
World Journal of Mechanics, 2014, 4, 1-11 
Published Online January 2014 (http://www.scirp.org/journal/wjm) 
http://dx.doi.org/10.4236/wjm.2014.41001  

OPEN ACCESS                                                                                        WJM 

Theoretical Analysis of Mechanical Vibration for Offshore 
Platform Structures 

Saeed A. Asiri1, Yousuf Z. AL-Zahrani2 
1MENG Graduate Office, Department of Production and Mechanical Systems Design,  

Engineering College of King Abdulaziz University, Jeddah, KSA 
2Department of Production and Mechanical Systems Design,  

Engineering College of King Abdulaziz University, Jeddah, KSA 
Email: saeed@asiri.net, eng.yousuf@gmail.com 

 
Received September 19, 2013; revised October 17, 2013; accepted November 15, 2013 

 
Copyright © 2014 Saeed A. Asiri, Yousuf Z. AL-Zahrani. This is an open access article distributed under the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 
properly cited. In accordance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the 
owner of the intellectual property Saeed A. Asiri, Yousuf Z. AL-Zahrani. All Copyright © 2014 are guarded by law and by SCIRP as 
a guardian. 

ABSTRACT 
A new class of support structures, called Periodic Structures, is introduced in this paper as a viable means for 
isolating the vibration transmitted from the sea waves to offshore platform structures through its legs. A passive 
approach to reduce transmitted vibration generated by waves is presented. The approach utilizes the property of 
periodic structural components that create stop and pass bands. The stop band regions can be tailored to cor-
respond to regions of the frequency spectra that contain harmonics of the wave frequency, attenuating the re-
sponse in those regions. A periodic structural component is comprised of a repeating array of cells, which are 
themselves an assembly of elements. The elements may have differing material properties as well as geometric 
variations. For the purpose of this research, only geometric and material variations are considered and each cell 
is assumed to be identical. A periodic leg is designed in order to reduce transmitted vibration of sea waves. The 
effectiveness of the periodicity on the vibration levels of platform will be demonstrated theoretically. The theory 
governing the operation of this class of periodic structures is introduced using the transfer matrix method. The 
unique filtering characteristics of periodic structures are demonstrated as functions of their design parameters 
for structures with geometrical and material discontinuities, and determine the propagation factor by using the 
spectral finite element analysis and the effectiveness of design on the leg structure by changing the ratio of step 
length and area interface between the materials is demonstrated in order to find the propagation factor and fre-
quency response. 
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1. Introduction 

Offshore construction is the installation of structures and 
pipelines in a marine environment for the production and 
transmission of oil and gas (see Figure 1). 

Construction in the offshore environment is a danger-
ous activity and where possibly the construction is mod-
ular in nature with the individual modules being assem-
bled on shore and using a Crane Barge to lift the modules 
into place. Offshore structures can be designed for in-
stallation in protected waters, such as lakes, rivers, and  

 
Figure 1. Oil and gas offshore platform. 
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bays or in the open sea, many kilometers from shorelines. 
The oil and gas exploration platforms are the best exam-
ple of offshore structures that can be placed in water 
depths of 2 kilometers or more. These structures may be 
made of steel, reinforced concrete or a combination of 
both. They are more than 6500 offshore installations around 
the world in 53 countries approximately (see Figure 2). 
Offshore platforms have many uses including oil explo-
ration and production, navigation, ship loading and un-
loading, and supporting bridges and causeways. Offshore 
oil production is one of the most visible of these applica-
tions and represents a significant challenge to the design 
engineer. These offshore structures must function safely 
for design lifetimes of twenty years or more and are sub-
ject to very harsh marine environments. Some important 
design considerations are peak loads created by hurricane 
wind and waves, fatigue loads generated by waves over 
the platform lifetime and the motion of the platform. The 
platforms are sometimes subjected to strong currents which 
create loads on the mooring system and can induce vor-
tex shedding and vortex induced vibration [1]. 

Offshore platforms suffer from different kinds of me-
chanical vibrations due to exposure to water waves, wind, 
severe environmental conditions, helicopter landing, im-
pact boats, the intensity level of consequences of failure 
machinery etc. One of the major sources of such me-
chanical vibrations on offshore platforms is the impact of 
sea waves on to the platform’s legs. These mechanical 
impacts are transferred through the platform’s legs from 
the bottom up to the highest top end of such a structure, 
which consist of employee’s offices, accommodations, 
measurement instruments, piping, and heavy machinery. 
The aim will be minimized these vibrations on offshore 
platforms caused by the impact of the sea wave transmis-
sion to the offshore platforms through the platform’s leg 
structure; we try to make a good solution to provide a 
better isolation of mechanical vibration by using the pe-
riodic structure technique [1]. 

 

 
Figure 2. Examples of offshore rigs, drilling and production 
platforms. 

2. Literature Review 

The basic idea underlying the whole concept of periodic 
structures is that when a wave is traveling in a medium 
and meets a transition in that medium characteristic, part 
of it will propagate through the new medium and another 
part will reflect into the old one. In a regular structure the 
wave is expected to travel without any change until it 
reaches the boundaries of that structure, but when the 
structure exhibits a change it its geometry and/or material 
properties, the incident waves will divide as described 
before. A part of the reflected wave will interact with the 
incident wave in a manner that will characterize the in-
terference. When constructive interference occurs, the 
frequency is characterized by being the pass band of the 
structure; while, if they destructively interfere, the fre-
quency ischaracterized by being the stop band of the 
structure. If the structure setup is repeated for several 
times, it is known a periodic structure. The destructive 
effects will show more significantly when the repetitions 
of the structural unit increase in number because as the 
part of the wave that propagates incorporates other simi-
lar changes in the medium, another part of it is destructed 
and so on. 

In his paper reviewing the research performed in the 
area of wave propagation in periodic structures, Mead [2] 
defined a periodic structure as a structure that consists 
fundamentally of a number of identical structural com-
ponents that are joined together to form a continuous 
structure. Examples of periodic structures can be seen in 
satellite solar cells, wings and fuselages of aircraft, petro-
leum pipelines, railway tracks, and many others. An illu-
stration. 

If a simple periodic bar is presented in Figure 3(a) 
with geometrical discontinuity and Figure 3(b) with ma-
terial discontinuity. 

In general, when a wave propagating in a structure en-
counters a change in the geometry and/or the material 
properties, the wave is split into two components; a prop- 

 

 
Figure 3. Typical examples of periodic structures. 

 

          

 

       

(a) – with geometrical discontinuity 

(b) – with material discontinuity 
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agating component and a reflected component. The re-
flected part interacts with the propagating part in a man-
ner that is decided by the phase difference between them. 

Studies of the characteristics of one-dimensional peri-
odic structures have been extensively reported [1-14]. These 
structures are easy to analyze because of the simplicity of 
the geometry as well as the nature of coupling between 
neighboring cells. 

Cremer [15] presented a derivation of an expression 
that could describe the steady state vibration of an infi-
nite beam uniformly supported on impedances. That for-
mulation allowed for the analysis of the structures with 
fluid loadings easily. Later, Gupta [16] presented an anal-
ysis for periodically-supported beams that introduced the 
concepts of the cell and the associated transfer matrix. 
He presented the propagation and attenuation parameters’ 
plots which form the foundation for further studies of 
one-dimensional periodic structures. Faulkner and Hong 
[17] presented a study of mono-coupled periodic systems. 
Their study analyzed the free vibration of the spring- 
mass systems as well as point-supported beams using 
analytical and finite element methods. 

Mead and Yaman [18] presented a study of the re-
sponse of one-dimensional periodic structures subject to 
periodic loading. Their study involved the generalization 
of the support condition to involve rotation and displace-
ment springs as well as impedances. The effects of the 
excitation point as well as the elastic support characteris-
tics on the pass and stop characteristics of the beam are 
presented. Later, Mead, White and Zhang [19] proved 
that the power transmission in both directions of a simply 
supported beam excited by a point force was equal re-
gardless of the excitation location. 

The most common damping technique studied in pe-
riodic structures was through the introduction of random 
disorder. The concept of wave localization phenomenon 
was introduced to the study of mechanical wave propa-
gation by Kissel [20] through the use of the transfer ma-
trix approach. Using the concept of periodic structures, 
Ruzzene and Baz [21] used shape memory inserts into a 
one dimensional rod, and by activating or deactivating 
the inserts they introduced a periodicity which in turn 
localized the vibration near to the disturbance source. 
Later, they used a similar concept to actively localize the 
disturbance waves traveling in a fluid-loaded shell [22]. 
Asiri et al. [23] emphasized is placed on developing a 
new class of these periodic structures called active peri-
odic struts, which can be used to support gearbox sys-
tems on the airframes of helicopters. When designed 
properly, the passive periodic strut can stop the propaga-
tion of vibration from the gearbox to the airframe within 
critical frequency bands, consequently minimizing the 
effects of transmission of undesirable vibration and sound 
radiation to the helicopter cabin. The theory governing  

the operation of this class of passive periodic struts is 
introduced and their filtering characteristics are demon-
strated experimentally as a function of their design pa-
rameters. Asiri [24] presented a new class of periodic 
mounts for isolating the vibration transmission from ve-
hicle engine to the car body and seats. Later, Asiri et al. 
[25] studied experimentally the dynamic response of 
offshore platforms with periodic legs while this paper is 
an analytical study of the same model. 

3. A periodic Beam Model 
The periodic structures are made of the assemblies of the 
periodic cells shown in Figure 4. Each of these unit cells 
consists of two substructures a and b which can be either 
of the same material with different cross sections Figure 
4(a), made of different materials with the same cross 
section Figure 4(b) and both made of different materials 
with the different cross sections, Figure 4(c). 

For a beam shown in Figure 5, the equation of motion 
(EOM) may be shown to be considering a beam section 
with uniform properties 

0EI Aν ρ ν′′′′ + =                (1) 

Which has the solution 

( ) 1 2 3 4, e e e eikx ikx kx kxv x a a a aω − −= + + +     (2) 

The nodal displacements of the element are given by 
 

   
(a)                          (b) 

 
(c) 

Figure 4. Unit asymmetric CELLS of periodic structure. 
 

 
Figure 5. Shaft geometry. 
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The evaluating the solution at the left and right nodes, 
Paδ =                   (4) 

In Figure 6, Where ν and θ define the lateral dis-
placement and rotational displacement with subscripts L 
and R denoting the left and right sides of the cell. Also, F 
and M define the nodal force and the nodal momentwith 
subscripts L and R denoting the left and right sides of the 
cell. 

Apply Boundary Conditions to evaluate the P 
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The nodal forces and moments are 

[ ]{ }F aφ=                 (7) 
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           (8) 

{ } [ ]{ }F K δ=                (9) 

Thus, the stiffness matrix [K] is then given by 

[ ] [ ] 1K Pφ − =                (10) 

The forces at the ends of the element are related to the 
displacements by the relation 

[ ]

L L

L L

R R

R R

F

M
K

F

M

ν

θ

ν

θ

   
   
   

=   
   
   
   

            (11) 

Where, 
 

 
Figure 6. The dynamics of plain beam sub-cell. 
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When considering a series of cells, one may derive a 
relation between consecutive left-ends of elements (I to i  
+ 1), Figure 7. It is given by 
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By substituting the Equation (16) in Equation (13) 
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Figure 7. Interaction between two consecutive cells. 
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Then, the transfer matrix, T; may be constructed using 
the transformation 

1 1
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By substituting the Equations (4-32) in Equations (4- 
28) 
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Or 
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Thus, the eigenproblem is formulated as 
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Combining Equations (22) and (23) gives: 

1i iY Yλ+ =                  (24) 

The eigenvalues of T occur in pairs iλ  and 1
iλ
− , 

which correspond to the attenuation factor e µ− . Com-
bining the eigenvalue pairs results in a relation by which 
one may determine µ . By definition of the hyperbolic 
cosine, 

( )e e 2coshµ µ µ−+ =            (25) 

Or 
1

1 1e ecosh cosh
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i i
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µ
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( )e e iα βµλ += =              (27) 

Significant Meaning of the Eigenvalues λ and λ−1 of 
[T] 

Combining Equations (26) and (27) gives: 

1K KY Yλ+ =                 (28) 

Indicating that the eigenvalue λ of the matrix [T] is the 
ratio between the state vectors at two consecutive cells. 

Hence, one can reach the following conclusions: 
If |λ| = 1, then YK+1 = YK and the state vector propagates 

along the structure as is. This condition defines a “Pass 
Band” condition. 

If |λ| < 1, then YK+1 < YK and the state vector is atte-
nuated as it propagates along the structure. This condition 
defines a “Stop Band” condition. 

A Further explanation of the physical meaning of the 
eigenvalue λ can be extracted by rewriting it as: 

e e iµ α βλ += =               (29) 
Where µ is defined as “Propagation constant” which is 

a complex number whose real part (α) represents the loga- 
rithmic decay of the state vector and its imaginary part (β) 
defines the phase difference between the adjacent cells. 

Therefore, the equivalent condition for the pass and 
stop bands can be written in terms of the propagation 
constant parameter (α and β) as follows: 

1) If α = 0 (et al. µ is imaginary), then we have “Pass 
Band” as there is no amplitude attenuation. 

2) If α ≠ 0 (et al. µ is real or complex), then we have 
“Stop Band” as there is amplitude attenuation defined by 
value of α. 

The association of the propagation factor to pass and 
stop bands can be illustrated in Figure 8. 

Figure 9 displays the decay and phase components of 
the corresponding Propagation Constant µ. 

Furthermore, Figure 9(b) demonstrates clearly the 
“pass and stop bands” are developed. Note that the im-
aginary part of the propagation constant (µ) which quan-
tifies the phase difference between the wave propagation 
at adjacent cells is shown to increase gradually from 0 to 
π. With phase difference between 0 and π, waves will 
propagate along the periodic structure indicating a “Pass 
Band”. But, when the phase difference becomes π, de-
structive interference occurs between adjacent cells and 
wave propagation along the structure is completely stopped 
indicating “Stop Band”. 

4. Results 
To better understand and demonstrate the characteristics 

 

 
Figure 8. Propagation factor block diagram. 

Stop 
Band

Pass 
Band

AttenuationPropagation

real imagµ µ µ= +

0realµ =



S. A. ASIRI, Y. Z. AL-ZAHRANI 

OPEN ACCESS                                                                                        WJM 

6 

 
(a) 

 
(b) 

Figure 9. Stop and pass bands of a periodic structure; (a) 
Real part of propagation constant; (b) Imaginary part of 
propagation constant. 

 
of periodic structures, a MATLAB program was used for 
the cell geometry shown in Figure 5, to determine the 
attenuation characteristics. The materials were selected 
as Aluminum (a) with E = 70 GPa and ρ = 2700 Kg/m3 
and Special Rubber, Mearthane Durethane (b) with E = 
0.000345 GPa and ρ = 1150 Kg/m3, the lengths La and Lb 
were chosen to be 30 mm, 10 mm respectively, where the 
La, Lb and LC denote the length of the Aluminum material, 
a length of Rubber material and the length of one cell 
respectively. Also Da and Db were chosen to be 50 mm 
and 44 mm respectively, Where the Da and Db denote the 
diameter of the Aluminum material and Db a diameter of 
Rubber material in the periodic structure. The propaga-
tion parameter for a periodic beam cell obtained is shown 
in Figure 10, and the magnitude of Frequency Response 
Function (FRF) shown in Figure 11. 

In three cases design and choosing of periodic struc-
ture and implementing by MATLAB program as follows: 
Fixed area Interference (Da/Db) and changing the length 
of the Cell (Lb/LC), Changing area Interference (Da/Db) 
either (solid section or hollow section) and fixed length 
of the Cell (LC) and Changing both the area Interference 
(Da/Db) between materials and the length of the Cell 
(Lb/LC). 

Figures 12 through 15 show the effect of the changing 
geometry of the cell, by increasing and decreasing the 
length lab, on the width and intensity of the stop band of 
the periodic structure. Fixed Area Interference, (Da/Db) 
and changing in the length of the cell, (La/Lb). As shown 
in Table 1. 

Figures 16 through 20 show the effect of geometry of 
the cell, by changing Area Interference (solid section and  

 
Figure 10. Propagation parameter for a periodic beam cell: 

 near field,  propagating. 
 

hollow section) between materials (Aa/Ab) and fixed the 
length of cell (La/Lb). As shown in Tables 2-4). 

The Figures 21 through 24 indicate that increasing the 
diameter ratio at the discontinuity (Da/Db) results in im-
proving the attenuation characteristics of the structure 
particularly over a wide frequency range. Increases the 
amplitude of decaying factor, increase the no. of stop 
band and increase the cut-off frequency. 

5. FEM 
This section exhibit the result of periodic structures with 
geometrical and material discontinuity by using finite ele- 
ment method, for a material propertiesshown in Table 5. 

5.1. Periodic Structures (Aluminum and Plastic) 

The frequency response of periodic structure composed 
of 3-, 5-, and 7-cells as shown in Figure 23, the periodic 
beam composed of greater numbers of cell exhibit the 
attenuation regions more clearly. 

5.2. Periodic Structures (Aluminum and Rubber) 

This material is very weak and more effective to atte-
nuate the propagation factor over a wide frequency range 
and has a damping ratio 0.5, It’s clear from Figure 24 the 
frequency responses almost zero. 

6. Conclusions 
This dissertation has presented the fundamentals govern-
ing the operation of a new class of structures for the legs 
of offshore platform structure which are exposed to the 
sea waves. The proposed new class of structures as it was 
investigated to be periodic in nature; it generated unique 
dynamic characteristics that make the structures act as  
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Figure 11. Magnitudes for 1, 3 and 5 cells structures. 

 
mechanical filters for wave propagation. The effect of 
such unique characteristics of this class of structures in 
controlling the wave propagation from the sea wave to 
offshore platform structures was demonstrated theoreti-
cally in the spectral domains. 

The theoretical equations that govern the operation of  

 

 
Figure 12. A schematic sketch and stop-pass bands of the 
periodic structure, (Lb/LCell = 0.08). 

 

 
Figure 13. Stop-pass bands of the periodic structure, (Lb/LCell 
= 0.2). 

 
this class of periodic structures are developed using the 
transfer matrix method. The basic characteristics of the 
transfer matrices of periodic structures are presented and 
related to the physics of wave propagation along these 
structures. The unique filtering characteristics of the pe-
riodic structures are demonstrated for various structure 
configurations. The effect of the design parameter of the 
structures on their dynamic behavior is investigated for 
structures with geometrical and material discontinuities 
at three cases: 

Fixed area Interference (Da/Db) and changing length of 
the Cell (Lb/LC), changing area Interference (Da/Db) ei- 
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Figure 14. Stop-pass bands of the periodic structure, (Lb/LCell 
= 0.43). 

 

 
Figure 15. Stop-pass bands of the periodic structure, (Lb/LCell 
= 0.54). 

 
Table 1. Fixed area Interference and change the length of 
cell (LC). 

No. Da, 
mm 

Db, 
mm 

La, 
mm 

Lb, 
mm 

LCell, 
mm Fr = La/Lb Lb/LCell 

1 60 45 60 5 65 12 0.08 

2 60 45 60 15 75 4 0.2 

3 60 45 60 45 105 1.33 0.43 

4 60 45 60 70 130 0.86 0.54 

 
ther (solid section or hollow section) and fixed length 
ofthecell (LC) change both the area Interference (Da/Db) 
between materials and length of the Cell (Lb/LC). 

The periodic structures have been shown to be an ex-
tremely effective means to filter the vibration transmis-
sion through the structures. It is found that the passive 
periodic structures can attenuate the propagation of waves  

 

 
Figure 16. A schematic sketch and stop-pass bands of the 
periodic structure, (Da/Db = 0.87). 

 

 
Figure 17. Stop-pass bands of the periodic structure, (Da/Db 
= 1.82). 

 

 
Figure 18. Stop-pass bands of the periodic structure, (Da/Db 
= 2.5). 
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Figure 19. A schematic sketch and stop-pass bands of the 
periodic structure, (Da/Db =1.08). 

 

 
Figure 20. Stop-pass bands of the periodic structure, (Da/Db 
= 6.67). 

 
Table 2. Change areas (solid section) and fixed the length of 
cell (LC). 

No. Da, 
mm 

Db, 
mm Da/Db Aa/Ab AContact 

La, 
mm 

Lb, 
mm 

1 40 46 0.87 0.76 1256 40 10 

2 40 22 1.82 3.31 380 40 10 

3 40 16 2.50 6.25 201 40 10 

Table 3. Change areas (hollow section) and fixed the length 
of ell (LC). 

No Da, 
mm 

Db, 
mm Db2 Da/Db Aa/Ab AContact 

La, 
mm 

Lb, 
mm 

1 40 40 3 1.08 1.01 1249 40 10 

2 40 36 30 6.67 4.04 311 40 10 

 
Table 4. Change areas and also change the length of cell 
(LC). 

Da Db1 Db2 Da/Db Aa/Ab AContact La Lb Lcell Lb/LCell 

40 16 8 5.00 8.33 151 40 10 50 0.20 

40 16 0 2.50 6.25 201 50 13 63 0.21 

 

 

 
Figure 21. Propagation factor with frequency response of 
periodic structure at area contact 151 mm2. 

 
over a broad frequency band extending in most of the 
considered cases between (0 - 3000) and (0 - 10,000) Hz. 

The periodic beams were fabricated at different cells 
number to provide a better understanding of wave me-
chanics by using Finite Element Method. As a result in- 
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Figure 22. Propagation factor with frequency response of 
periodic structure at area contact 201 mm2. 

 

 
Figure 23. The frequency response of periodic structure 
(Aluminum and Plastic) at 3, 5 and 7 cells. 

 
Figure 24. The frequency response of periodic structure 
(Aluminum and Rubber) at 3, 5 and 7 cells. 

 
Table 5. Material properties. 

Material Density Modulus  
of Elasticity Wave Speed 

Aluminum 2700 kg/m3 71 Gpa 5128 m/s 
Plastic 1520 kg/m3 3 Gpa 1405 m/s 

MearthaneDurethane 1150 kg/m3 0.000345 Gpa 17/s 

 
creasing the destructive interference phenomena by in-
creasing the number of cells, causes more attenuation of 
waves. 

This approach is applicable for wide applications, any 
system exposed to the vibrations by design and imple-
menting (tailor) the proper solution to provide attenua-
tion phenomenon. 
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