Probabilistic Population Modeling with Interactions between Species

Reza R. Ahangar ${ }^{\text {a* }}$

${ }^{a}$ Mathematics Department, 700 University BLVD, Texas A \& M University-Kingsville, Texas, USA.

Author's contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.
Article Information

DOI: 10.9734/JAMCS/2023/v38i121855

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/111022

Received: 16/10/2023
Accepted: 22/12/2023
Published: 29/12/2023

Abstract

The probabilistic population model with interactions between species will be developed. We use predatorprey interaction to come up with a system of probabilistic differential equations. By accepting a series of assumptions that may govern the environment, one can reach a variety of different models. In a special case we develop a system with predator's rate of change instead of the natural birth and death processes. The mean probability of the population as a mathematical expectation is computed as a solution of the system using random parameters.

Keywords: Probabilistic model; interactive species; expectation; stochastic parameters; phase diagram; mutually exclusive events; conditional probability; probabilistic differential equations.

[^0]
1 Introduction to Deterministic Interactions

Let us assume $x(t)$ and $y(t)$ are the measures of two interactive objects or population of two species of time t. Suppose there is interactions between these two species, for example one is predator and the other is prey.

Lotka (1950) and Voltera (1931) were the first to produce a system of nonlinear model to study a deterministic behavior of the populations of predator and prey [1,2].

In a modeling approach, we may assume $\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$ follow the logistical growth in the absence predator-prey interaction [3-6]. The mathematical model of the population in continuous deterministic case would be in the following form:

$$
\begin{cases}\frac{d x}{d t}=(\mathrm{a}-b \cdot x) \mathrm{x}-\mathrm{m} \cdot \mathrm{x} \cdot \mathrm{y}, & \mathrm{x}(0)=x_{0} \tag{1}\\ \frac{d y}{d t}=(\mathrm{d}-\mathrm{c} \cdot \mathrm{y}) \mathrm{y}+\mathrm{n} \cdot \mathrm{x} \cdot \mathrm{y}, & \mathrm{y}(0)=y_{0}\end{cases}
$$

where $K_{1}=\frac{a}{b}$ and $K_{2}=\frac{d}{c}$ are two carrying capacities of two species. This is a deterministic interacting population model. We would like to study the probabilistic interactive model between two species [14].

In the following stochastic modeling, we do not consider predator $y(t)$ using only the natural resources with the parameters c and d . In fact, prey population is the only resources.

Some stochastic model of predator-prey was developed by Leslie and Gower 1960 (see [11]). Random parameters used in this formulation.

A similar work published in 2002 by Swift Randall, using probability generating functions (see [18]).
The latest stochastic model can be observed in Singh A (see [16]) where random parameters was in modeling of predator-prey interactions.

In the following approach we will use probabilistic modeling for interactions between species.

2 Conditions, Assumptions, and Parameters for Probabilistic Model

Suppose that $x(t)$ and $y(t)$ are the populations of two species at time t , and to find the probability distributions of these populations at time $(t, t+\Delta t]$ will accept the following axioms: Axiom 1: The probability that the incidence of species $x(t)$ (prey) will be killed by the predator $y(t)$ in a very short time interval is directly proportional to: i) the length of the interval Δt and ii) the predator - prey population probability densities.

Let α be a constant of proportionality, then the probability of reproduction of m-individual is

$$
p[\text { one birth in } \Delta t \text { for } x(t)=m]=\alpha \cdot m \cdot \Delta t
$$

and $p[$ one reproduction of $y(t)=n$ individuals $]=\beta . n . \Delta t$
Notice that: α is the growth rate of one individual of x in a unit of time and
β is the rate on one reproduction of predator y in a unit of time.
Axiom 2: The probability that there is exactly one kill-contact between predator and prey in a very short period of time is proportional to the number of the predators and preys at time t and the length of the interval, $p[$ one contact during $(t, t+\Delta t)]=\gamma \cdot p_{m} \cdot p_{n} \cdot \Delta t$.

Where $p_{m}=\operatorname{prob}[x(t)=m]$ and $p_{n}=\operatorname{prob}[y(t)=n]$. We understand that the symbolic definition of the probability density functions $p_{m}(t)$ and $p_{n}(t)$ are function of time. Assuming these functions are continuously differentiable, that is the instantaneous rates will be denoted by:

$$
\frac{d}{d t}\left(p_{m}\right)=p_{m}^{\prime}(t) \text { and } \frac{d}{d t}\left(p_{n}\right)={p_{n}^{\prime}}_{n}(t)
$$

Axiom 3: Prey uses natural resources to grow, and prey is the only resource of food available for predators. When the kill-contact between prey and predator happens, the prey population will be reduced from m to $m-1$.

Axiom 4: We will take time increment (Δt) sufficiently small, so that no individual can have more than one event like incidence to kill or reproduce one individual during that time interval $(t, t+\Delta t]$.

Axiom 5: The probability of more than one kill-contact, or one contact and one birth, is negligible.
For further details on the foundation of mathematical modeling please see $[7,8,9,10,11]$.

Notes:

1. By axiom 1 , the probability of no birth prey during $(t, t+\Delta t]$ is
$p[n o$ birth for prey $x(t)=m]=1-\alpha \cdot m \cdot \Delta t$
By the same reason for the probability of no offspring during the time interval $(t, t+\Delta t]$ for predator is $p[$ no offspring for predator $y(t)=n]=1-\beta . n . \Delta t$
2. In a more complicated model one may assume that the probability of one birth of predator is proportional to the probability density of prey population at time t, that is in Axiom 1 there can be p [one reproduction of predator $]=\beta \cdot P_{m}(t) \cdot n \cdot \Delta t$
3. Probability of kill-incidence in small time interval is $=\gamma \cdot p_{m}(t) \cdot p_{n} \cdot \Delta t$
4. Probability of no kill-incidence in small time interval is $=1-\gamma \cdot p_{m}(t) \cdot p_{n} \cdot \Delta t$

Parameters:

$\alpha=$ reproduction rate of prey= natural birth rate -natural death rate
$\beta=$ reproduction rate for predator
$\gamma=$ Rate of prey killed by predator
$\delta=$ natural death rate for predator .

3 Modeling the Probabilistic Equation for Prey

By this interactive axiom, the following (mutually exclusive) disjoint events can be assumed:
Event A1: At time t, there were $(m-1)$ prey individuals and one birth occurring during $(t, t+\Delta t$]
Event B1: There were $(m+1)$ individuals at time t and one contact leading to one prey being consumed by predator (prey-death) occurring during $(t, t+\Delta t]$

Event C1: There were m-individuals at time t, no birth, and no contact occurring during $(t, t+\Delta t]$.
Notice: We will consider natural birth processes for both predator-prey and the only death processes for prey killing-incidence by predators. For predators in this modeling one can study both with and without natural death processes [12],[13].

By these modeling axioms, these events are mutually exclusive. Thus

$$
p(A 1 \cup B 1 \cup C 1)=p(A 1)+p(B 1)+p(C 1)
$$

Since we assume that events are countably infinite, $p\left[\bigcup_{i=0}^{\infty} E_{i}\right]=\sum_{i=0}^{\infty} P\left(E_{i}\right)$.

In the following part of formulation, we are assuming that the rate of incidence between predator - prey is not the same as the rate of killing and consuming one prey by a predator. Gamma γ is the rate of killing incidence and beta is the birth rate of predators. So, $\gamma \neq \beta$ means if the predator is chasing a prey to capture and kill, it may not be successful in all tries.

Also, using two independent events, prob [no birth \& no incidence] =prob [no birth]. prob [no incidence]

```
\(p_{m}[t+\Delta t]=p[A 1]+p[B 1]+p[C 1]\)
\(=p[x(t)=(m-1) \cap\) one birth in \(\Delta t]+p[x(t)=(m+1) \cap\) one contact in \(\Delta t]+p[x(t)=m \cap\)
one zero birth in \(\Delta t]+p[x(t)=m \cap\) zero contact in \(\Delta t \cap\) birth \(]\)
\(=p[x(t)=m-1] . p[\) one birth \(\mid x(t)=m-1]+p_{m+1}(t) \cdot p[\) one kill contact \(\mid x(t)=m+1]+\)
\(p[x(t)=m] \cdot p[\) no birth \(\cap\) no contact \(\mid x(t)=m]\)
\(=p_{m-1}(t) \cdot \alpha \cdot \Delta t \cdot(m-1)+p_{m+1}(t) \cdot \gamma(m+1) \cdot n \cdot \Delta t+p_{m}(t) \cdot[1-\alpha \cdot m \cdot \Delta t] \cdot[1-\gamma(m)(n) \cdot \Delta t]\)
```

where the vertical line "" represents the conditional probability. Now we simplify this relation as follows:
$p_{m}[t+\Delta t]=p_{m-1}(t) \cdot \alpha \cdot \Delta t \cdot(m-1)+p_{m+1}(t) \cdot \gamma(m+1) \cdot n \cdot \Delta t+p_{m}(t)-p_{m}(t)[\alpha \cdot m+$ $\gamma(m)(n) \cdot] \Delta t+p_{m}(t)[\alpha \cdot m \cdot \Delta t] \cdot[\gamma(m)(n) \cdot \Delta t]$

Since $\left(\Delta t^{2}\right)$ is negligible this relation will be described by the following

$$
\begin{aligned}
& p_{m}(t+\Delta t)-p_{m}(t)=\left\{p_{m-1}(t) \alpha(m-1)+p_{m+1}(t) n(m+1) \gamma-p_{m}(t)[\gamma m n+\alpha \cdot m]\right\} \Delta t \\
& \frac{p_{m}(t+\Delta t)-p_{m}(t)}{\Delta t}=p_{m+1}(t) n \cdot(m+1) \gamma-p_{m}(t) \cdot[n \gamma+\alpha]+p_{m-1}(t) \alpha(m-1)
\end{aligned}
$$

Let's take the limit when $\Delta t \rightarrow 0$, then:

$$
\begin{equation*}
\frac{d p_{m}(t)}{d t}=p_{m+1}(t) n .(m+1) \gamma-p_{m}(t) m(n \gamma+\alpha)+p_{m-1}(t) \alpha .(m-1) \tag{2}
\end{equation*}
$$

This is the probabilistic differential equation for prey $x(t)=m$.

4 Developing Probabilistic Differential Equations for Predator $\mathbf{y}(\mathbf{t})=\mathbf{n}$

For driving the probabilistic equation for predator $y(t)$, we will assume that
$p_{n}(t)=\operatorname{prob}[y(t)=n] \quad$ where $y(t)$ is the population of predator at t. We also consider the following mutually exclusive events:

Event A2: At time t, there are $y(t)=n-1$ predators and one birth occurring for predator $\mathrm{y}(\mathrm{t})$ on the interval $(t, t+\Delta t]$.

Event B2: At time t, there are $y(t)=n$ predators and no birth or death occurring during $(t, t+\Delta t]$.

Event C2: There were $\mathrm{y}(\mathrm{t})=\mathrm{n}+1$ predators at time t, and one death occurring for predator during
$(t, t+\Delta t]$.
In the previous section we introduced a parameter gamma, γ, representing the death rate for prey due to interactions between two species. The death rate for predators is the natural death rate that we can call delta δ.

Thus, the probability of this event in small time interval is not directly proportional to the number of conflicts. Since all events A2, B2, and C2 are mutually exclusive,
$p(t+\Delta t]=p[A 2 \cup B 2 \cup C 2]=p(A 2)+p(B 2)+p(C 2)$.
Also using two independent events, prob [no birth \& no incidence] = prob [no birth]. prob [no incidence]
$p_{n}[t+\Delta t]=p[y(t)=(n-1) \cap$ one birth in $\Delta t]+p[y(t)=(n+1) \cap$ one predator death in $\Delta t]$
$+p[y(t)=n \cap$ no predator birth in $\Delta t]$
$=p[y(t)=n-1]$. $p[$ one birth $\mid y(t)=n-1]+p_{n+1}(t) . p[$ one predator death $\mid y(t)=n+1]+$
$p[y(t)=n] p[$ no birth for predator $\mid y(t)=n]$
$=p_{n-1}(t) \cdot \beta \cdot \Delta t \cdot(n-1)+p_{n+1}(t) \cdot \delta(n+1) \cdot \Delta t+p_{n}(t) \cdot[1-\beta \cdot n \cdot \Delta t] \cdot[1-\delta(n) \cdot \Delta t]$
where the vertical line "" represents the conditional probability.
Notice that the birth rate for predator is β and death rate for predator is δ. Now we simplify this relation as follows:

$$
\begin{aligned}
& p_{n}[t+\Delta t]= p_{n-1}(t) \cdot \beta \cdot \Delta t \cdot(n-1)+p_{n+1}(t) \cdot \delta(n+1) \cdot \Delta t+p_{n}(t) \cdot[1-\beta \cdot n \cdot \Delta t] \cdot[1-\delta \cdot n \cdot \Delta t] \\
& p_{n}[t+\Delta t]-p_{n}(t) \\
&=p_{n-1}(t) \cdot \beta \cdot \Delta t \cdot(n-1)+p_{n+1}(t) \cdot \delta(n+1) \cdot \Delta t-p_{n}(t) \cdot[\beta \cdot n \cdot \Delta t] \\
&-\left[p_{n}(t) \cdot \delta(n) \cdot \Delta t\right]
\end{aligned}
$$

We divide each side by Δt and notice that Δt^{2} is negligible.

$$
\frac{p_{n}[t+\Delta t]-p_{n}(t)}{\Delta t}=p_{n-1}(t) \cdot \beta \cdot(n-1)+p_{n+1}(t) \cdot \delta(n+1)-p_{n}(t) \cdot[\beta \cdot n]-\left[p_{n}(t) \cdot \delta n\right]
$$

Pass the limit as $\Delta t \rightarrow 0$:

$$
\begin{equation*}
\frac{d p_{n}(t)}{d t}=p_{n-1}(t) \cdot \beta \cdot(n-1)+p_{n+1}(t) \cdot \delta(n+1)-p_{n}(t) \cdot[\beta \cdot n+\delta n] \tag{3}
\end{equation*}
$$

This a probabilistic differential equation that can be used as a model for predator. Equations (2) and (3) together will be a system of nonlinear probabilistic differential equation:

$$
\left\{\begin{array}{l}
\frac{d p_{m}(t)}{d t}=p_{m+1}(t) n \cdot(m+1) \gamma-p_{m}(t) m(n \gamma+\alpha)+p_{m-1}(t) \alpha \cdot(m-1) \tag{4}\\
\left.\frac{d p_{n}(t)}{d t}=p_{n+1}(t) \cdot(n+1) \delta-p_{n}(t) \cdot[\beta+\delta] n+p_{n-1}(t) \cdot \beta \cdot(n-1)\right]
\end{array}\right.
$$

Note (1): The first term of the second equation $p_{n+1}(t) .(n+1) \delta$ is independent from n. But the similar term in the first equation $p_{m+1}(t) n .(m+1) \gamma$ has a factor n. This is based on the two parameters gamma and delta.

The parameter γ is the death rate caused by killing incidents between two species and the parameter δ represents the natural death rate for predators.

Note (2): In this modeling of system of equations (4) we considered that the reproduction rate for prey alpha α is equal to the natural birth and death of prey. But for the predator the natural birth is beta β and death is delta δ. For simplicity one may assume that beta β is a reproduction factor of predators. By excluding the validity practice for $\delta=0$ where the system (4) will be reduced to a system (6).

Note (3): The vector form of the system (4) can be described by the following relation

$$
\left[\begin{array}{l}
p_{m} \\
p_{n}
\end{array}\right]^{\prime}=\left[\begin{array}{lll}
n(m+1) \gamma & (n+1) \delta
\end{array}\right] \cdot\left[\begin{array}{c}
p_{m+1} \\
p_{n+1}
\end{array}\right]+\left[\begin{array}{ll}
-m(n \gamma+\alpha) & -(\beta+\delta) n
\end{array}\right] \cdot\left[\begin{array}{ll}
p_{m} \\
p_{n}
\end{array}\right]+\left[\begin{array}{ll}
\alpha(m-1) & \beta(n-1)
\end{array}\right] \cdot\left[\begin{array}{c}
p_{m-1} \\
p_{n-1}
\end{array}\right]
$$

5 Predator with a Reproduction Parameter

For driving the probabilistic equation for predator $\mathrm{y}(\mathrm{t})$, we will assume that
$p_{n}(t)=\operatorname{prob}[y(t)=n]$ where $y(t)$ is the population of predator at t. We also consider the following mutually exclusive events:

Event A3: At time t, there are $y(t)=n-1$ predators and one birth occurring for predator $\mathrm{y}(\mathrm{t})$ on the interval $(t, t+\Delta t]$.

Event B3: At time t, there are $y(t)=n$ predators and no birth or death occurring during $(t, t+\Delta t]$.
Event C3: There were $\mathrm{y}(\mathrm{t})=\mathrm{n}+1$ predators at time t, and one death occurring for predator during

$$
(t, t+\Delta t] .
$$

Since all events A3, B3, and C3 are mutually exclusive, then

$$
\begin{aligned}
& p(t+\Delta t]=p[A 3 \cup B 3 \cup C 3]=p(A 3)+p(B 3)+p(C 3) \quad . \quad \text { As a result, } \\
& p_{m}(t+\Delta t] \\
& =\operatorname{prob}[y(t)=(n-1) \cap \text { one birth in } \Delta t]+\operatorname{prob}[y(t)=n \cap \text { no birth }- \text { death in } \Delta t] \\
& =p[y(t)=(n-1)] \cdot \operatorname{prob}[\text { one birth in } \Delta t \mid y(t)=(n-1)]+ \\
& +p[y(t)=n] \cdot p[\text { zero birth in } \Delta t \mid y(t)=n] . \\
& =p_{n-1}(t) \cdot \beta \cdot(n-1) \Delta t+p_{n}(t) \cdot[1-\beta n \Delta t]
\end{aligned}
$$

Therefore:

$$
\begin{align*}
& p_{n}(t+\Delta t)-p_{n}(t)=\left[\beta(n-1) p_{n-1}(t)-\beta n p_{n}(t)\right] \Delta t \\
& \frac{p_{n}(t+\Delta t)-p_{n}(t)}{\Delta t}=\beta\left[(n-1) p_{n-1}(t)-n p_{n}(t)\right] \\
& \frac{d p_{n}(t)}{d t}=\beta\left[(n-1) p_{n-1}(t)-n p_{n}(t)\right] \tag{5}
\end{align*}
$$

As a result of both equations (2) and (5), the following is a system of probabilistic prey-predator model.

$$
\left\{\begin{array}{c}
\frac{d p_{m}(t)}{d t}=n(m+1) \gamma p_{m+1}(t)-m(n \gamma+\alpha) p_{m}(t)+\alpha(m-1) p_{m-1}(t) \tag{6}\\
\frac{d p_{n}(t)}{d t}=\beta\left[(n-1) p_{n-1}(t)-n p_{n}(t)\right]
\end{array}\right.
$$

This system of differential equations can be modified and expressed in the following form,

$$
\left\{\begin{array}{c}
\left.\frac{d p_{m}(t)}{d t}=\alpha\left[(m-1) p_{m-1}(t)-m p_{m}(t)\right]+n \gamma\left[(m+1) p_{m+1}(t)-m p_{m} t\right)\right] \tag{7}\\
\frac{d p_{n}(t)}{d t}=\beta\left[(n-1) p_{n-1}(t)-n p_{n}(t)\right]
\end{array}\right.
$$

The solution to the system probabilistic differential equations (7) for m-prey and n-predator is:
$<p_{m}(t), p_{n}(t)>$ at t with the i nitial conditions at $t=t_{0}$ which will be $<p_{m}(0), p_{n}(0)>$.
The probabilistic systems of differential Equations (6) and (7) can be solved analytically or by discrete numerical approximation using, [15],[16].

6 Solution to the Probabilistic Differential Equations

Taking sigma over the integers m and n in the system of equations (7) will produce the following expectations, that is

$$
\begin{gather*}
E[x(t)=m]=\sum_{m=1}^{\infty} m p_{m}(t) \quad \text { and } \quad E[y(t)=n]=\sum_{n=1}^{\infty} n p_{n}(t) \\
\left\{\begin{array}{c}
\sum \frac{d p_{m}(t)}{d t}=\alpha\left[E_{m-1}(t)-E_{m}(t)\right]+n \cdot \gamma\left[E_{m+1}(t)-E_{m}(t)\right] \\
\sum \frac{d p_{m}(t)}{d t}=\beta\left[E_{n-1}(t)-E_{n}(t)\right]
\end{array}\right. \tag{8}
\end{gather*}
$$

One interpretations $\mathrm{x}(\mathrm{t})=\mathrm{m}$ in axiom (1) could be the probability of one birth of the predator in a different environment is proportional to the population of prey at that time.

Note (1): probability density of the predator we replace m by $\operatorname{prob}[x=m]$:

$$
p[\text { one birth of predator in } t+\Delta t]=\beta . n \cdot m . \Delta t
$$

This kind of assumption cannot be valid in probabilistic sense. The relation in Note (1) will add restriction on the size of two population n and m to satisfy the definition of probability:

$$
0 \leq \beta \cdot n \cdot m \cdot \Delta t \leq 1
$$

The second kind of interpretation can be described by the following equation.
That is the probability of one birth of the predator in a different environment is proportional to the density of population of prey at that time when $\operatorname{prob}[\mathrm{x}(\mathrm{t})=\mathrm{m}]$.

Intuitively the population change of preys in the absence of predators can follow the logistic growth.
Note (2):

$$
p[\text { one birth of predator in } t+\Delta t]=\beta . n \cdot p_{m}(t) \cdot \Delta t
$$

As a result, the second equation for predator will be in the following form

$$
\begin{equation*}
\frac{d p_{n}(t)}{d t}=\beta p_{m}(t)\left[(n-1) p_{n-1}(t)-n p_{n}(t)\right] \tag{9}
\end{equation*}
$$

And the first equation in the system of equation (4) and (5) will be in the following

$$
\begin{equation*}
\frac{d p_{m}(t)}{d t}=\alpha\left[(m-1) p_{m-1}(t)-m p_{m}(t)\right]+\gamma p_{n}(t)\left[(m+1) p_{m+1}(t)-m p_{m}(t)\right] \tag{10}
\end{equation*}
$$

To simplify the new system, we substitute the following:

$$
\begin{align*}
& m p_{m}(t)=U_{m}(t) \text { and } n p_{n}(t)=V_{n}(t), \text { where: } \\
& p_{m}(t)=U_{m}(t) / m, \text { and } p_{n}(t)=V_{n}(t) / \mathrm{n} \tag{11}\\
& \sum m p_{m}(t)=E_{m}(t) \text { and } \sum n p_{n}(t)=E_{n}(t) \\
& \mathrm{m} \frac{d p_{m}(\mathrm{t})}{\mathrm{dt}}=\frac{d U_{m}(\mathrm{t})}{\mathrm{dt}} \text { and } n \frac{d p_{n}(\mathrm{t})}{\mathrm{dt}}=\frac{d V_{n}(\mathrm{t})}{\mathrm{dt}} \\
& \frac{1}{m} \cdot \frac{d U_{m}(t)}{d t}=\alpha\left[U_{m-1}(t)-U_{m}(t)\right]+n \gamma\left[U_{m+1}(t)-U_{m}(t)\right]
\end{align*}
$$

First Type: As a result, the first model will be

$$
\left\{\begin{array}{c}
\frac{d U_{m}(t)}{d t}=-m \cdot \alpha\left[-U_{m-1}(t)+U_{m}(t)\right]+m n \gamma\left[U_{m+1}(t)-U_{m}(t)\right] \tag{12}\\
\frac{d V_{n}(t)}{d t}=\beta \cdot n\left[V_{n-1}(t)-V_{n}(t)\right]
\end{array}\right.
$$

where $m=1,2,3, \ldots$, and $n=1,2,3, \ldots$.
Second Type Model: The second type model assumes in (9) where the second differential equation will be in the following form which can be verified in a similar approach.

$$
\begin{align*}
& \frac{d p_{n}(t)}{d t}=\beta p_{m}(t)\left[(n-1) p_{n-1}(t)-n p_{n}(t)\right] \tag{13}\\
& \frac{d V_{n}(t)}{d t}=\beta \cdot p_{m}(t)\left[V_{n-1}(t)-V_{n}(t)\right]=\beta \cdot \frac{U_{m}(t)}{m}\left[V_{n-1}(t)-V_{n}(t)\right] \tag{14}
\end{align*}
$$

Third Type Model: The model (12) of this probabilistic model is in the following form:

$$
\left\{\begin{array}{c}
\frac{d U_{m}(\mathrm{t})}{\mathrm{dt}}=m \cdot \alpha\left[U_{m-1}(t)-U_{m}(t)\right]+\gamma \cdot m \cdot \frac{V_{n}}{n}\left[U_{m+1}(t)-U_{m}(t)\right] \tag{15}\\
\frac{d V_{n}(\mathrm{t})}{\mathrm{dt}}=\beta \cdot n \cdot \frac{U_{m}(t)}{m}\left[V_{n-1}(t)-V_{n}(t)\right]
\end{array}\right.
$$

Solution to the second equation of the system (12): This equation can be written in the following form:
$\frac{d V_{n}(\mathrm{t})}{\mathrm{dt}}=\beta \cdot n \cdot\left[V_{n-1}(t)-V_{n}(t)\right], n=1,2,3, \ldots$.
Let us write this equation for $n=1,2,3, \ldots$, thus

$$
\begin{aligned}
& \frac{d V_{1}}{\mathrm{dt}}+\frac{d V_{2}}{\mathrm{dt}}+\ldots+\frac{d V_{n}}{\mathrm{dt}}+\ldots=\beta\left[V_{0}+V_{1}+V_{2}+\ldots+V_{n-1}+\ldots,\right] \\
& \frac{d\left[V_{0}+V_{1}+V_{2}+\ldots+V_{n-1}+\ldots\right]}{d t}=\beta V_{n}(t)
\end{aligned}
$$

Suppose the value of n is bounded to N, then define $V_{1}+V_{2}+\ldots+V_{N}=\vec{V}_{N}$, then the initial value problem:

$$
\begin{equation*}
\frac{d V_{N}}{d t}=\beta V_{N}(t), V_{N}(0)=V_{0} \xrightarrow{y i e l d s} V_{N}(\mathrm{t})=V_{0}(\mathrm{t}) e^{\beta \mathrm{t}} \quad \text { for } n=1,2,3, \ldots \tag{16}
\end{equation*}
$$

Solution of model (I): To solve the system of probabilistic differential equations V model (1), first we calculate the mean of the function values of $\left\langle p_{m}(t), p_{n}(t)\right\rangle$. The computation for standard deviation needs more investigation which is beyond this preliminary article.

Denote the initial size of population at time $t=0$ by x_{0} and y_{0} then:
$p_{x_{0}}(0)=p\left[x(0)=x_{0}\right]=1$ and $p_{y_{0}}(0)=p\left[y(0)=y_{0}\right]=1$
And $p_{m \neq x_{0}}(0)=p_{n \neq y_{0}}(0)=0$
These equations are for the population size of m and n, that is $p_{m}(\mathrm{t}), p_{n}(\mathrm{t})$. Expected value and variance: By the definition of expectation

$$
E[x(t)]=\sum_{x=1 \text { to } m} x(t) p_{x}(t), \quad \text { and } \quad E[y(t)]=\sum_{y=1 \text { to } n} y(t) p_{y}(t)
$$

Suppose $y(t)=m(t)$ and $x(t)=n(t)$ has a discrete value then

$$
E[x(t)]=\sum_{m=1}^{\infty} m \cdot p_{m}(t) \quad \text { and } \quad E[y(t)]=\sum_{n=1}^{\infty} n \cdot p_{n}(t)
$$

Since m and n are positive integers $1,2,3 \ldots$, take the derivative for specified values of M and N , of these relation with respect to t;

$$
\begin{equation*}
\frac{d E_{y}}{d t}=\sum_{n=1}^{\infty} N \cdot \frac{d P_{N}(t)}{d t} \quad \text { and } \quad \frac{d E_{x}}{d t}=\sum_{m=1}^{\infty} M \cdot \frac{d P_{M}(\mathrm{t})}{d t} \tag{17}
\end{equation*}
$$

If we substitute $\frac{d p_{N}(\mathrm{t})}{d t}$ and $\frac{d p_{M}(\mathrm{t})}{d t}$ from model, 1,2 , and 3 , then we will find the expectation of the population of any of these models.

Expectation of the probability density function of the predator $\mathbf{y}(\mathbf{t})$: Now let us substitute in $\frac{d E_{y}}{d t}$, using model one:

$$
\begin{aligned}
& \left.\frac{d E_{y}}{d t}=\sum_{n=1}^{\infty} n\left\{\beta\left[(n-1) p_{n-1}(t)-n p_{n}(t)\right]\right\}=\sum_{n=1}^{\infty} \beta\left[(n-1) p_{n-1}(t)-n^{2} p_{n}(t)\right]\right\} \\
& =\beta \sum_{n=1}^{\infty}\left[n(n-1) p_{n-1}(t)-n^{2} p_{n}(t)\right]
\end{aligned}
$$

$$
\begin{align*}
& \frac{d E_{y}}{d t}=\beta \sum_{N=1}^{\infty}\left[n(n-1) p_{n-1}(t)-\beta \sum_{n=1}^{\infty} n^{2} p_{n}(t)\right. \\
& =\beta . o . p_{-1}+\beta \sum_{N=2}^{\infty}\left[n(n-1) p_{n-1}(t)+\beta \sum_{n=1}^{\infty} n^{2} p_{n}(t)=\beta \sum_{i=1}^{\infty} i p_{i}(t)+i^{2} p_{i}(t)-i^{2} p_{i}\right. \\
& \qquad \frac{d E_{y}}{d t}=\beta \sum_{i=1}^{\infty} i p_{i}(t)=\beta E(y) \\
& \frac{d E_{y}}{d t}=\beta E(y), E_{y}\left(t_{0}\right)=E_{y_{0}} \text { implies that } E_{y}(t)=E_{y}\left(t_{0}\right) e^{\beta t} \\
& \frac{d E_{y}}{d t}=\beta E(y), E_{y}\left(t_{0}\right)=E_{y_{0}} \quad<==>\quad E_{y}(t)=E_{y 0} \cdot e^{\beta t} \tag{18}
\end{align*}
$$

Solving the First Probabilistic Differential Equation for Prey: The probabilistic differential equation (5) for $\operatorname{Pm}(\mathrm{t})$ is the following:
$\frac{d P_{m}(t)}{d t}=\alpha\left[(m-1) p_{m-1}(t)-m p_{m}(t)\right]+n \gamma\left[(m+1) p_{m+1}(t)-m p_{m}(t)\right]$
Given all fixed parameters α, γ, and n. Substitute expectations $\mathrm{E}(\mathrm{x}(\mathrm{t}))$ using relations (17) $\mathrm{x}(\mathrm{t})$:

$$
\begin{aligned}
& \frac{d E_{x}}{d t}=\sum_{m=1}^{\infty} m \frac{d P_{m}(t)}{d t}=\sum_{m=1}^{\infty} \alpha\left[m(m-1) p_{m-1}(t)-m^{2} p_{m}(t)+\sum_{m=1}^{\infty} n \gamma\left[m(m+1) p_{m+1}(t)-m^{2} p_{m}(t)\right]\right. \\
& =\alpha \sum_{m=1}^{\infty} \alpha\left[m(m-1) p_{m-1}(t)-\alpha \sum_{m_{m=1}^{\infty} m^{2} p_{m}(t)+n \gamma \sum_{m=1}^{\infty} m(m+1) p_{m+1}(t)-n \gamma \sum_{m=1}^{\infty} m^{2} p_{m}(t)}^{=\alpha \sum_{j=1}^{\infty}(j+1) j p_{j}(t)-(\alpha+n \gamma) \sum_{m=1}^{\infty} m^{2} p_{m}(t)+n \gamma \sum_{m=2}^{\infty}(K-1) K p_{K}(t)}\right.
\end{aligned}
$$

Assume and substitute $\mathrm{j}+1=\mathrm{m}$ then $\mathrm{j}=\mathrm{m}-1, \mathrm{~m}+1=\mathrm{k}$, then $\mathrm{m}=\mathrm{k}-1$.

$$
\begin{aligned}
& \quad \frac{d E_{x}}{d t}=\alpha \cdot 2 p_{1}(t)-(\alpha+n \gamma) p_{1}(t)+\sum_{m=2}^{\infty}\left\{\alpha(m+1) m p_{m}(t)-(\alpha+n \gamma) m^{2} p_{m}(t)+n \gamma(m-1) m p_{m}(t)\right\} \\
& \frac{d E_{x}}{d t}=p_{1}[2 \alpha-\alpha-n \gamma]+\sum_{m=2}^{\infty}\left[m(m+1) \alpha-m^{2}(\alpha+n \gamma)+n \gamma \cdot m(m-1)\right] p_{m}(t)+ \\
& \left.\sum_{m=2}^{\infty}+m \alpha-n \gamma \cdot m^{2}+n \gamma \cdot m^{2}-n \gamma \cdot m\right] p_{m}(t) \\
& =p_{1}(t) \cdot[\alpha-n \gamma]+[\alpha-n \gamma] \sum_{2}^{\infty} m p_{m}(t)==p_{1}(t) \cdot[\alpha-n \gamma]+[\alpha-n \gamma] \sum_{2}^{\infty} m p_{m}(t) \\
& =[\alpha-n \gamma] \cdot\left\{1 \cdot p_{1}(t)\right\}+\sum_{2}^{\infty} m p_{m}(t) \\
& =[\alpha-n \gamma] \sum_{1}^{\infty} m p_{m}(t) \xrightarrow{y i e l d s}=[\alpha-n \gamma] E_{x}(t)
\end{aligned}
$$

Thus, we have the following differential equation

$$
\begin{aligned}
& \frac{d E_{x}}{d t}=[\alpha-n \gamma] E_{x}(t) \xrightarrow{\text { yields }} \frac{d E_{x}}{E_{x}}=[\alpha-n \gamma] d t \\
& \ln E_{x}=[\alpha-n \gamma] t+C \xrightarrow{\text { yields }} E_{x}(t)=e^{[\alpha-n \gamma] t} . \mathrm{C} \\
& E_{x}(t)=E_{x}\left(t_{0}\right) \cdot e^{[\alpha-n \gamma] t}
\end{aligned}
$$

Fig. 1(a). Phase diagram for the prey growth with the values of the given parameters: $\alpha=.75, \beta=.45, \gamma=.002, n=24$

Fig. 1(b). Phase diagram for the predator growth with the given values of the parameters: $\alpha=.75, \beta=.45, \gamma=.002, n=24$

Fig. 2. The expected values of predator - prey with coexisting

Fig. 3. The graph of the expected values of $x(t)$ and $y(t)$ with randomly selected parameters in the same coordinate system

To find more applications of Computer Algebra Systems (CAS) for numerical approximation see [17] and [18].

7 Conclusion

The probabilistic model of the predator and prey by Differential Equation approach can be presented in the following system: Where α, n, and γ are constant parameters.

$$
\begin{cases}\frac{d E_{x}}{d t}=[\alpha-n \gamma] E_{x}(t), & E_{x}\left(t_{0}\right)=E_{x 0} \tag{19}\\ \frac{d E_{y}}{d t}=\beta E(y), & E_{y}\left(t_{0}\right)=E_{y_{0}}\end{cases}
$$

And the expectation solution also can be described by the following:

$$
\begin{equation*}
E_{x}(t)=E_{x}\left(t_{0}\right) \cdot e^{[\alpha-n \gamma] t} \text { and } E_{y}(t)=E_{y 0} \cdot e^{\beta t} \tag{20}
\end{equation*}
$$

where $E_{x}\left(t_{0}\right)$ is the initial mean population of the prey and $E_{y}\left(t_{0}\right)$ is the initial mean population of predator. The natural birth rates for prey and predator are α and β. The death rate for prey is γ which is not the natural death, and it is the rate of capture and kill by predator.

This is an interaction modeling between species to create a nonlinear stochastic system. A predator prey model with some special assumptions were used as a vehicle in modeling. Some of these assumptions are considered for convenient computation and understanding the behaviors of the system. For prey, we considered only the natural birth process and ignored the natural death process due to the predator consuming prey as the only food available. Since beta in (18) is a positive growth rate, the predator is growing exponentially. Predators will consume more and more of the prey leading to the extinction of one species. As a result, the power [$\alpha-n \gamma]$ can be either positive or negative. For certain values of n :

$$
\begin{equation*}
[\alpha-n \gamma]>0 \text { implies } n<\frac{\alpha}{\gamma} \tag{21}
\end{equation*}
$$

This ratio indicates how long this exploitation of prey by the predator can continue? The integer part of this fraction indicates that if we can teach the wolf to be careful on consumption of rabbits in closed environments because it is gravely dangerous to grow that fast and the ceiling population number will be $n<\left\lfloor\frac{\alpha}{\gamma}\right\rfloor$.

This approach will assure us to validate the conclusion of the model process in comparison to deterministic model (1).

Our next step in developing this research is to assume that all interactions between two species with natural birthdeath process. The ideal will be the interaction case of both species with logistic growth. The variance of this probabilistic distribution also needs to be calculated.

The final step will be interesting to compare two models in deterministic and stochastic cases.

```
>with(DEtools);
> DEplot(\operatorname{diff}(\textrm{X}(\textrm{t}),\textrm{t})=r*X(t),X(t),t=0.. 15,{[0,1],[0, 5],[0,10]}, color = green);
> DEplot(diff(Y(t), t)=b*Y(t),Y(t),t=0 .. 15,{[0,1],[0,5],[0,10]}, color = blue);
```

In the next Maple program, we will demonstrate randomly selected parameters to show the behavior of the expected values of the predator-prey population model

```
> with(DEtools);
```

$>$ with $($ plots $) ; \mathrm{a}:=(1 / 100)^{*}(\operatorname{rand}(10 . .100))() ; \mathrm{b}:=(1 / 100)^{*}(\operatorname{rand}(10 . .80))() ; \mathrm{c}:=(1 / 100) *(\operatorname{rand}(1 . .10))() ; \mathrm{n}:=$
$(\operatorname{rand}(1 . .5))()$;
$>\mathrm{r}:=\mathrm{a}-\mathrm{n} * \mathrm{c}$;
$>\mathrm{X}(0):=\mathrm{X} 0=(\operatorname{rand}(1 . .100))() ;$ \# for random initial values
$>\mathrm{Y}(0):=\mathrm{Y} 0=(\operatorname{rand}(1 . .100))()$;
$>x \operatorname{de}:=\operatorname{diff}(x(t), t)=r * x(t)$;

```
\(>\) yde := \(\operatorname{diff}(\mathrm{y}(\mathrm{t}), \mathrm{t})=\mathrm{b}^{*} \mathrm{y}(\mathrm{t})\);
\(>\) dsolve( \(\{x d e, y d e\},\{x(t), y(t)\})\);
\(>\) soln \(:=\operatorname{dsolve}(\{x d e, y d e, x(0)=10, y(0)=500\},\{x(t), y(t)\}) ;\)
\(>\operatorname{soln} 1:=\operatorname{dsolve}(\{x d e, y d e, x(0)=50, y(0)=60\},\{x(t), y(t)\}\), type \(=\) numeric, output \(=\) listprocedure, abserr \(=\)
\(0.1 \mathrm{e}-2\) );
\(>\operatorname{seq}(\operatorname{soln} 1(\mathrm{t}), \mathrm{t}=0 . .5)\);
\(>\) with(plots);
\(>\) odeplot(soln1, [[t, x(t)], [t, y(t)]], t = \(0 . .10\), color = blue, thickness = 3);
```


Competing Interests

Author has declared that no competing interests exist.

References

[1] Lotka AJ. Element of physical biology. William and Wilkens, Baltimore; 1925.
[2] Volterra V. Variations and fluctuations of the number of individuals in Animal Species living together. In: Animal Ecology. Ed. Chapman RN, McGraw-Hill, New York; 1931.
[3] Kashyap: Kashyap RL, Ramachandra Rao. Dynamic Stochastic Models from Empirical Data. Academic Press. Mathematics and Engineering. 1976;122.
[4] Leslie PH, Gower JC. The properties of a Stochastic Model for the Predator-Prey Type of Interactions Between Two Species. Biometrika, Published by Oxford University Press on behalf of Biometrika Trust. Dec. 1960;47(3/4).:219-234.
Available: https://www.jstor.org/stable/2333294
[5] Swift J. Randall. A stochastic predator prey model. Irish Math Soc. Bulletin. 2002; 48:57-63.
[6] Singh A Abhyudai. Stochastic dynamics of predator-prey interactions. Plops One. 2021;16(8). Available: https://doi.org/10.1371/journal.pone.0255880.
[7] Allen JS. Linda. An Introduction to Mathematical Biology. Pearson / Prentice Hall; 2007.
[8] Balakrishnan N, Leung MY. Order Statistics from the t-Type I generalized Logistic Distribution. Communications in Statistics-Simulation and Computation. 1988;17(1);25-50.
[9] Bulaevsky Jacob. Interesting Facts about Population Growth Mathematical Models. Population Growth and Balance; 2000.
Available:http://www.arcytech.org/java/population/facts_math.html.
[10] Cohen Jack K, William S Dorn. Mathematical modeling and computing. $8^{\text {th }}$ ed. Washington D.C.: American Association for the Advancement of Science. 1776;8-1:21-8-1.30.
[11] Futuyma DJ. Evolutionary Biology, Sinauer Associates, Sunderland, Massachusetts. 2005;ISBN 0-87893-187-2.
[12] Heydar Akca, Eada Ahmad Al-Zahrani, Valery Covachev. Asymptotic behavior of discrete solutions to impulsive logistic equations. Electronic Journal of Differential Equations. Conference 12. 2005;1-8.
[13] Sandefur, James. Elementary Mathematical Modeling: a Dynamic Approach. California: Brooks/Cole. 2003;271-334.
[14] Mark Hughes, Elena Braverman. Ricker discrete dynamical model with randomized perturbations. Department of Mathematics and Statistics, University of Calgary, Calgary, AB T2N 1N4, Canada.
[15] McKellar RC, Knight K. A combined discrete-continuous model describing the lag phase of Listeria monocytogenes. Int. J. Food Microbiol. 2000;54:171-80.
[16] Scheuring Istvan, Domokos, Gabor. Only noise can induce chaos in discrete populations. Budapest, Hungry, Oikos. 2007; 116:361-366.
[17] Gutieerrez Jose Manuel \& Iglesias Andres, 1998, "Mathematica Package for Analysis and Control of Chaos in Nonlinear Systems", Department of Applied Mathematics, University of Cantabria, Santander, Spain. Computer in Physics, Vol 12, No. 6, NOV/DEC 1998
[18] Herod, James V, Shonkwiler, Ronald W, Yeargers, Edward K. An Introduction to the Mathematical Biology with Computer Algebra Method. Birkhauser; 1996.
© 2023 Ahangar; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
https://www.sdiarticle5.com/review-history/111022

[^0]: *Corresponding author: Email: reza.ahangar@tamuk.edu,
 J. Adv. Math. Com. Sci., vol. 38, no. 12, pp. 30-42, 2023

