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ABSTRACT 
 

The rapid increase in electricity demand has resulted in the nation and state governments enforcing 
and implementing various forms of energy conservation conversations as well as seeking 
alternative energy sources in order to meet demand of the production sector. Manufacturing 
Industries of wood materials, in modern day trends, are principally focused on the achievement of 
highest quality products and quality planed surface generation at minimum input factor of resources 
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such as machining energy. In wood artifacts manufacturing practice, the appropriateness of the 
cost-quality-time matrix normally depend on supreme selection of cutting parameters for the 
operation. Machining response factors, such as generation of smooth wood surface roughness is a 
vital metric of the product quality, granted it significantly influence the performance of machined 
wood parts, affects how the machined component will interact with the   environment as well as 
impacting on the artifact production costs. Energy use optimisation, in order to continue and 
enhance competitiveness in business operations, is a prime priority concern for the modern day 
wood machining manufacturing industry.  The challenges of ever increasing energy prices, against 
mounting demand for more energy demanding machinery, increasing pressure from 
environmentalists and increasing nation state legislation, for reduced energy generation prompted 
environmental pollution, mean that manufacturers are expected to pay more money and attention 
towards energy use reduction. Thus, it is imperative, during machining process planning of wood 
materials, to determine the optimum cutting parameters combination which fosters easy and 
economical machining which simultaneously deliver good surface quality at reduced energy 
consumption. This Taguchi design of experiment study analysed and comparatively optimised the 
cutting parameters of three wood species in order to realise consistent surface quality at minimum 
energy use during the planing machining of Pine, Saligna and Teak materials. Analysis of variance 
showed the dominant factors influencing the respective response parameters whilst the optimum 
cutting conditions were established with the aid of the main effects plot of the signal to noise ratio. 
 

 
Keywords: Optimisation; energy efficiency; machining; surface quality; HSC/HSM. 

 
1. INTRODUCTION 
 
Wood manufacturing represent an important 
industrial economic activity as well as a pivotal 
engine driving growth in many nation states, [1]. 
Wood have broad range of applications, 
including - typically - for domestic and industrial 
furniture, construction, and transportation and 
paper industries. Machining - an energy use 
intense process - is an important industrial 
production operation, used for manufacturing 
wood components. It allows the creation of 
complex-shaped items for many applications. It 
forms one of the oldest industrial processes and 
it is the most frequently used process in the 
manufacture of discrete industrial workpieces 
and components such as wood and timber 
artefacts. Planing is a primary cutting method 
used in the wood machining industry, [2]. Modern 
manufacturing facilities are faced with a myriad 
of challenges, such as rapidly growing demand 
for products with greater flexibility in diversity of 
form and quality standards, and must be 
produced resource efficiently in minimum time. 
Furthermore, manufacturers must also address 
increasing requirements for sustainability in the 
efficient use of key resources such as energy as 
well as minimising emissions from their 
manufacturing operations, including complying 
with legislation, leading to the development of 
more efficient processes and systems, [3]. 
Approximately 15% of the total value of all 
mechanical components manufactured globally 
emanate from a machining process [4]. Being a 

major manufacturing process machining, thus, 
contributes significantly to the products’ overall 
cost [5], especially those of wood materials. 
Accordingly machining is one of the main cost-
determining factors where machining is the main 
activity of the manufacturing process. Generally, 
Furthermore, the machining manufacturing 
industry- of wood like most other manufacturing 
industries - are faced with the challenge of how 
to meet the demands of low operational costs as 
well as addressing the social forces requiring that 
manufacturing be more environmentally friendly, 
as well the constraining demands placed on 
them by national governments legislation, [6]. 
 
Surface roughness is an important parameter of 
product quality. It seriously influence the 
performance of Mechanical parts as well as 
production cost. Surface quality of wood is 
fundamentally concerned with the geometric 
irregularities of the surface of a material and is 
pronounced in terms of surface roughness, lay, 
lacerations, flaws and waviness. Surface 
roughness is constituted of the irregularities in 
the surface texture, [7]. Roughness plays a 
general role in exhibiting how the object will 
interrelate with the environment. It forms one of 
the most important parameters which determine 
the quality standard of machined wood products, 
[8]. The complex mechanisms accounting for the 
formation of surface quality on the machined 
components are very dynamic and process 
parameters dependent. Some of the several 
parameters which affect the texture and 
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smoothness of the surface quality, of machined 
wood, include spindle speed, feed rate, depth of 
cut, number of cutting points on the cutting tool, 
etc., [9].  
 
In today’s globally competitive business 
environment, wood products processing 
industries require the manufacturing of stumpy 
cost, high surface quality products, generated at 
minimum energy consumption. Energy use and 
surface quality are two important performance 
measurement parameters, to which significant 
attention is paid during the machining of wood 
materials such as teak, saligna and pine, by the 
planing machine operation process. The surface 
quality of a machined product determines its 
acceptability by the customer as well as the 
performance behaviour of the product in use. 
Thus, it is important to evaluate and determine 
the variable input machining parameter levels 
which optimise energy use and achievement of 
the best surface quality of the wood, before the 
machining is carried out. This knowhow will be 
useful in the wood artefacts production 
operations as it minimises the manufacturing 
costs at the desired quality standard. Being able 
to tell, in advance, the optimum machining 
conditions which brings forth determinate 
outcomes of surface quality and energy use 
outcomes will be a good advantage to the wood 
machining industries of teak, saligna and pine 
wood materials.  Good surface quality and 
minimum energy use, of the machining process, 
are desirable for better performance of the 
machining process.  Research literature on the 
optimisation of cutting parameters for better 
achievement of good wood surface quality and 
energy use consumption minimisation, is not 
abundantly published from previous researchers. 
 
In an effort to foster production of wood parts of 
desired surface quality at minimal energy use, 
appropriate machining parameters (depth of cut 
and number of cutting knives), must be selected. 
In this experimental research, the effect of cutting 
parameters on energy use and surface quality 
improvement was studied with the intention to 
determine the optimum settings desirable in 
order to achieve optimum energy utilisation and 
good surface quality, at process planning stage 
of the machining operation. The research aims 
included establishing the most dominant cutting 
parameter which affect the machining energy use 
and the quality of surface generated on the 
workpiece, as manifested by the pitch (cutter) 
marks per given unit area. Also the study aimed 
to determine the optimum set of cutting 

parameters for which minimum energy use and 
smooth surface roughness are realized. Then 
lastly regression analysis based mathematical 
models of the planning process were developed 
to further aid the cutting optimization process for 
energy use efficiency and surface quality 
improvement during the machining of the three 
timber species. In other words, the aim of the 
research is to experimentally establish the cutting 
parameters which optimises the achievement of 
minimum energy use and desirable surface 
quality. The objectives of the study included 
determining the cutting parameter levels (depth 
of cut and number of cutting knives) which 
optimise surface finish of work piece and also 
varying the cutting parameters in order to 
determine the input parameters combination 
which minimize energy use during machining to 
attain the desired surface finish. Some research 
work had been carried out regarding the 
optimisation of machining processes of wood. 
For example, Nasir & Cool, in a review              
study of wood machining and optimisation 
characterisation of factors which impact cutting 
power and surface quality, among other factors, 
concluded that factors such as feed rate, tool 
wear and saw accuracy have impact on the 
response factors of the machining process. 
According to Belleville attaining effective wood 
surface machining requires rigorous knowledge 
of the workpiece material as well as the 
implications of the cutting conditions used to 
prepare the wooden artifact surface. Wood is a 
heterogeneous material which is also anisotropic. 
As such, it is vital to understand its machining 
properties and characteristics in an endeavor to 
ensure that each manufacturing process will 
materialise into the production of the desired 
quality output standard. The quality of the final 
wooden product derive significantly from the 
quality of the machining conditions such that 
there is no compensation feasible for the 
performance malfunction of a component 
machined from badly planned cutting conditions 
[10]. Wood species in their diversity significantly 
affect wood machining characteristics of each 
respectively as regards the output response of 
the variation of the machining input factors [11]. 
 
Wood machining could be explained as the 
cutting tool action on wood material, which result 
in chips being separated, by effect of the cutting 
action, from the main piece and in the process 
generating the desired topological profile and 
geometrical architecture intended on the cut 
component, [12]. Being a material of biological 
origin the machining of wood is characterised 
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with a lot of unpredictable variability attributed to 
its anatomical and physical properties, [13]. 
Mechanical machining is a multifarious stress-
failure process in which, force is transmitted onto 
the  wood - of inherent physical and mechanical 
properties – by a cutting tool of specific 
geometry, in a machine configuration defining the 
direction and orientation of the controlled force in 
conformity with the design of the machine tool. 
The machine tool configuration will determine the 
manner in which the stresses evolve at the 
cutting tool/wood material interface point and 
how the cutting or wood failure progresses.  The 
cutting tool edge geometry as well as the 
condition of the wood material (dryness state and 
nature of defects, etc.) are some of the factors 
which affect how the machining process evolve, 
[2].  It is vital, therefore, that the wood profiling 
process variable parameters be managed in 
order to obtain the desired quality and 
productivity standards sustainably, [14].  In 
concurrence with this observation, Zhu, et al., 
[15] posits that enhancing energy use efficiency 
through improvement of efficiency during 
machining production operation helps to realise 
green manufacturing by industrial factories. 
Mallakpour, Sirous, & Hussain, [16] suggested 
achieving wood revitalisation and manufacturing 
sustainability through recovering sawdust from 
machined wood as a remediation effort.  
  
Surface quality, fundamentally, have principal 
sway on the visual outlook of machined wood 
artifacts, as well as some other effects. The 
visibility of, machined wood, original colour 
becomes more enhanced by bright smooth 
surface finishes and devoid of irregularities. The 
durability of undamaged machined wood 
surfaces is superior compared to that of 
damaged processed surfaces, [12]. The quality 
of wood surface bonding with other surfaces is 
also a function of the surface finish quality which 
affect the mechanical and chemical properties of 
the wood. Such that wood whose surface is 
vastly shattered or crushed cannot form a strong 
bond regardless whether the adhesive makes a 
strong bond with the surface.  
 
The overall surface roughness of machined wood 
can be segmented into, respectively, the 
roughness component deriving from machining, 
and the roughness component due to the internal 
anatomical structure of the wood. In the current 
era of sophisticated machining technology, the 
problematic roughness on machined components 
is that which originates from the internal 
anatomical structure of the wood material. The 

roughness due to machining can be manipulated 
by manipulating the cutting conditions, such as 
cutting speed which when increased causes 
reduction of surface roughness of the wood, as 
long as the profile of the cutting tool edge is 
maintained sharp, [11]. The roughness which 
develops during machining have two major 
components, viz machining caused roughness as 
well as roughness caused by the internal 
structure of wood. The roughness due to 
machining usually derive from a number of 
factors which, inter alia, include cutting speed, 
rake angle of the tool, chip thickness (depth of 
cut), machining direction relative to the grain, tool 
edge sharpness (tool edge radius) and vibration 
amplitude of the workpiece. The brittle fracture of 
wood material combined with its low tensile 
strength perpendicular to the grain, account for 
the existence of machining-caused surface 
roughness of machined wood. According to 
Belleville [17], the brittle fracture tendency of 
wood cannot be eliminated although it can at 
most be limited by controlling other factors 
influencing the machining process. However, 
little has been done on wood planing, specifically 
on the machine tool level where one wants to 
obtain the optimum parameters for energy 
efficient machining as well as achieving desirable 
surface quality on the machined components. 
 

2. EXPERIMENTAL SET-UP AND DESIGN 
 
In this Taguchi Design of experiments (DOE) 
study, efforts were made to comparatively 
establish the optimum cutting parameters 
combination which yield minimum energy use 
and improved surface quality during the planing 
machining of Pine, Saligna and Teak wood 
species. Cutter (pitch) marks measurement was 
the technique used to reflect the quality of 
surface generated during the planing operation of 
the wood species, whilst the Lutron DW-6092 
three phase digital power meter (Fig. 1) was 
used to measure the machining energy. The 
experiment machine station is shown in Fig. 2. 
Empirical experiments were conducted in order 
to establish the effect and outcome response 
trends of input parameters adjustment in depth of 
cut and number of cutting knives on the surface 
quality and energy consumption of the planing 
process. The experiment design plan based on 
the Taguchi L9 orthogonal array was utilised to 
evaluate the interactive relationship of the 
various factors, respectively, for the three 
species of wood. Minitab 22 statistical package, 
Analysis of Variance (ANOVA) was used to show 
the input parameters which have more influential 
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effect on the response parameters (surface 
quality and energy use) of the wood machining.  
The Signal-to-noise (S/N) ratio main effects plot 
data analysis procedure was utilised to establish 
the optimum input parameters combination to 
engage in order to achieve the desired machined 
artefacts quality (surface roughness – pitch 
marks count) at minimum energy use. According 
to Mahendra & Neeraj [18], the optimum cutting 
input parameters are identified by selecting the 

parameters which give the highest values of the 
S/N ratio. These points offer the best statistical 
performance measures used to best control the 
effect of uncontrollable noise factors on the 
cutting process, [19]. In this research, best 
performance is realised by achieving 
minimisation of surface quality of the planed 
wood (reflected as minimum spacing of pitch 
marks) as well as the energy use requirement of 
the cutting process.  

 

 
 

Fig. 1. Lutron 3 Phase digital Power Analyser/meter 
 

 
 

Fig. 2. Set-up, tools and the experimental rig 
 

Table 1.The planing machine features and specifications 
 

Characteristic feature Specification 

Table length 2700 mm 
Table width 430 mm 
Planer head diameter 120 mm 
Maximum depth of cutting  8 mm 
Spindle speed 5000 rpm 
Motor power rating 4 kW 
Maximum number of cutters carried on the block 4 
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The cutting blades were HW-03F material type 
Tungsten carbide 5906 blade with 165 mm x 16 
mm x 1.5 mm dimensions and of 22 micro-
hardness number. 
 

The 95% confidence interval, reflecting a 
significance level of 0.05 (p < 0.05), was the 
statistical analysis used, [20]. 
 

The research, in assessment, studied the trio 
types of Sub-Saharan furniture and construction 
wood material in Zimbabwe timber forests. The 
sample specimens images are presented in 
Table 2a. 
 

The dimensions of each specimen were 
respectively, 450 mm x 114 mm x 50 mm. 
Characteristics of the wood material used in the 
research were as presented in Table 2b. 
 

The test procedure involved a total of 27 sample 
specimens which were worked on during the 27 
Planing study experiments, premising on the 
feasible cutting parameters combination plan 
determined by the L9 orthogonal array (Table 3). 

The experiment process involved taking a fixed 
number (6) of planing passes on a single side of 
each specimen. The constant 6 passes was 
utilised as the experiment change-over criterion 
at the end of which stage the surface of the 
machined side of the timber was examined. At 
this experiment change over point, new set of 
knives would also be mounted after removing the 
previous experiment set of knives. Visibility of the 
cuttermarks, during assessment and 
measurement of the surface roughness, was 
enhanced or amplified with the aid of a 
magnifying glass set at a fixed height from the 
top surface of the machined timber block 
specimens. The cuttermarks, which were existent 
within a 25 mm square area, were counted and 
measured using a Vertex stainless steel 
hardened digital Vernier calipers with an 
accuracy of +/- 0.05 mm. 15 measurements were 
recorded, at 3 respective positions along the 
length of the machined timber block specimen, 
and an average value would be recorded as the 
roughness value of the surface roughness on 
that machining parameter setting.   

 
Table 2a. Teak, Saligna and Pine wood types used 

 

 
 

Table 2b. Specimens hardness and moisture measurements 
 

Sample Name Hardness scale Moisture percent  content 

Saligna 1250N 12.0 
Teak 1000N 15.0 
Pine 420N 8.6 

 
Table 3. Cutting parameter combination and level control factors 

 

Factor control level Depth of cut (mm) Number of cutting knives 

1 1 2 
2 2 3 
3 3 4 
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3. RESULTS AND DISCUSSION 
 
A summary of the experiment results are 
presented in Table 4.  
 
The analysis of variance (ANOVA) result of Total 
cutting energy (TCE) for Saligna wood, shown in 
Table 5 denote that both parameters (cutting 
knives and depth of cut) have positive influence 
on the response parameter. Both input factors 
have significant effect on the TCE for Saligna 
wood as shown by their p-values which are less 
than 0.05. However, for Saligna, TCE is 
influenced more by depth of cut than by number 
of cutting knives as confirmed by the Taguchi 
analysis response results shown in Table 6, 
where the depth of cut ranks higher than number 
of cutting knives. Thus, improvement for more 
efficient performance would require that depth of 

cut be adjusted before the number of cutting 
knives is accordingly addressed. 
 

The main effects plot results for Saligna total 
cutting energy shown in Fig. 3 denotes that the 
optimum cutting conditions are attainable on 
input parameter setting with 2 cutting knives and 
depth of cut of 1 mm. 
 

The Regression model, expressing the 
mathematical relationship of how total cutting 
energy (TCE) is connected to the input 
parameters, cutting knives and depth of cut, is 
shown in equation Eq1. The r2 value of 94.6%, 
shown in the model summary (Table 7) shows a 
strong representativeness of the model to the 
data represented. 
 

Saligna, TCE   = 0.522 + 0.1658 Cutting knives 
+ 0.2349 Depth of cut                                  Eq. 1 
 

Table 4. Summary of Experiment results for three types of wood machining 
 

Number 
of 
Cutting 
knives 

Depth 
of cut 
(mm) 

Saligna, 
TCE 
(kWh) 

Pine, 
TCE 
(kWh) 

Teak, 
TCE 
(kWh) 

Saligna 
Cutter 
marks 
(mm) 

Pine 
Cutter 
marks 
(mm) 

Teak 
Cutter 
marks 
(mm) 

2 1 0.9977 0.6412 1.48 1.4 2.32 1.48 
2 2 1.4322 1.0783 1.32 3.05 1.25 1.32 
2 3 1.4853 1.1658 1.7 2.13 3.07 1.7 
3 1 1.3043 1.0675 3.88 1.84 2.51 3.88 
3 2 1.5392 1.3443 3.34 1.93 1.35 3.34 
3 3 1.7377 1.2827 2.6 3.02 1.46 2.6 
4 1 1.4245 1.0905 3.75 2 1.94 3.75 
4 2 1.5725 1.3258 2.79 1.31 1.21 2.79 
4 3 1.9132 1.5103 1.96 2.75 1.27 1.96 

TCE – Total cutting energy 

 
Table 5. Analysis of Variance for Saligna, TCE 

 

Source DF SS MS F P 

Cutting knives 2 0.17131 0.085657 11.88 0.021 
Depth of cut 2 0.33401 0.167003 23.17 0.006 
Error 4 0.02883 0.007208 - - 
Total 8 0.53415 - - - 

 
Table 6. Taguchi Analysis of Response for Saligna, TCE 

 

Response Table for Signal to Noise Ratios 
(Smaller is better) 

Response Table for Means 

Level Cutting knives Depth of cut Level Cutting knives Depth of cut 

1 
2 
3 
Delta 
Rank 

-2.179 
-3.618 
-4.213 
2.035 
2 

-1.787 
-3.599 
-4.624 
2.837 
1 

1 
2 
3 
Delta 
Rank 

1.305 
1.527 
1.637 
0.332 
2 

1.242 
1.515 
1.712 
0.470 
1 
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Fig. 3. Main Effects Plot for S/N Ratios on Data Means: Saligna Total Cuttiing energy 
 

Table 7. Saligna TCE Model Summary 
 

S R-sq R-sq(adj) 

0.0849008 94.60% 89.20% 

 
The significant positive influence, of the input 
cutting parameters, on the response                     
parameter – TCE – is apparent on the ANOVA of 
pine wood shown in Table 8. Both cutting knives 
and depth of cut have p-value less than 0.05. 
The p-values of 0.022 for cutting knives and 
0.014 for depth of cut shows therefore that the 
total cutting energy response for pine wood is 
more strongly influenced by the input factor 
depth of cut than cutting knives. The Taguchi 
analysis, of the response for pine TCE, 
presented in Table 9 further confirm the 
dominance of depth of cut over cutting knives in 
positively impacting on the response                     
parameter as shown by the delta ranking order of 
scores. 

The optimum cutting parameter condition 
combination, for pine TCE  is realised on setting 
both cutting knives and depth of cut  at their 
minimum level ash shown on the main effects 
plot results in Fig. 4. 
 

The Regression model expressing the 
relationship of the input factors to the response 
function (Pine TCE) is given by Eq2: 
 

Pine, TCE   = 0.260 + 0.1736 Cutting 
knives + 0.1933 Depth of cut       Eq. 2 

 

The coefficient of determination of 92.96% in the 
model summary (Table 10) shows the very 
strong representativeness of the data by the 
fitted regression model. 

 
Table 8. ANOVA for Pine, TCE 

 

Source DF SS MS F P 

Cutting knives 2 0.19923 0.099613 11.60 0.022 
Depth of cut 2 0.25448 0.127239 14.82 0.014 
Error 4 0.03434 0.008586 - - 
Total 8 0.48805  - - 

 
Table 9. Taguchi Analysis of Response for Pine, TCE 

 

Response Table for Signal to Noise Ratios 
(Smaller is better) 

Response Table for Means 
 

Level Cutting knives Depth of cut Level Cutting knives Depth of cut 

1 
2 
3 
Delta 
Rank 

0.6243 
-1.7666 
-2.2612 
2.8855 
2 

0.8469 
-1.8917 
-2.3588 
3.2057 
1 

1 
2 
3 
Delta 
Rank 

0.9618 
1.2315 
1.3089 
0.3471 
2 

0.9331 
1.2495 
1.3196 
0.3866 
1 
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Fig. 4. Main Effects Plot for S/N Ratios on Data Means: Pine Total Cutting energy (TCE) 
 

Table 10. Pine TCE Model Summary 
 

S R-sq R-sq(adj) 

0.0926601 92.96% 85.93% 

 
The Teak TCE  ANOVA results presented in  
Table 11 show that the input parameter, cutting 
knives, have more positive effect on the 
measured output parameter, TCE for Teak wood 
whilst the input parameter, depth of cut have less 
significant influence on TCE as shown by the p-
value of 0.206. Input parameters effect 
confirmation assessment is presented on the 
Taguchi analysis response, for signal-to-noise 
ratios response table for means (Table 12) which 
was premised on the smaller is better criteria.  
Cutting knives had higher significant influence on 
TCE for Teak as confirmed by the delta ranking 
scores.  
 

The optimum parameters setting for total cutting 
energy, for Teak, were 2 cutting knives and 
depth of cut of 3 as presented by the results of 
the signal-to-noise ratios main effects plot   in 
Fig. 5. 
 
Regression analysis was used to model the 
relationship explaining the connection of TCE, for 
machining Teak, with the two variable input 
parameters (cutting knives and depth of cut) is 
shown in equation Eq3.  
 

Teak, TCE = 1.49 + 0.667 Cutting 
knives - 0.475 Depth of cut                      Eq3 

  
Table 11. Analysis of variance for teak, total cutting energy 

 

Source DF SS MS F P 

Cutting knives 2 5.116 2.5580 9.00 0.033 
Depth of cut 2 1.366 0.6830 2.40 0.206 
Error 4 1.138 0.2844 - - 
Total 8 7.620 - - - 

 
Table 12. Taguchi Analysis of Response for Teak, TCE 

 

Response Table for Signal to Noise Ratios 
(smaller is better) 

Response Table for Means 

Level Cutting knives Depth of cut Level Cutting knives Depth of cut 

1 
2 
3 
Delta 
Rank 

-3.475 
-10.184 
-8.746 
6.708 
1 

-8.887 
-7.266 
-6.251 
2.636 
2 

1 
2 
3 
Delta 
Rank 

1.500 
3.273 
2.833 
1.773 
1 

3.037 
2.483 
2.087 
0.950 
2 

 
 



 
 
 
 

Tayisepi et al.; J. Eng. Res. Rep., vol. 25, no. 11, pp. 73-87, 2023; Article no.JERR.108333 
 
 

 
82 

 

    
 

Fig. 5. Main Effects Plot for S/N Ratios on Data Means: Teak Total Cutting energy (TCE) 
 
The coefficient of determination (R2) of 85.05%, 
presented in the Teak TCE model summary 
(Table 13) confirms the significance of                        
how well the regression model (equation Eq3) 
approximates the real data points projecting the 
relationship between the predictor variables 
(cutting knives and depth of cut) and the 
response parameter, Teak for TCE. A            
coefficient of determination, R2 of value                     
zero means that the dependant variable                 
cannot be predicted from the independent 
variable. 
 
In wood machining cutter marks count serve to 
indicate surface quality or surface roughness, 
[21]. In that regard in this study, reference to 

cutter or pitch marks imply surface roughness or 
surface quality of the machined artefacts. 
 

The ANOVA results, of Saligna cutter marks, 
presented in Table 14, show the dominant 
positive influence of depth of cut, (p-value of 
0.402) than cutting knives in impacting on the 
surface quality (cutter marks) of Saligna wood. 
The Taguchi analysis response Table for the S/N 
ratios results in Table 15 confirms the ranking 
order of the influence of input parameters on the 
Saligna cutter marks.  
 

The optimum cutting conditions for Saligna cutter 
marks, according to the main effects plot in Fig. 6 
is setting of cutting knives at 4 and a depth of cut 
of 1 mm. 

 
Table 13. Teak TCE model summary 

 

S R-sq R-sq(adj) 

0.533271 85.07% 70.14% 

 
Table 14. Analysis of variance for saligna, surface roughness 

  

Source DF SS MS F P 

Cutting knives 2 0.09416 0.04708 0.09 0.915 
Depth of cut 2 1.19669 0.59834 1.16 0.402 
Error 4 2.07084 0.51771 - - 
Total 8 3.36169 - - - 

 
Table 15. Taguchi analysis of response for saligna, surface roughness 

 

Response Table for Signal to Noise Ratios 
(Smaller is better) 

Response Table for Means 
 

Level Cutting knives Depth of cut Level Cutting knives Depth of cut 

1 
2 
3 
Delta 
Rank 

-6.392 
-6.869 
-5.718 
1.152 
2 

-4.747 
-5.914 
-8.318 
3.572 
1 

1 
2 
3 
Delta 
Rank 

2.193 
2.263 
2.020 
0.243 
2 

1.747 
2.097 
2.633 
0.887 
1 
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Fig. 6. Main Effects Plot for S/N Ratios on Data Means: Saligna Cutter marks 
 
The regression equation modelling the 
relationship of input parameters and the 
response, Saligna surface quality is presented in 
equation Eq 4.  
 

Saligna Cutter marks = 1.532 - 0.087 Cutting 
knives + 0.443 Depth of cut                    Eq 4. 

 

The coefficient of determination of 92.89% (Table 
16) show the strong representativeness of the 
data by the model. 
 

The results presented in Table 17, show the 
ANOVA analysis of pine wood surface quality. It 
is apparent that the input factor depth of cut (p-

value of 0.213) had a more significant influence 
on pine cutter marks than the number of cutting 
knives. The Taguchi analysis response table 
results, presented in Table 18, also confirm the 
dominance of depth of cut in influencing surface 
roughness than the number of cutting knives 
showing a ranking order delta position of 1 and 2 
respectively for depth of cut and number of 
cutting knives. 
 
The optimum cutting parameter combination for 
pine surface roughness, according to the main 
effects plot results presented in Fig. 7, is setting 
4 cutting knives and 2 mm depth of cut.  

 
Table 16. Saligna Surface roughness Model Summary 

 

S R-sq R-sq(adj) 

0.0795346 92.89% 90.53% 

 
Table 17. ANOVA for Surface roughness of Pine 

 

Source DF SS MS F P 

Cutting knives 2 0.8312 0.4156 1.28 0.373 
Depth of cut 2 1.5181 0.7590 2.33 0.213 
Error 4 1.3037 0.3259 - - 
Total 8 3.6530 - - - 

 
Table 18. Taguchi Analysis of Response for Pine, Surface roughness 

 

Response Table for Signal to Noise Ratios 
(Smaller is better) 

Response Table for Means 
 

Level Cutting knives Depth of cut 

 -6.330 -7.020 
2 -4.629 -2.067 
3 -3.163 -5.035 
Delta 3.168 4.953 
Rank 2 1 

 

Level Cutting knives Depth of cut 

1 2.213 2.257 
2 1.773 1.270 
3 1.473 1.933 
Delta 0.740 0.987 
Rank 2 1 
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Fig. 7. Main Effects Plot for S/N Ratios on Data Means of Pine Surface quality 
 
The Regression model relating the surface 
roughness response parameter to the input 
parameters is presented in equation Eq 5. The 
model summary (Table 19), show data 
representativeness of no less than 64% by the 
model. 
 

Pine Cutter marks = 3.25 - 0.370 
Cutting knives - 0.162 Depth of cut  Eq 5. 

 

The results presented in Table 20 is the Analysis 
of Variance (ANOVA) results  for the surface 
quality of Teak wood, which show that both 
cutting knives as an input parameter have a 
more positive effect on the pine wood cutter 
marks than depth of cut. The significance of the 
influence of cutting knives is apparent from the 

fact that on the ANOVA have a p – value of 
0.033 which is below the 0.05 threshold value. 
The Taguchi analysis response table for the S/N 
ratios results in Table 21 confirms the ranking 
order of the influence of input parameters on the 
teak surface roughness. 
 
The signal-to-noise ratio main effects plot, for the 
teak wood surface quality, show the level of 
significance of the influence of input machining 
parameters (cutting knives and depth of cut) on 
the response parameter, cutter marks. The 
Signal to Noise Ratios plots were premised on 
smaller is better.  The optimum cutting conditions 
according to Fig. 8 is achievable at 2 cutting 
knives and 3 mm depth of cut combination. 

  
Table 19. Pine cutter marks Model Summary 

 

S R-sq R-sq(adj) 

0.570906 64.31% `28.62% 

 
Table 20. ANOVA for Teak Cutter marks 

 

Source DF SS MS F P 

Cutting knives 2 5.116 2.5580 9.00 0.033 
Depth of cut 2 1.366 0.6830 2.40 0.206 
Error 4 1.138 0.2844 - - 
Total 8 7.620 - - - 

 
Table 21. Taguchi Analysis of Response for Teak, Surface roughness 

 

Response Table for Signal to Noise Ratios 
(Smaller is better) 

Response Table for Means 
 

Level Cutting knives Depth of cut 

1 -3.475 -8.887 
2 -10.184 -7.266 
3 -8.746 -6.251 
Delta 6.708 2.636 
Rank 1 2 

 

Level Cutting knives Depth of cut 

1 1.500 3.037 
2 3.273 2.483 
3 2.833 2.087 
Delta 1.773 0.950 
Rank 1 2 
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Fig. 8. Main Effects Plot for S/N Ratios on Data Means of Teak surface quality 
 

Table 22. Teak cutter marks Model Summary 
 

S R-sq R-sq(adj) 

0.533271 85.07% 70.14% 

 
Table 23. Summary of optimum cutting parameters for TCE 

 

Wood type Optimum cutting parameters settings 

 Number of Cutting knives Depth of cut (mm) 

Pine 2 1 
Teak 2 3 
Saligna 2 1 

 
Table 24. Summary of optimum cutting parameters for surface quality/ pitch (cutter) marks 

 

Wood type Optimum cutting parameters setting 

 Number of Cutting knives Depth of cut (mm) 

Pine 4 2 
Teak 2 3 
Saligna 4 1 

 
The Regression model relating the input 
parameters to the response factor (teak cutter 
marks) is given by equation Eq 6: 
 

 Teak Cutter marks = 1.49 + 0.667 
Cutting knives - 0.475 Depth of cut       Eq 6. 

 
The coefficient of determination, r2, of 85.07% (in 
Table 22) show very strong representativeness 
of the data by the regression model. 
 

3.1 Summary of the Optimization 
 
This section present a summary of the 
determined optimum input cutting                          
parameter settings for machining the three                   
types of timber, respectively, for the Total  cutting 
energy (TCE) in Table 23 and for                                    
the cutter marks or surface quality in                         
Table 24. 

4. CONCLUSION 
 

The research set out to experimentally study and 
comparatively analyse the effect of cutting 
parameters on the response parameters (energy 
use and surface quality) during the machining of 
Pine, Saligna and Teak wood with the intention 
to determine the input parameters which optimise 
the response parameters. The Taguchi DOE 
technique was utilised to plan the planning 
experiments. The ANOVA and S/N ratio 
techniques had been used, respectively, to 
determine the impact of the input parameters on 
the response factors and optimisation. Deducing 
from the results and analysis of the experimental 
investigation, on the three different materials 
under the varied cutting parameters combination, 
conclusions were reached that; the input 
parameters (depth of cut and the number of 
cutting knives) have different levels of influence 
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on the response parameters according to the 
type of wood being machined. Optimum cutting 
conditions were established for the three different 
types of wood and the mathematical models 
presented. According to the confirmation 
experiments run, by setting the model 
determined optimum condition on the machining 
experiment platform, the maximum variation of 
result between the experiment and optimisation 
model was 9% or less which showed the 
reliability of the optimisation platform utilised. 
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