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ABSTRACT 
 

This paper reports on the IEUOCPPTM (Integrated Energy Use Optimisation and Cutting 
Parameters Prediction Tool Model) designed to optimise the machining parameters planning 
process of titanium alloy machining on the CNC lathe. It aimed to create a novel systematic 
methodology for determination of optimised cutting parameters. MATLAB genetic algorithm and 
Visual Basic Application softwares were integrated to generate the IEUOCPPTM optimised 
machining process planning tool for titanium alloys. The empirical 18 full factorial experiment runs 
design was carried out using Minitab. Determination of appropriate cutting parameters is vital for 
conserving energy and achieving sustainability for the titanium alloy machining businesses 
confronted with immense pressure to produce cost-effectively in record delivery times. Machining is 
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a fundamental, and electrical energy intensive, activity in the profiling process of cylindrical T-alloy, 
Ti6Al4V, components used in the aerospace, automotive and general metal working industries. 
Varied performance outcomes were achieved, on the machined components after predicting the 
input parameters using the tool as opposed to the good-guess approach currently being applied in 
industry. Validation experiments confirmed functionality of IEUOCPPTM in forecasting the cutting 
parameter settings required, to achieve desired responses during machining of Ti6Al4V within an 
average error range of 8%. 
 

 
Keywords: Energy use; optimisation; prediction; surface integrity; energy efficiency; cutting 

parameters; Grade 5 titanium alloy; Ti6Al4V. 
 

1. INTRODUCTION  
 

Grade 5 titanium alloy is a diphase (alpha-beta) 
titanium alloy grade chemically known as 
Ti6Al4V. It is a material used in many high value 
engineering applications due to its attractive 
properties such as high temperature strength, 
corrosion resistance and biocompatibility, inter 
alia. Ti6Al4V material is used in the aerospace 
industry, biomedical components manufacturing, 
energy and chemical industrial sectors and the 
offshore oil drill rig and ship building industries. 
All these are industries requiring highly 
dependable engineering materials.  
 

Machining is one of the primary activities in the 
mechanical manufacturing process, [1], of 
cylindrical Ti6Al4V component parts used in the 
aerospace industry. The cutting of metallic 
components by machine tools is considered a 
significant electrical energy consuming activity of 
the manufacturing process [2]. Determining the 
optimal machining parameter settings point 
which improves the energy use efficiency and 
escalate the process yield of grade 5 titanium 
alloy processing, therefore, offers significant 
opportunities of financial benefits for the 
machining industry operations. Thus, the 
selection of appropriate cutting parameters is 
vital for conserving energy and achieving energy 
efficiency as well as fostering manufacturing 
sustainability.  
 

Furthermore, operating on optimum machining 
parameter settings is vital in so far as it 
decreases the costs of machining the product, 
improves machining effectiveness and enhances 
the predictability of the energy bill factored into 
the machined component. The distinctive, 
simultaneous, divergent and usually conflicting 
outcomes of response parameters deriving from 
the adjustment of the input machining processing 
parameters, during  the turning of Ti6Al4V,  
increases the complexity of machining based 
manufacturing process planning with the key 
goal of attaining certain determinate outcomes 

relating to the component attributes or process 
quality standard. In a number of machining 
industry operations currently, the process 
parameters are determined approximately by 
experienced machine operators basing on trial-
and-error or good-guessing approach. Thus, in 
this obtaining practice the methods are deficient 
of a systematic approach focused on promoting 
broad use of energy efficient methodologies in 
the machining industry [3]. Machining operation 
process planning includes the determination of 
the most appropriate manufacturing strategy 
parameter settings as well as the arrangement of 
the sequence in which the machining process 
should be accomplished in the production of the 
given component or part in accordance with the 
specifications set out in the product design 
document [4]. Concurring with this assertion 
Chen, et al., [5] established that appropriate 
selection of cutting parameters and cutting tool 
geometry appreciably lessen the energy use foot 
print and the manufacturing time through the 
machining process. 
 
Machining planning is a function that is executed 
through systematic examination of the 
component design or sample in order to 
understand the intended requirements of the 
finish-machined workpiece. This process is 
considered in light of the information on the 
available machining facilities and the nature of 
the raw materials. Optimisation utilises 
mathematical programming models to take into 
account the various constraints and alternative 
conditions surrounding the machining operation 
[6]. Machining process planning (MPP) is 
intended to transform a component design 
specification from the engineering drawing 
design model [4] into a set of manufacturing 
instructions and specifications to actuate the 
design features into the physical component with 
the intended geometrical and topological profile 
as well as the desired quality features 
engendered into it through the machining 
process on the selected machine tool. Effective 
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MPP point towards shorter and efficient 
manufacturing cycles characterised by improved 
utilization of the available facilities and resources 
[6], such as electrical energy. Emphasising the 
importance of good MPP, in a research focused 
on predicting and optimising energy consumption 
in high-speed milling, Duc and Trinh [7], stressed 
the importance of accurately evaluating the 
amount of energy required to run the high speed 
machining process before cutting is started. 
Reporting in a study in the same realm, Yang et 
al [8], content that development of a 
manufacturing resource integrated energy use 
management system is advantageous in 
encouraging transformation of the energy 
utilisation system as well as facilitating the 
achievement of the sustainability goals of nation 
states. The specified features in machining 
include outcome aspects such as component 
surface quality and integrity, material removal 
rate, tool wear management, cutting forces 
minimisation as well as variable cutting 
parameters settings such as the cutting speed, 
federate and energy use management. Process 
optimisation include selection and setting of input 
parameters in order to achieve the multiple set of 
component quality outcomes as well as 
promoting efficiency in energy use of the  
operations. The CNC lathe machine, used in this 
research is capable of producing titanium alloy 
components with high efficiency and accuracy 
despite the fact that Ti6Al4V is classified as a 
difficult to machine material [9], due to the 
mechanical and metallurgical attributes of the 
material. 
 
A number of researchers have made attempts to 
addressing the optimisation of machining 
parameters as a separate problem. For example, 
Nayak and Sodhi [10] used Response surface 
methodology in optimisation of CNC turning 
parameters of aluminium 6061 intending to 
enhance material removal rate. Yadav, Narang & 
Attri [11] reported on using Taguchi methodology 
in an experimental study to optimise cutting 
parameters during turning in attempting to 
improve surface finish. Rao, Dave & Thakore [12] 
used design of experiments to optimise milling 
process parameters of aluminium 6061 alloy 
cutting. It is apparent that all the researches 
employ empirical formulas to express the 
singular performance response parameter as a 
function of the considered machining 
parameters, in most instances by differentiating 
these expressions, in isolation, to obtain the 
optimum values of the targeted parameter. There 
are, however, difficulties in practically 

incorporating these individually determined 
analytical procedures into the live machining 
planning system. Typically, machining processes 
involve a number of variables which change from 
one job condition to another and, oftentimes, 
optimum output of one parameter tends to cause 
deterioration of the other. For example, machine 
settings which yield higher material removal rate 
could also be causing deterioration of surface 
quality and be associated with excessive tool 
wear as well as being energy consumption 
expensive. This complicates the practical 
applicability of the purely analytical methods, 
even in their simplest form, in complex 
operations that machining is [4]. 
 
In the current setting of the MPP in industry, 
selection and determination of the machining 
process variable parameters is performed 
progressively for one particular outcome aspect 
after another [4]. This approach lead to 
suboptimal or trade-off outcome solutions on the 
component and the process and resource 
utilisation efficiencies, of producing it [13]. 
Determination and selection of appropriate 
machining parameters, during process planning, 
of the machining operation offer vital 
considerations that guarantee good machining 
response output such as the quality of surface 
finish, tool wear rate, enhanced material removal 
rate, energy use efficiency and, generally, ease 
of machinability. In this study, an Integrated 
Energy Use Optimisation and Cutting 
Parameters Prediction Tool Model 
(IEUOCPPTM) was designed and developed in 
order to optimise the machining process of grade 
5 Ti-alloy components through effective 
integrated multi-criteria cutting parameters 
planning. The aim was to develop a physically 
implementable machining manufacturing 
planning system that predict the optimum cutting 
parameters for the integrated output responses.  
The intention of the tool design is to give 
assurance of the determinate response output of 
quality component parameters, generated from 
an efficiently planned machining process. The 
tool design outcome is a result of the 
concatenated application of experimental study 
and various software platforms. The tool 
applicability was validated with several iteration 
runs of experimental predictions of machining 
parameters and measurements of the 
component features outcome from the machining 
runs. There was good fidelity between the tool 
prediction and the physical machined component 
outcomes. Rajemi et al [14], content that it is vital 
to model machining energy use so as to project 
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the energy use efficiency of the manufacturing 
process. Thus, predicting the energy use rate 
before machining commences meaningfully 
assist the machining manufacturing process 
planners and the operatives to keep under check 
the parameters which significantly influence 
energy use. 
 

The limitation of the tool, however, is that 
although generally, its designing considered the 
constraints placed on the selection of machining 
parameters at planning stage, aspects that may 
be predicated on a variety of physical exigencies 
in the machining process are hardly addressed. 
The IEUOCPPTM systems focus on optimisation 
derive from the anticipated positive response of 
the physical machining process to the 
appropriately determined cutting parameters at 
the planning phase. Further assumptions, made 
in the study, are that the input factors predicted 
by the model are the only factors affecting the 
machining response parameters, ceteris paribus.  
This designed tool optimises the machining 
process through effectively determining the 
values of the machining parameters to use for 
each targeted outcome response. The energy 
efficient machining of titanium alloy (Ti6Al4V) 
encompasses the suitable choice of the 
machining strategy factors (vc and fn) 
combination intended to minimise energy use 
whilst maximising productivity. During machining 
based manufacturing, energy consumption (use) 
is a result of the processes meant to maximise 
material removal rate (MRR) and achieving chip 
teeth segmentation (STP) whilst simultaneously 
minimising surface roughness (Ra), cutting forces 
(Fc) and cutting tool wear (TW) as these provide 
the performance parameters which can be 
monitored during the machining process [15].  
 

2. RESEARCH SIGNIFICANCE 
 

The Integrated Energy Use Optimisation and 
Cutting Parameters Prediction Tool Model 
(IEUOCPPTM), is a vital tool platform intended to 
aid those in the business of metal machining by 
quickening the process of systematically 
determining the machining cutting parameters 
during process planning. The tool provides the 
machining operators with a reliable technological 

means of determining the set of required 
operating parameter levels as guided by the 
intention to realising the goal of achieving 
different machining outcomes energy efficiently. 
The IEUOCPPTM is a novel machining process 
planning tool particularly designed for application 
in the lathe machining of aircraft grade titanium 
alloy Ti6Al4V, with possibility of extension for 
application in other materials subject to model 
modifications from the programming code.  

 
3. EXPERIMENTAL SETUP AND 

METHODOLOGY 
 
The initial data set was produced from a Taguchi 
design of experiments full factorial design of 
experiments planned 18 machining experiments 
of Ti-alloy resultant from the input variable 
parameters combination generated from Table 1. 
The experiments were conducted on a Siemens 
controller run Efamatic Computer Numerically 
Controlled (CNC) lathe machine with a maximum 
spindle speed of 4500 RPM. The machine and 
experimental setup is shown in Fig. 1.   
 
The experimental process involved the outside 
turning of Ti6Al4V which was supplied in 
cylindrical billet form of diameter 75.4 mm. The 
specimens machining linear length used was 180 
mm per single machining run. A cleaning cut of 
0.5 mm depth was removed from the surface of 
each specimen, using a tool tip not involved in 
the experimental process, in order to avoid 
possibility of vibrations induced by specimen non 
concentricity during the experiment machining 
runs. 

 
Data of several machining response parameters 
was collected online and offline, respectively, as 
follows, during and at the end of each experiment 
iteration [16]. 

 
Other response variables were analytically 
computed, such as material removal rate, spiral 
cutting length and specific cutting energy. The 
experiment iteration termination or changeover 
condition was tool wear of 300 micrometres (µm) 
[16]. 

   

Table 1. Coding levels of the input (independent) variable test parameters 
 

Cutting parameter Notation Units Symbol Coding of Factor Levels 

    1 2 3 4 5 6 
Cutting speed νc m/min Χ1 50 70 100 150 200 250 
Feed rate ƒn mm/rev Χ2 0.1 0.2 0.3    
Depth DoC mm X3 0.5 0.5 0.5 0.5 0.5 0.5 

Depth of cut was kept constant 
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Fig. 1. Experimental machinery and equipment set-up 
 

Online data Offline data 

Energy use (power) Surface roughness 
Cutting forces Tool wear  

Chip segmentation 

 

3.1 The IEUOCPPTM Development   
 
Once data was tabulated, mathematical models, 
expressing the response parameters as function 
of the input variables (cutting speed (vc) and feed 
rate (fn)), were developed using regression 
analysis modelling on Minitab 18 software. 
Further development involved expressing the 
performance parameters – Material Removal 
Rate (MRR), Segmentation Teeth Pitch (STP), 
Tool Wear (TW), Main cutting force (Fz) and 
average Surface roughness (Ra) - as functions of 
specific cutting energy, SE. 
 
Equations 1 to 5 were determined as related to 
the individual response parameters where the 
variables are respectively represented thus, y, is 
the specific cutting energy J/m3, vc, cutting speed 
(m/min) and fn, feed rate (mm/rev): 
 
Material Removal Rate (MRR) 
 
𝑀𝑅𝑅 =  

5297.522086 –  26.82225896(𝑣𝑐)  +
 0.0341370264(𝑣𝑐)2 +
 53.6687376 (𝑣𝑐)( 𝑓𝑛) –  21084.39032(𝑓𝑛) +
 21093.9096(𝑓𝑛)2            (1) 

 
Segmentation Teeth Pitch (STP) 
 
𝑆𝑇𝑃 = 

 3140.64960213 –  4.4623952154(𝑣𝑐)
+  0.001720593333(𝑣𝑐)2 
+  14.791382406(𝑣𝑐)(𝑓𝑛)–  

19180.8816214(𝑓𝑛) 31789.178373(𝑓𝑛)2     (2) 
 
Tool Wear (TW) 
 
𝑇𝑊 = 

 514.0413 –  0.69284646 (𝑣𝑐)  +
 0.0002903616(𝑣𝑐)2 +
 0.2153856 (𝑣𝑐)(𝑓𝑛) –  256.9712(𝑓𝑛) +
 39.9424(𝑓𝑛) 2            (3) 

 
Cutting Force (Fz) 
 

𝐹𝑧 =  
1194.817834 +  1.814329444(𝑣𝑐)
+  0.001044452026(𝑣𝑐)2 –  5.490111(𝑣𝑐)(𝑓𝑛) 

–  4768.467(𝑓𝑛) +  7214.625(𝑓𝑛)2           (4) 
 
Surface Roughness (Ra) 
 

𝑅𝑎 =  
839.15086 +  1.5038845(𝑣𝑐)
+  0.001114765(𝑣𝑐)2 –  4.44372(𝑣𝑐)(𝑓𝑛)–  
2997.42115(𝑓𝑛)   +  4428.43024(𝑓𝑛)2       (5) 

 
Combining these different response parameters 
into a singular model forms a multi-objective 
problem. Poles Sastry, Goldberg & Kendall [17], 
posited that a multi-objective problem can be 
modelled as a multi-objective optimisation 
problem which could be solved by means of 
weighted functions assignment, with which the 
problem is transformed into a single objective 
problem using weights. The weights are problem 
dependant and must be empirically defined by 
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the user in accordance with some established 
policy protocol for the entity. The decision 
attributes weight coefficient value, assigned, 
represents a measure of the decision maker’s 
optimism or pessimism. The factor priority 
ranking methods available include, among 
others, the following; the pairwise comparison 
[18], the law of comparative judgment [19] and 
analytic hierarchy process [20].  
 
The specific cutting energy minimisation model, 
developed, in this study, took the form [21]:  
 

Min 
))),((( 2
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kjii xxfc

   (6) 

 
Which in expanded form becomes: 
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Where the variable factor operating conditions 
provide the constraints represented. Thus, xj is 
the cutting speed (vc) in m/min, xk is the feed rate 
(fn) in mm/rev and ci is the ranking weight factor 

priority coefficient associated with a performance 
parameter of the machining process. The 
pairwise comparison method was used to rank 
the weights of importance of the response factors 
in priority. 
 

The integrated energy use optimisation and 
cutting parameter prediction tool model 
(IEUOCPPTM) was developed from equation 7 
with, constituting equations 1 – 5, on the multi-
criteria genetic algorithm (GA) application 
platform in MATLAB 13a [17], as shown on the 
screen print in Fig. 2. 
 

Genetic algorithms are an evolutionary 
optimisation methodology which are suitable for 
solving intricate non-linear problem models for 
which the global optimum solution may be 
challenging to resolve [22]. GA belongs to the 
global search heuristics which are search 
techniques used in calculations to determine 
exact or approximate solutions to optimisation 
and search problems. The researcher would be 
reluctant to delve into extensive discussion of 
genetic algorithms at this stage. 
 

Use was made of the inbuilt GA module on 
MATLAB 13a [23] as a foundation platform to 
develop the IEUOCPPTM platform by integrating 
the GA M-file code instructions with Visual Basic 
Algorithm (VBA) to output the IEUOCPPTM tool 
guided user interface (GUI). Table 2 present the 
typical GA concept terms comparison with the 
machining process aspects as they were used in 
the tool development, and are meant to be 
interpreted by the tool users in application. 

 

 
 

Fig. 2. Testing the IEUOCPPTM on a GA application platform 
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Table 2. The concepts comparison between GA and machining terms[24] 
 

Genetic Algorithm (GA) Machining Process 
Population Feasible machining plans 
Individual A machining plan 
Chromosome Combination of parameters 
Gene parameter 
Fitness Optimum value 
Selection Record improved results 
Reproduction  

Change the machining parameters combination Crossover 
Mutation 
Evolution Generate new optimal results 

 
Modelling machining energy utilisation is 
important for extrapolative energy efficient 
manufacturing, [14]. Projecting the energy 
consumption in advance can significantly assist 
the machine manufacturing process planners 
and operatives to double-checking and maintain 
under control the parameters which affect energy 
use. This research focused on a machining 
manufacturing problem where the integrated 
energy use optimisation and cutting parameter 
prediction challenge required a solution to be 
developed basing on several conflicting objective 
functions. Whilst, energy consumption must, 
overally, be minimised, the source equations 
from which the mathematical models expressing 
the energy function with respect to the machining 
performance parameters, were such that some 
responses - such as material removal rate and 
teeth segmentation pitch - require to be 
maximised,  whilst responses - such as surface 
roughness, tool wear and cutting forces - require 
to be minimised. This demands a decision 
making support tool with the ability to 
simultaneously address the requirements of 
these multiple conflicting goals (multi-criteria 
decision making). The solution generated 

required to be a compromise which will be 
acceptable in its addressing all these constituting 
factors.  
 

4. RESULTS AND DISCUSSION 
 

The IEUOCPPTM equation was tested for 
mathematical functional effectiveness, and the 
response output is displayed in Fig. 3. 
 

Having been satisfied with the computation 
response of the mathematical model uploaded 
on MATLAB 13a, use was then made of the 
Multi-Objective Genetic Algorithm Programming 
(MOGAP) coding to develop the Integrated 
Energy Use Optimisation and Cutting Parameter 
Prediction Tool Model (IEUOCPPTM). The 
IEUOCPPTM is an offline tool which can be 
utilised during machining process planning to 
establish the optimum combination of input 
cutting parameters to apply, during turning, on a 
typical machining centre - based on              
minimum energy use. The IEUOCPPTM 
establishes the cutting parameters combination 
based on minimum energy use of the machining 
process. 

 

 
 

Fig. 3. IEUOCPPTM equation functionality test results on the GA application platform. 
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The concatenation of MOGAP and VBA resulted 
in the IEUOCPPTM tool user interface presented 
in Fig. 4. Results of the projected machining 
process which can be read directly from the tool 
include the specific cutting energy, total energy 
use, actual cutting energy, the total and actual 
cutting power, energy efficiency, the cutting 
speed and feed rate which should be set on the 
CNC lathe machine, in order to achieve the 
energy outputs, are displayed. 
 

There are five (5) main sections on the 
IEUOCPPM tool user interface. The functional 
zones are explained as follows: 
 

Settings block: where input cutting parameters, 
cutting speed and federate constraining limits are 
set on the upper and the lower bounds. The 
feasible cutting parameter in each respective 
instance would be expected to take values 
between the bounds. The constraining input 
parameter ranges used in the experimental study 
were, respectively, cutting speed of 50 – 250 
m/min and feed rate of 0.1 – 0.3 mm/min; Action 
block: houses Execute Analysis, Clear Results 
button and Clear/Reset button; Performance 

block:  accommodate the coded programme for 
sub-routines and display the results on specific 
cutting energy as computed from the input 
equation and the energy efficiency of running at 
the displayed cutting parameters combination; 
Weights block: where weight assignments to 
each performance parameter are entered in 
accordance with the priority weight listing 
determined by the process planning requirement 
policy on the particular job task; Energy and 
Power Performance block: accommodates the 
sub-programmes and display Total Machining 
Energy, Actual Cutting energy, Specific Cutting 
Energy, the Actual Cutting Power and the Total 
Operating Power results. 

 
4.1 The Basic Operation Procedure of the 

IEUOCPPTM   
 
Upon successful logging in with the approved 
credentials onto the system, MATLAB Genetic 
Algorithm platform, the user is automatically 
presented with the user interface shown in  Fig. 
5, which require entries to be implemented as 
shown in the steps indicated in Fig. 6. 

 

 
 

Fig. 4. The IEUOCPPTM tool user interface developed 

 

 
 

Fig. 5. The implementation level IEUOCPPTM tool user interface 
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The simulation iteration keeps running until, 
despite change in the population size, the energy 
use and the predicted input parameter readings 
do not change anymore. Otherwise keep 
changing the population by a factor of, say, two. 
For example if previous iteration was ran at a 
population of 30. The next iteration then must 
have respective successive population size of 
60, 120, 240, 480 etc. 

 
The typical performance parameter weights 
entered on the IEUOCPPTM platform is 
presented in Fig. 7. Tool wear, TW is considered 
the most essential parameter on the intended 
operation, is assigned a weight of 5, followed by 
the STP which is given a weight of 2. The rest of 

the parameters such as Fc, MRR and Ra are 
assigned an equal weight of 1. 

 
Fig. 8 displays the process running screen, 
before the optimum solution is attained and the 
performance parameter boxes are still empty. 

 
The process simulation run complete screen is  
displayed in Fig. 9, in which the output            
screen show the results of the performance 
parameters, indicating the projected machining 
energy  and power process use, the energy 
efficiency and the cutting parameters which 
should be set for the cutting process 
recommended as vc of 183.64 m/min and fn of 
0.298 mm/rev. 

 

 
 

Fig. 6. Protocol procedure of entries for applying the tool. 
 

 
 

Fig. 7. Weight assignment scores entered on the IEUOCPPTM user interface. 
 



 
 
 
 

Tayisepi et al.; J. Eng. Res. Rep., vol. 25, no. 10, pp. 226-242, 2023; Article no.JERR.106508 
 
 

 
235 

 

 
 

Fig. 8. Simulation run in progress screen image 
 

 
 

Fig. 9. Simulation run, complete, image of the IEUOCPPTM displaying results. 
 

4.2 Case Study Example Practical 
Application of the IEUOCPPTM  

 
Equations 1 to 5 model the performance 
parameter functions which impact on energy use. 
These model performance bounds of the 
physical mechanical phenomena which happen 
concurrently during the machining process. 
Establishing their combined impact on energy 
use as they arise is important. Practically, in real 
life operation there is need to weigh more on a 
particular performance parameter in comparison 
to others, dependent on the machining 
circumstances. For instance an urgently required 
order delivery may prompt that MRR be fulfilled 
faster. Thus making MRR a dominant factor, 
however whose fulfilment would be accompanied 
by high TW and higher cutting forces, Fc. In 
essence, there could be need to strike a balance 
between achieving these two contrasting 
performance objectives (high MRR and low TW) 
by suitably weighting these performance 
parameters on the integrated energy use 
efficiency and optimisation platform. As changes 
are made to the weight assignment of particular 
performance parameters. Subsequent to these 
respective weighting assignment, the total 
energy (y) consumed as well as the input fn and 

vc values change. The intent is to optimise 
energy use as the performance parameters are 
achieved.  
 
Typical example case study application situations 
of the modelling tool, used in the machining 
planning of Ti6Al4V, are given in Fig.s 10 and 11.  
Examples of different process scenarios, each 
with an applicable weights set, are shown. Fig. 
10 represent the simulation results of machining 
operation focused on the intention to achieving 
optimal energy efficiency when material removal 
rate is considered the most weighty process 
parameter. This could be typical for a situation 
where turnaround time is of major concern for 
proximate product delivery or avoiding downtime 
due to part unavailability. Material removal rate is 
thus assigned a ranking weight of 6, from the 
weighting range of 0 to 10 based on the process 
of judgemental weighting. In this instance the 
other parameters are considered as not very 
significant and are assigned weights of 0. The 
results displayed on the model tool show that the 
specific cutting energy (objective function) would 
be 71 J/mm3, the cutting speed to achieve that 
be set at 190.6 m/min and the feed rate is 0.26 
mm/rev. An energy efficiency of 18.2% is also 
predicted. 
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Fig. 10. IEUOCPPTM simulation run focused on MRR 
 

The results of simulation, presented in Fig. 12, 
represent machining scenario intended to obtain 
optimal energy efficiency when cutting force is 
contemplated as the most significant process 
parameter. Cutting forces could be significant for 
machining accuracy, tool/workpiece interface 
dynamic effects and machine tool rating or 
capacity. Cutting force is therefore assigned a 
weight of 6 whilst the other parameters are 
considered insignificant and given weights of 0. 
The indicated energy efficiency for the optimum 
cutting force is predicted at a cutting speed of 
53.7 m/min and feed rate of 0.3 mm/rev. This is 
significantly less cutting speed than the speed 
predicted for optimal material removal rate 
above.  However, a similar but slightly higher 
energy efficiency of 19.6% is also predicted. 
 
Simulation results of a case where tool wear - 
TW, followed by segmentation teeth pitch - STP 
are considered as the most significant process 

parameters are presented in Fig. 12.   TW is 
assigned a ranking weight of 5 whilst STP is 
assigned a weight of 2. The rest of the other 
response parameters were considered of equal 
lower level influence and were assigned a 
ranking weights of 1. In this instance STP is 
deemed more significant than material removal 
rate, cutting force and surface roughness 
because it may be effectively employed as a 
process evaluation parameter. Chip 
segmentation impact on the visual appearance of 
the chip which may be effectively used to 
evaluate the current state of the cutting process. 
A highly segmented chip is associated with more 
efficient energy use [25]. The optimum feed rate 
and cutting speed for best efficiency (17.9%) in 
this machining scenario are, respectively 0.29 
mm/rev and 178.2 m/min. This situation could 
typically be required where cutting tool cost is 
prohibitive or their availability is not readily 
assured. 

 

 
 

Fig. 11. IEUOCPPTM simulation run image focused on cutting forces, Fc 
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Table 3. Validation test results of the IEUOCPPTM 
 

Most important 
performance parameter   

Determined input process parameter settings and response Variability between 
Simulation  and 
experiment  result  

Predicted optimum input parameters Response 
parameter units 

Optimum value 

 vc (m/min) fn (mm/rev) Model Case study 
Experiment 

Material removal rate 
(MRR) 

 
190.611 
 

 
0.257 

SE (J/mm3) 71 66.9  
9.055% ETME (J) 221 074 208310 

 
Cutting force Fc 

53.7 0.3 SE (J/mm3) 1042 1020  
2.1% ETME (J) 378 088 370 148 

Segmentation teeth pitch 
(STP) 

165.43 0.2632 SE (J/mm3) 606 658 (9%) 
ETME (J) 250 504 272 047 

Surface roughness (Ra) 186.24 0.2092 SE (J/mm3) 163 170.498 (5%) 
ETME (J) 231 092 241 722 

Cutting force (Fc) and Tool 
wear (TW)  

234.23 0.3 SE (J/mm3) 999 929 7.0% 
ETME (J) 154 924 144 081 

Segmentation teeth pitch 
(STP ) and Tool wear (TW)  

178.23 0.2986 SE (J/mm3) 1068 1066.83 18% 
ETME (J) 274 545 224 298 
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Table 4. IEUOCPPTM application instances in machining business 
 

Performance parameter 
emphasised during machining  

Explanation Applied when dealing with 

Tool wear TW Minimising tool wear and energy use 
optimisation 

High tool costs or challenging availability of replacement tools reducing 
escalated energy costs. 

Chip segmentation teeth pitch STP Optimum energy use observed through 
efficient morphology of the chips removed.  

Machining efficiency interpreted through chip morphology. Cyclic force 
frequency determination from chip morphology. 
Assessment of cutting progression to curtail surface microstructure 
alteration through excessive heating interpreted through chip colour 
changes. High energy costs. 

Material removal rate MRR Achieving maximum material removal rate 
with optimal energy use. 

Desiring to supply customer order timeously through high performance 
machining. Dealing with high energy costs and intending to achieve 
tool life longevity to contain cutting tool costs. 

Cutting force Fc Optimum energy use for minimum cutting 
forces. 

Minimise costly and excessive machine loading. Contain high energy 
costs and curtail chip load on the cutting tool. Processes state 
monitoring. 

Surface roughness Ra Optimal energy use with desirable targeted 
intentional average surface roughness 

Handling surface roughness sensitive parts or components of high 
surface integrity requirements and high energy cost challenge. 
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Fig. 12. Equal weight assignments for Ra, MRR and Fc and more emphasis on TW and STP 
 
The case study results presented above show 
that energy efficiency of between 13 to 30 % 
were obtained in all the IEUOCPPTM simulation 
machining case applications. This level of 
machining energy efficiency results well agree 
with reported earlier findings in the literature [14]. 
The optimum cutting parameters vc and fn, were 
predicted by utilising the model.  
 

4.3 Model Validation Results 
 
Several scenario case application simulation 
runs, of the energy use optimisation model were 
completed for different weighting combination 
sets. Beyond that it was considered prudent to 
carry out physical machining confirmation 
experiments [13,26], in order to determine the 
validity of the IEUOCPPTM model. Several 
confirmation experiments were carried out to 
establish the real performance of the tool when 
compared to live practical machining, based on 
the model outputs. The feed rate and cutting 
speed results for each machining scenario, as 
predicted by the tool, were employed as the input 
parameters for conducting validation physical 
machining tests.  The validation experiments 
setup was similar to the original experimental 
work initially conducted as explained above, save 
for the fact that the input parameters were now 
picked based directly on the model tool predicted 
results. In a similar type of study, focused on 
energy consumption prediction during stainless 
steel milling, Shuo, et al., [27] utilised case study 
validation experiments to confirm functionality of 
the developed prediction models. Table 3 
present results of the validation experiments 

conducted in this study. Energy outputs, 
respectively, specific cutting energy (SE) and 
total machining energy (ETME), as predicted by 
the model tool were directly compared with their 
equivalent values as obtained experimentally. 
The obtained results were consistent with the 
research findings by Lu, et al., [28] who 
established that energy efficiency of 
manufacturing can significantly be improved by 
effective cutting parameter selection. Generally, 
there was good fidelity of the results of the 
validation experiments with the model tool 
predicted results. Maximum variation obtained 
was 8.6% for all the case scenarios simulated 
and confirmed experimentally. 

 
4.4 The IEUOCPPTM Model Typical 

Business Application Cases  
 

The IEUOCPPTM could be employed in dry 
running typical machining production process 
planning. Machining business scenarios that 
process planners would consider to evaluate the 
business case for a specific cutting strategy, to 
optimise energy use within certain constraints, 
are presented in Table 4. 
 

5. CONCLUSION 
 

Process planning stage energy use forecasting 
and prediction, of the optimum input cutting 
parameters combination to employ, in order to 
minimise energy consumption is vital. The design 
and development of the IEUOCPPTM in 
MATLAB 13a multi-criteria GA platform 
integrated with VBA was presented in this 
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research. The tool design and development 
result was presented as a, VBA generated, 
display or dashboard (Guided user interface - 
GUI) on which the user enter the performance 
parameters, weight of the machining process 
performance responses. Operation of the model 
tool is also briefly explained. Typical results, 
showing the functionality of the IEUOCPPTM, 
are illustrated on the screen prints presented in 
the write-up. The tool was designed for 
application in the cutting parameters planning of 
grade 5 titanium alloy materials machined under 
the cutting conditions as was expounded in this 
experimental study.  After the extensive 
simulation and validation tests of the model, 
conclusion was reached that, for the Ti6Al4V 
material in question, and for the range of feeds 
and cutting speeds evaluated the model 
predicted an acceptable approximation of the 
machining input parameters. Such that it may be 
confidently used as a prediction/forecasting tool 
to assist during process planning of machining 
strategies where process energy use is 
significant consideration. Applicability of the tool, 
in predicting cutting parameters, however is 
limited to the material and conditions validated by 
the experimental study. Further studies and tests 
may need to be conducted if there is 
consideration of extensional application of this 
novel tool in predicting the cutting conditions for 
different materials and on machines which are 
not CNC lathe.  
 

Real world machining case studies were utilised 
to prove the functional validity of the designed 
and developed model tool and the results 
comparison between the simulation and 
experimental machining showed that infeasible 
machining strategies could be avoided by 
employing the tool. The limitation of the tool, 
however, is that although generally, its designing 
considered the constraints placed on the 
selection of machining parameters at planning 
stage, aspects that may be predicated on a 
variety of physical exigencies in the machining 
process are hardly addressed. 
 

An effective tool for systematically and 
consistently predicting cutting parameters during 
lathe machining process planning had been 
developed and functionally tested, and presented 
in this research. Further research entail the 
requirement to developing a generic machining 
process planning tool applicable for use in 
determining process parameters of varied 
machine tools such as to include milling, 
grinding, shaping etc. 
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