or y = 0 (17)

2. The bending moment in the base is equal to the product of the spring coefficient of
rotation in the foundation and the rotation:

EI
H2

d2y
dε2 =

kr
H

dy
dε

(18)

EI
Hkr

d2y
dε2 =

dy
dε

(19)

ρ
d2y
dε2 =

dy
dε

(20)

ρ =
EI

Hkr
(21)

where ρ is the rotation ratio.

3. Zero bending moment at the top:

EI
H2

d2y
dε2

∣∣∣∣
ε=1

= 0 (22)

4. Zero shear force at the top:

d3y
dε3 − λ2 dy

dε
= 0 (23)

3. Variation of Moment Contribution Ratio

The MCR variation concerning the structural behavior coefficient is explored for
different foundation rotation ratios across various loading scenarios. These scenarios
encompass static uniform, triangular, and parabolic loads, along with dynamic analysis
(first mode).

3.1. Moment Contribution Ratio for Uniform Static Load

In this section, MCR values are determined for different rotation ratios in shear wall
frame systems under uniform distributed load. Figure 3 depicts a shear wall frame subjected
to a uniform distributed load.

For a uniformly distributed load, the following equation can be written for the MCR
(αm), representing the ratio of the moment taken by the shear wall at the base to the total
overturning moment.

αm =

d2y
dε2

∣∣∣
ε=0

qH4

2EI

=
2 d2y

dε2

∣∣∣
ε=0

A
(24)
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Substituting ε = 0 in Equation (8) and replacing αm above becomes the following equation:

αm = 2
c3λ2 − A

λ2

A
(25)
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Figure 3. Shear wall-frame under uniform distributed load.

Utilizing the horizontal displacement function provided in Equation (7) and consider-
ing the boundary conditions, c3 is obtained as follows.

c3 =
A
λ2 [1 + (1 + ρ)λsinh(λ)]
[λ3ρsinh(λ) + λ2cosh(λ)]

(26)

Upon substituting the value of c3 into Equation (26), the coefficient αm is determined
as follows:

αm = 2
{

[1 + (1 + ρ)λsinh(λ)]
λ3ρsinh(λ) + λ2cosh(λ)

− 1
λ2

}
(27)

Using the above relation, the MCR (αm) has been calculated for different foundation
rotation ratios (ρ) and various structural behavior coefficients (λ), as illustrated in Figure 4.
In this context, λ = 0 represents the shear wall case, while λ = 20 represents the frame case,
and ρ-values indicate the foundation rotation; for example, ρ = 0 signifies no foundation
rotation. This graph enables the determination of the MCR (αm) value based on λ and
ρ-values.
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As depicted in Figure 4, there is a decrease in the MCR with an increase in the
foundation rotation ratio under static uniform load conditions.

3.2. Moment Contribution Ratio for Triangle Static Load

This section investigates the determination of MCR values for various rotation ratios
within shear wall-frame systems, specifically under the influence of a triangular distributed
load. The configuration of a shear wall-frame subjected to this load is visually represented
in Figure 5.
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In the case of a triangular distributed load, the MCR (αm) is written as follows:

αm =

EI
H2

d2y
dε2

∣∣∣
ε=0

qH2

3

(28)

Upon making the required simplifications in Equation (28), Equation (29) is obtained:

αm =

d2y
dε2

∣∣∣
ε=0

qH4

3EI

=
3 d2y

dε2

∣∣∣
ε=0

A
(29)

Substituting ε = 0 into Equation (12) and placing it in Equation (29) yields Equation (30).

αm = 3
c3λ2

A
(30)

Using Equation (11) and applying the boundary conditions, the value of c3 is deter-
mined as follows:

c3 =

A
λ2

[
1 +

(
1
2 −

1
λ2

)
λsinh(λ)

]
[ρλ3sinh(λ) + λ2cosh(λ)]

(31)

Substituting the obtained value of c3 from Equation (31) into Equation (30) yields the
coefficient αm for the triangular distributed load case, as follows.

λ3 = 3


[
1 +

(
1
2 −

1
λ2

)
λsinh(λ)

]
[ρλ3sinh(h) + λ2cosh(λ)]

 (32)
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Equation (32) is utilized to calculate αm values for different foundation rotation ratios
(ρ) and various structural behavior coefficients (λ). The graphical representation of these
results is presented in Figure 6.
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3.3. Moment Contribution Ratio for Parabolic Static Load

In this section, the determination of MCR values is investigated for various rotation
ratios within shear wall-frame systems, particularly under the influence of a parabolic
distributed load. The configuration of a shear wall-frame subjected to this load is visually
represented in Figure 7.
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For the parabolic loading case, the αm relation is given as follows:

αm =

EI
H2

d2y
dε2

∣∣∣
ε=0

qH2

4

(33)
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Equation (33) can be written as follows:

αm =

d2y
dε2

∣∣∣
ε=0

qH4

4EI

=
4 d2y

dε2

∣∣∣
ε=0

A
(34)

Written as ε = 0 in Equation (15) and substituted into Equation (34), the expression for
αm is as follows:

αm = 4
c3λ2 − 2A

λ4

A
(35)

Using the displacement function given by Equation (14) and the boundary conditions
for the parabolic loading case, c3 is obtained as follows:

c3 =
A

3λ2 sinh(λ) + A
λ2 +

2A
λ4

[ρλ3sinh(λ) + λ2cosh(λ)]
− 2A

λ4 (36)

By substituting Equation (36) in Equation (35), the αm ratio for the parabolic loading
case is obtained as follows:

αm = 4

{
1
3 λsinh(λ) + 1 + 2

λ2

ρλ3sinh(λ) + λ2cosh(λ)
− 2

λ4

}
(37)

The αm values obtained with Equation (37) are calculated for various foundation
rotation ratios (ρ) and different structural behavior coefficient (λ) values, and they are
presented graphically in Figure 8.
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3.4. Moment Contribution Ratio for Dynamic Load

In the case of dynamic analysis, Mode 1 is considered to determine the MCR. The
solution of Equation (16) using the differential transformation method given in the literature
by [43], the MCR value is calculated using Equation (38) for Mode 1.

αm =
Γ1

EI
H2

d2y
dz2

∣∣∣
ε=0

Sd1

eko1Mt Sa(T1)υ1H
(38)
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where Γ1 is the modal participation factor of the first mode, Sd1 is the spectral displacement
in the first mode, eko1 is the effective mass ratio of the first mode, y′′ is the second derivative
of the first mode shape, Mt is the total building mass, Sa(T1) is the spectral acceleration
corresponding to the first mode, and υ1 is the ratio of the effective height of the first mode
to the total building height (H). As known from the basic concepts of structural dynamics,
the effective height (H*) is defined as the height from the base to the center of mass of the
first mode.

H∗ = υ1H (39)

Here υ1 is found by the following relation:

υ1 =

n
∑
j

(
mjyj1ε j

)
n
∑
j

(
mjyj1

2
) (40)

For Mode 1, the period value is calculated using the following Equation from [43]:

T1 = S1H2

√
m
EI

(41)

In the above relationship, the distributed mass ( m) can be written as the ratio of the
total building mass to the building height as in Equation (42).

T1 = S1H2

√
Mt

HEI
(42)

Hence, the equivalent of EI/H2 is obtained as follows.

EI
H2 = S1

2 MtH
T1

2 (43)

By substituting this expression in Equation (38), the MCR is obtained as follows:

αm =
Γ1 S1

2 Mt H
T1

2
d2y
dz2

∣∣∣
ε=0

Sd1

eko1 Mt Sa(T1) υ1 H
(44)

Using the relation given in Equation (45) instead of the period yields Equation (46).

T1 =
2π

ω
(45)

αm =
Γ1 S1

2 Mt H
4π2

d2y
dz2

∣∣∣
ε=0

ω2
1 Sd1

eko1 Mt Sa(T1) υ1 H
(46)

Equation (48) is derived by utilizing the relationship between spectral acceleration and
spectral displacement, as known from structural dynamics and presented in Equation (47).

Sa(T1) = ω2
1 ∗ Sd1 (47)

αm =
Γ1 S1

2 1
4π2

d2y
dz2

∣∣∣
ε=0

eko1 υ1
(48)
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Replacing the second derivative of the first mode given in Equation (48) with the
transformation function obtained from the differential transformation method detailed in
the literature, Equation (49) is derived.

αm =
Γ1 S1

2 1
4π2 2 Y[2]

eko1 υ1
(49)

By making the required adjustments in the given equation, the MCR can be determined
using the following relationship:

αm =
Γ1 S1

2 1
2π2 Y[2]

eko1 υ1
(50)

MCR values for different rotation ratios and different structural behavior coefficient
values are calculated using the above relation and shown in Figure 9.
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4. Validation of the Proposed Method with Finite Element Method
4.1. Example 1

In this section, to illustrate the effectiveness of the method proposed in this study, we
solved three different systems depicted in Figure 10 (System 1, System 2, and System 3).
In System 1, where λ = 0.987, since the shear wall dimensions are large, the shear wall is
more dominant in the behavior. In System 2, where λ = 2.740, since the ratio of shear walls
and frame is balanced, the behavior is seen as a combination of shear walls and frame.
In System 3, where λ = 9.490, since the ratio of shear walls is low, the behavior is more
dominated by the frame.

In the example, the modulus of elasticity is 3× 107 kN/m2, the columns are 35 cm/35 cm
in size, and the beams are 25 cm/40 cm in size (T beam). The shear wall is 50 cm/500 cm in
System 1, 30 cm/300 cm in System 2, and 20 cm/150 cm in System 3. It is assumed that the
sections are cracked sections. For this, the moment of inertia of the columns is multiplied
by 0.7, the moment of inertia of the beams by 0.35, and the moment of inertia of the shear
wall by 0.5 coefficient. The parameters required for the analysis using the proposed method
presented in this study are given in Table 1 for Systems 1, 2, and 3.
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Table 1. Parameters used in the examples.

System 1 System 2 System 3

KS (kN) 80,149.99 80,149.99 80,149.99
EI (kN·m2) 78,125,000 10,125,000 843,750
D (kN·m2) 1,166,812,500 1,166,812,500 1,166,812,500
KSe (kN) 79,102.51 79,102.51 79,102.51

λ 0.987 2.740 9.490

The MCR analysis is performed for three distinct systems using the SAP2000 Software
(Version 22), considering five distinct rotation ratios: ρ = 0, ρ = 0.1, ρ = 0.3, ρ = 0.5, and ρ = 1.
The obtained results are then compared with those derived from the approach proposed in
this study and tabulated in Tables 2–4 for Systems 1, 2, and 3, respectively. The comparison
is conducted for four different load cases: spectral analysis (dynamic), uniform distributed
load, triangular distributed load, and parabolic distributed load.

Table 2. Variation of MCR values for System 1.

Wall-Frame (System 1)

Spectral Analysis Uniform Distributed Load Triangular Distributed Load Parabolic Distributed Load

Proposed
Method SAP2000 Proposed

Method SAP2000 Proposed
Method SAP2000 Proposed

Method SAP2000

ρ = 0 0.79 0.80 0.82 0.83 0.80 0.83 0.79 0.80
ρ = 0.1 0.74 0.75 0.76 0.77 0.75 0.77 0.74 0.75
ρ = 0.3 0.66 0.66 0.68 0.68 0.66 0.68 0.65 0.66
ρ = 0.5 0.59 0.59 0.60 0.61 0.60 0.61 0.58 0.59
ρ = 1 0.46 0.47 0.48 0.48 0.47 0.48 0.46 0.47

Table 3. Variation of MCR values for System 2.

Wall-Frame (System 2)

Spectral Analysis Uniform Distributed Load Triangular Distributed Load Parabolic Distributed Load

Proposed
Method SAP2000 Proposed

Method SAP2000 Proposed
Method SAP2000 Proposed

Method SAP2000

ρ = 0 0.45 0.44 0.50 0.50 0.46 0.45 0.44 0.43
ρ = 0.1 0.36 0.35 0.40 0.43 0.37 0.36 0.35 0.34
ρ = 0.3 0.26 0.25 0.28 0.30 0.26 0.25 0.26 0.24
ρ = 0.5 0.21 0.19 0.22 0.24 0.21 0.19 0.20 0.18
ρ = 1 0.13 0.12 0.14 0.15 0.13 0.12 0.12 0.12
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Table 4. Variation of MCR values for System 3.

Wall-Frame (System 3)

Spectral Analysis Uniform Distributed Load Triangular Distributed Load Parabolic Distributed Load

Proposed
Method SAP 2000 Proposed

Method SAP 2000 Proposed
Method SAP 2000 Proposed

Method SAP 2000

ρ = 0 0.16 0.15 0.19 0.19 0.16 0.14 0.14 0.13
ρ = 0.1 0.09 0.08 0.10 0.10 0.08 0.08 0.08 0.07
ρ = 0.3 0.04 0.04 0.05 0.05 0.04 0.04 0.034 0.036
ρ = 0.5 0.03 0.03 0.03 0.03 0.02 0.03 0.024 0.024
ρ = 1 0.01 0.02 0.022 0.019 0.012 0.015 0.012 0.013

As seen from the tables, the results obtained from this study are consistent with the
results of SAP 2000, employing finite element analysis methods.

In the study, the effect of a single mode is considered in calculating MCR values in the
spectral analysis (dynamic), assuming that the contribution of higher modes is negligible.
To demonstrate the validity of this assumption, MCR values were calculated by considering
all ten modes in the SAP2000 analysis for the three systems in question. These values were
then compared with the MCR values obtained for a single mode, as presented in Table 5.
The results of the analysis in Table 5 clearly show that the consideration of a single mode
is sufficient.

Table 5. Comparison of MCR values obtained with SAP2000 for single mode and ten modes.

Spectral Analysis
(λ = 0.987)

Spectral Analysis
(λ = 2.740)

Spectral Analysis
(λ = 9.490)

Single Mode Ten Mode Single Mode Ten Mode Single Mode Ten Mode

ρ = 0 0.80 0.82 0.44 0.48 0.15 0.16
ρ = 0.1 0.75 0.76 0.35 0.37 0.08 0.08
ρ = 0.3 0.66 0.67 0.25 0.26 0.04 0.04
ρ = 0.5 0.59 0.60 0.19 0.20 0.03 0.03
ρ = 1 0.47 0.47 0.12 0.13 0.02 0.02

4.2. Example 2

MCR values of an eight-story building, taken from the literature [46] and whose floor
plan is shown in Figure 11, were calculated using the method proposed in this study, and
the results obtained were compared with both literature [46] data and SAP2000.

In this example, the modulus of elasticity is 3 × 107 kN/m2, the story height is 3.5 m,
and the columns are 60 cm/60 cm in size, while the beams are 25 cm/50 cm. The shear walls
have dimensions of 20 cm by 500 cm. Table 6 provides the necessary parameters for the
analysis using the proposed method outlined in this study. The MCR analysis is conducted
using the SAP2000 software, considering five distinct rotation ratios (ρ = 0, ρ = 0.1, ρ = 0.3,
ρ = 0.5, and ρ = 1). Results obtained from this analysis were compared with those derived
from the method proposed in this study and are tabulated in Table 7. The comparison is
performed for two different load cases: spectral analysis and triangular distributed load.

Within the scope of this study, in order to investigate whether it is sufficient to consider
a single mode in dynamic analysis, analyses are performed in SAP2000 with a single mode
and eight modes, and the results are given in Table 8. As can be seen from the table, since
the single-mode and eight-mode results are identical, it is clearly seen that it is sufficient to
perform the analysis considering single mode.



Buildings 2024, 14, 467 19 of 26

Buildings 2024, 14, 467 20 of 27 
 

𝜌 = 0.1 0.41 0.40 - 0.42 0.40 - 𝜌 = 0.3 0.31 0.32 - 0.31 0.32 - 𝜌 = 0.5 0.24 0.27 - 0.25 0.27 - 𝜌 = 1 0.16 0.19 - 0.16 0.19 - 

 
Figure 11. Storey plan for Example 2. 

Within the scope of this study, in order to investigate whether it is sufficient to con-
sider a single mode in dynamic analysis, analyses are performed in SAP2000 with a single 
mode and eight modes, and the results are given in Table 8. As can be seen from the table, 
since the single-mode and eight-mode results are identical, it is clearly seen that it is suf-
ficient to perform the analysis considering single mode. 

Table 8. Comparison of the MCR values obtained with SAP 2000 for single and eight modes. 

 Spectral Analysis 
 Single Mode Eight Mode 𝜌 = 0 0.51 0.51 𝜌 = 0.1 0.40 0.43 𝜌 = 0.3 0.32 0.32 𝜌 = 0.5 0.27 0.27 𝜌 = 1 0.19 0.19 

4.3. Example 3 
In this example, the building selected from the literature [47], whose plan is shown 

in Figure 12, is analyzed as 8-story and 15-story. The results obtained are then compared 

Figure 11. Storey plan for Example 2.

Table 6. Parameters used in Example 2.

Example 2

KS (kN) 1,735,805.524
EI (kN·m2) 250,000,000
D (kN·m2) 1.5546 × 1010

KSe (kN) 1,705,985.398
λ 2.31

Table 7. Comparison of MCR values for Example 2.

Spectral Analysis Triangular Distributed Load

Proposed
Method SAP2000 [46] Proposed

Method SAP2000 [46]

ρ = 0 0.50 0.51 0.44 0.51 0.51 0.49
ρ = 0.1 0.41 0.40 - 0.42 0.40 -
ρ = 0.3 0.31 0.32 - 0.31 0.32 -
ρ = 0.5 0.24 0.27 - 0.25 0.27 -
ρ = 1 0.16 0.19 - 0.16 0.19 -

Table 8. Comparison of the MCR values obtained with SAP 2000 for single and eight modes.

Spectral Analysis

Single Mode Eight Mode

ρ = 0 0.51 0.51
ρ = 0.1 0.40 0.43
ρ = 0.3 0.32 0.32
ρ = 0.5 0.27 0.27
ρ = 1 0.19 0.19
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4.3. Example 3

In this example, the building selected from the literature [47], whose plan is shown
in Figure 12, is analyzed as 8-story and 15-story. The results obtained are then compared
with the results obtained from the literature and SAP2000. In the example, columns are
50 cm/50 cm in the 8-story building, 60 cm/60 cm in the 15-story building; beams are
25 cm/50 cm, and shear walls are 30 cm/525 cm and 30 cm/425 cm. The modulus of
elasticity is 3.18 × 106 kN/m2, and the story height is 3 m. Table 9 shows the parameters
required for the analysis with the method proposed in this study. MCR values were carried
out using the SAP2000 program considering five different rotation ratios: ρ = 0, ρ = 0.1,
ρ = 0.3, ρ = 0.5, and ρ = 1. The results obtained are then compared with the results obtained
from the approach proposed in this study and are given in Tables 10 and 11 for 8-story and
15-story buildings, respectively. The comparison is carried out for two different load cases:
spectral analysis and triangular distributed load. In the given example, the MCR values
were calculated manually for the x direction.
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Table 9. Parameters used in Example 3.

8-Story 15-Story

KS (kN) 2,646,995.748 2,843,021.552
EI (kN·m2) 676.89 × 106 676.89 × 106

D (kN·m2) 4277.20 × 106 4277.20 × 106

KSe (kN) 2,633,727.517 2,772,541.44
λ 1.5 2.88
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Table 10. Comparison of MCR values for Example 3 (8-Storey).

Spectral Analysis Triangular Distributed Load

Proposed
Method SAP2000 Proposed

Method SAP2000 [47]

ρ = 0 0.66 0.64 0.67 0.64 0.64
ρ = 0.1 0.58 0.49 0.59 0.49 -
ρ = 0.3 0.47 0.41 0.47 0.41 -
ρ = 0.5 0.40 0.35 0.40 0.35 -
ρ = 1 0.28 0.26 0.28 0.26 -

Table 11. Comparison of MCR values for Example 3 (15-story).

Spectral Analysis Triangular Distributed Load

Proposed
Method SAP2000 Proposed

Method SAP2000 [47]

ρ = 0 0.44 0.43 0.45 0.42 0.45
ρ = 0.1 0.35 0.31 0.36 0.31
ρ = 0.3 0.25 0.22 0.25 0.22
ρ = 0.5 0.20 0.17 0.20 0.17
ρ = 1 0.13 0.11 0.13 0.11

In this example, in order to investigate whether a single mode is sufficient for dynamic
analysis, single-mode and multi-mode analyses are performed in SAP2000, and the results
are shown in Table 12. The results are presented in Table 11, indicating that single-mode
analysis is sufficient for determining MCR values.

Table 12. Comparison of MCR values obtained with SAP 2000 for single mode and multi-mode.

8-Story 15-Story

Single Mode Eight Mode Single Mode Fifteen Mode

ρ = 0 0.64 0.64 0.42 0.43
ρ = 0.1 0.49 0.49 0.31 0.31
ρ = 0.3 0.41 0.41 0.22 0.22
ρ = 0.5 0.35 0.35 0.17 0.17
ρ = 1 0.26 0.26 0.11 0.11

5. Results

The graphs illustrated in Figures 4, 6, 8, and 9 clearly show that there is a decrease in the
MCR as the foundation rotation rate increases. Moreover, this decrease is evident for higher
structural behavior coefficients. In particular, the changes in moment contribution ratios
are quite consistent for dynamic (first mode), triangular, and parabolic load distributions.
However, a slightly higher variation is observed in the case of a uniformly distributed
load. The rotations under the shear walls cause the loads acting on the shear walls to be
transferred to the frames. As a result, the frames are subjected to unexpected stresses that
are initially ignored, as illustrated in Figure 13.

Although no exact moment contribution ratio value defines the boundaries of pure
shear wall and pure frame behavior, this study considers the ranges of shear wall and
frame behavior for two different boundary values. These two different limits are the limit
states used in the revision of the load-reduction coefficient in seismic codes.
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tion, for the second assumption, the change in the structural behavior coefficient depend-
ing on the limits of shear wall, frame, and shear wall-frame system behavior for different 
MCRs is shown in Figure 15. As can be seen from Figure 15, in the absence of foundation 
rotation, values of the structural behavior coefficient less than 1.5 indicate pure shear wall 
behavior, while this ratio decreases to 1.09 for ρ = 0.2 and 0.83 for ρ = 0.5. On the other 
hand, while the limit for pure frame behavior is 4 for ρ = 0, i.e., no foundation rotation, it 
becomes 2.45 for ρ = 0.2 and 1.75 for ρ = 0.5. 

Figure 13. Effect of foundation rotation on load distribution in shear wall-frame structures: (a) under
no foundation rotation, and (b) with foundation rotation.

In the first assumption, it is assumed that if the shear wall moment contribution ratio
is greater than 0.75, pure shear wall behavior is exhibited, and if it is less than 0.40, pure
frame behavior is exhibited. The change in the structural behavior coefficient for pure shear
wall, pure frame, and shear wall-frame behavior depending on the foundation rotation is
examined and shown in Figure 14. In the absence of foundation rotation (ρ = 0), the building
predominantly displays pure shear wall behavior for structural behavior coefficient values
below 1.15, diminishing rapidly with increasing ρ. For instance, at ρ = 0.2, this threshold
decreases to 0.85 and further reduces to 0.66 at ρ = 0.5. The upper limit value denoting pure
frame behavior is 3.1 at ρ = 0, but it diminishes to 2 at ρ = 0.2 and 1.5 at ρ = 0.5.

Buildings 2024, 14, 467 23 of 27 
 

  

(a) (b) 

Figure 13. Effect of foundation rotation on load distribution in shear wall-frame structures: (a) under 
no foundation rotation, and (b) with foundation rotation. 

 
Figure 14. Variation of the structural behavior based on the MCR (assumption 1). 

In the second assumption, for shear wall and frame behavior, it is accepted that for 
values of shear wall MCR less than 0.66, the behavior is pure shear wall behavior, whereas 
for values less than 0.33, the behavior is pure frame behavior. Similar to the first assump-
tion, for the second assumption, the change in the structural behavior coefficient depend-
ing on the limits of shear wall, frame, and shear wall-frame system behavior for different 
MCRs is shown in Figure 15. As can be seen from Figure 15, in the absence of foundation 
rotation, values of the structural behavior coefficient less than 1.5 indicate pure shear wall 
behavior, while this ratio decreases to 1.09 for ρ = 0.2 and 0.83 for ρ = 0.5. On the other 
hand, while the limit for pure frame behavior is 4 for ρ = 0, i.e., no foundation rotation, it 
becomes 2.45 for ρ = 0.2 and 1.75 for ρ = 0.5. 

Figure 14. Variation of the structural behavior based on the MCR (assumption 1).

In the second assumption, for shear wall and frame behavior, it is accepted that for
values of shear wall MCR less than 0.66, the behavior is pure shear wall behavior, whereas
for values less than 0.33, the behavior is pure frame behavior. Similar to the first assumption,
for the second assumption, the change in the structural behavior coefficient depending on
the limits of shear wall, frame, and shear wall-frame system behavior for different MCRs is
shown in Figure 15. As can be seen from Figure 15, in the absence of foundation rotation,
values of the structural behavior coefficient less than 1.5 indicate pure shear wall behavior,
while this ratio decreases to 1.09 for ρ = 0.2 and 0.83 for ρ = 0.5. On the other hand, while
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the limit for pure frame behavior is 4 for ρ = 0, i.e., no foundation rotation, it becomes 2.45
for ρ = 0.2 and 1.75 for ρ = 0.5.
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6. Conclusions

In this section, the conclusions and results are summarised item by item as follows:

• This study investigates how foundation rotation changes the MCR in buildings whose
structural system consists of shear wall frames;

• A sandwich beam model was used to find MCR values. Multi-story buildings are
modeled as an equivalent sandwich beam. The differential equations representing this
model are written for both static (three different loading cases) and dynamic (single
mode) cases, and graphs based on the coefficient of structural behavior and foundation
rotation ratio are created for practical use;

• With the proposed method, MCR values can be calculated directly from the graphs
related to the structural behavior coefficient and foundation rotation ratio, which are
calculated depending on the equivalent stiffnesses of the sandwich beam and the
equivalent foundation rotation spring;

• With the presented method, it is possible to calculate the MCR value manually with a
calculator in a few minutes. In addition, it is possible to reach the results in seconds
with very simple software that can be written;

• As a result of the study, it is seen that the moment carried by the shear wall at the base
is reduced by transferring to the frame as a result of the rotation under the shear wall,
and as a result, the frames are subjected to more stress;

• At the conclusion of the study, it is observed from the examples solved to investigate
the suitability of the presented method that the presented approach gives results
compatible with the finite element method;

• In addition, within the scope of this study, it is clearly seen from the solved examples
that it is sufficient to consider a single mode in finding MCR values in response
spectrum analysis, unlike displacements and internal forces;

• A distinctive feature of this work is that it is a method that enables the rapid determi-
nation of moment contribution ratios through manual calculations, thus facilitating
the analytical process and reducing the dependence on complex calculations;

• The presented method can be used especially in the pre-dimensioning stage and
in the order control of the results obtained by the finite element method. Incorrect
results can be obtained due to incorrect data entry in finite element analysis software.
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With the presented method, possible data entry errors in finite element analysis can
be eliminated;

• The method presented in this study is valid for buildings that are symmetrically
placed in the plan or, in other words, the translational and torsional movements
are unconnected. In future studies, the presented method can be improved for
asymmetric buildings;

• The presented method is developed for regular and simple buildings and is not
suitable for the analysis of irregular buildings in its current form. However, in future
studies, the presented method can be developed for the analysis of irregular buildings;

• Furthermore, by improving the presented method, the change in the MCR ratio in
systems that exhibit nonlinear behavior in terms of materials can be taken into account
in future studies.

Author Contributions: All authors have contributed equally. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Some or all of the data, models, or code generated or used during this
study can be obtained from the corresponding authors upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Al Agha, W.; Alozzo Almorad, W.; Umamaheswari, N.; Alhelwani, A. Study the seismic response of reinforced concrete high-rise

building with dual framed-shear wall system considering the effect of soil structure interaction. Mater. Today Proc. 2021, 43,
2182–2188. [CrossRef]

2. Chen, S.; Liu, Q.; Zhai, C.; Wen, W. Influence of building-site resonance and building properties on site-city interaction:
A numerical investigation. Soil. Dyn. Earthq. Eng. 2022, 158, 107307. [CrossRef]

3. Bozdogan, K.B. The effect of foundation elasticity on dynamic behaviour of buildings. Gradevinar 2011, 63, 335–340.
4. Vicencio, F.; Alexander, N. Numerical analysis of structure-soil-structure interaction for two different buildings during earth-

quakes. In Proceedings of the 7th International Conference on Computational Methods in Structural Dynamics and Earthquake
Engineering, Crete, Greece, 24–26 June 2019.

5. Tong, F.; Christopoulos, C. Insights on higher-mode effects in high-rise buildings with flexible base rotational and translational
restraints: A theoretical study using a continuum beam analogy. J. Earthq. Eng. 2021, 27, 314–339. [CrossRef]

6. Katrangi, M.; Memarpour, M.M.; Yakhchalian, M. Assessment of the seismic performance and the base shear contribution ratios
of the RC wall-frame dual system considering soil–structure interaction. J. Earthq. Eng. 2022, 26, 5290–5317. [CrossRef]

7. Chandler, M.; Hutchinson, G.L. Torsional coupling effects in the earthquake response of asymmetric buildings. Eng. Struct. 1986,
8, 222–236. [CrossRef]

8. Perus, I.; Fajfar, P. On the inelastic torsional response of single-storey structures under bi-axial excitation. Earthq. Eng. Struct. Dyn.
2005, 34, 931–941. [CrossRef]

9. Tahghighi, H.; Mohammadi, A. Numerical evaluation of soil–structure interaction effects on the seismic performance and
vulnerability of reinforced concrete buildings. Int. J. Geomech. 2020, 20, 04020072. [CrossRef]

10. Lou, M.; Wang, H.; Chen, X.; Zhai, Y. Structure–soil–structure interaction: Literature review. Soil. Dyn. Earthq. Eng. 2011, 31,
1724–1731. [CrossRef]

11. Forcellini, D.A. Novel Framework to Assess Soil Structure Interaction (SSI) Effects with Equivalent Fixed-Based Models. Appl. Sci.
2021, 11, 10472. [CrossRef]

12. Carbonari, S.; Dezi, F.; Leoni, G. Linear soil–structure interaction of coupled wall–frame structures on pile foundations. Soil. Dyn.
Earthq. Eng. 2011, 31, 1296–1309. [CrossRef]

13. Carbonari, S.; Dezi, F.; Leoni, G. Nonlinear seismic behaviour of wall-frame dual systems accounting for soil-structure interaction:
Nonlinear behaviour of wf systems with soil-structure interaction. Earthq. Eng. Struct. Dyn. 2012, 41, 1651–1672. [CrossRef]
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