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ABSTRACT 
 

Aims: Use deep learning online resources to identify and pick single particle views in micrographs 
to enable high quality three-dimensional reconstruction for macromolecular structure determination. 
Study Design: Using the keyhole limpet hemocyanin dataset, a public cryo electron microscopy 
(cryo-EM) dataset containing two dimensional projections of the particles in two views (top and 
side) in several orientations, and a recent deep learning algorithm made available in a GitHub 
repository, we design the procedure to pick both views with high degree of confidence, using only 
online resources and running in a standard laptop. 
Methodology: The defocus images are subject to a pre-processing stage to increase its contrast 
and ameliorate its radiometric range. This is followed by a training stage, that needs a few images 
annotated with examples of both views of interest – top and side view – identified using user-
friendly tools available online. The annotated subset of images is divided for train and validation 
purposes, and the algorithm runs to produce a set of weights, that can be used for inference in any 
other similar image, locating all the instances of the particles in both views in seconds. 
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Results: From the 57 images used to evaluate the performance of the algorithm, 63% had both 
precision and recall better than 90%. The global precision on the test dataset was 91.6% and recall 
98.1%. Considering each view separately, top views detections attain a precision of 91.7%, with 
100% for recall; side views recall remains on 96.7%, while precision attain 91.5%. 
Conclusion: Deep learning methods are a promising tool for extracting large amounts of single 
particle views as needed for quality 3D structure reconstruction, as they can be implemented with 
minimal computer skills and trained to achieve state-of-the-art automatic discrimination, as 
described in this study. 
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1. INTRODUCTION 
 
High resolution cryo-EM reconstruction of a 
molecular complex requires a huge number of 
single particles collected from micrographs, 
because low contrast and contaminated and 
noisy backgrounds are characteristics of these 
images inherent to the low electron dosage used 
to avoid damage to the targeted molecules [1]; 
the number of particles required for a 
reconstruction to approximate atomic resolution 
[2-3] are in the hundreds of thousands.  
 
In the last 20 years several approaches have 
been developed to overcome this situation and 
achieve the desirable particle numbers [4-6], 
from template matching techniques [7-9] in direct 
or Fourier space to reference-free methodologies 
requiring only the size range of the particles [10] 
involved. Since the onset of machine learning 
techniques, deep learning with its 
multidimensional layered feature extraction came 
to the rescue. It’s broad and successful 
application in other domains of known difficulty 
(speech recognition emotions [11], facial 
expression [12], specific video surveillance [13]) 
soon bring it to almost all fields of biology [14-15] 
and biomedical imagery [16]. Deep learning 
technology has been used to solve complex 
problems in microbiology such as predicting drug 
targets or vaccine candidates, diagnosing 
microorganisms causing infectious diseases, 
classifying drug resistance against antimicrobial 
medicines [17], predicting disease outbreaks, 
exploring microbial interactions, and detecting 
viral plaques, and has been applied to a large 
number of microorganisms, such as viruses, 
bacteria, fungi, and parasites [18]. 
 
Deep learning is a subset of machine learning 
(ML) methods that has become popular as the 
availability of data has greatly increased due to 
automation and digitization, and standard laptops 
have become available with high processing 
power and large storage capacity, as well as 

graphics processing units (GPU) that allow 
parallel processing: all these factors have 
contributed to allowing intensive training                           
of deep learning models on standard computers, 
even if tens of hours are still involved. The 
possibility of using cloud processing facilitates 
the process when the time factor becomes 
critical. 
 
Our motivation is to show how easy can be 
nowadays to establish a processing chain to 
attain results using the last evolution of deep 
learning algorithms, as both the image datasets 
and the software become available online and 
can be used by anyone with a minimum of 
resources – a standad laptop and, in our                  
case, an image processing environment        
(Matlab) for which open-source alternatives also 
exist. 
 

2. MATERIALS AND METHODS  
 
The images are part of the keyhole limpet 
hemocyanin (KLH) public dataset [19] that can 
be downloaded online. With a pixel size of 2.2Å, 
the images were acquired with a Philips CM200 
TEM equipped with a 2Kx2K CCD Tietz camera, 
at a nominal magnification of 66,000x and a 
voltage of 120 KeV.  
 
The algorithm used is one of the latest 
developments in one stage algorithms based on 
convolutional neural networks (CNNs), the 5th 
version since the introduction of the concept You 
Only Look Once (YOLO) [20]. YOLO v5 was 
introduced in 2020 by a different developer and 
made publicly available in a GitHub repository 
[21].  
 
The algorithm has been retrained for the task 
using a transfer learning technique: since many 
basic features are common to all detection 
problems (edges, contrasts, forms, etc.) an 
already heavily trained network can be used to 
implement a new problem. The new 
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discriminators will define the last layers of the 
CNN, tunning the detector according to the 
details of the specific problem, while the basics 
defined by the first layers were robustly trained in 
big data sets like Common Objects in Context 
(COCO), with 80 classes and more than 200.000 
images annotated. Tools available online such as 
[22] allow to upload our own image data set, 
annotate each image, and download a set of text 
files with the corresponding annotations in a user 
defined format.  
 
The laptop used is equipped with dual                        
Core Intel i7-10750H processor, 16 GB SDRAM 
and an NVIDIA GeForce RTX 2060 Max-Q             
6GB.  
 
Using a Matlab environment, the 82 defocus 
images were resized in 1024x1024 tiles with a 
bicubic interpolation method and a pre-
processing stage has been implemented to 
reduce noise and increase radiometric contrast in 
each image (Fig. 1), with a 3-step procedure 
followed by normalization. 

The first step consists in a tunned wavelet filter 
build to suppress details, where a Daubechies 
wavelet of 15

th
 order was used in two levels of 

decomposition/reconstruction. A Wiener filter 
with a kernel of 9x9 pixels were applied to the 
result, and the last step was a contrast-limited 
adaptive histogram equalization parametrized 
with 4x4 tiles and a uniform distribution. 
 
The spread of the radiometry that can be 
observed in the histogram (Fig. 1, right column) 
after the pre-processing lead to an increase in 
contrast which is useful both for building a 
reference data set to evaluate the results and to 
the algorithm, as much more features become 
evident. 
 
A subset of 24 images was used to train the 
detector, splitted in 16 images for train and 8 for 
validation. An online tool [22] was used to 
annotate the 24 images, keeping in mind that all 
objects of interest of each class present in the 
image should be identified and that the boxes 
drawn around each object should include

  

     
 

(a) 
 

    
 

(b) 
 

Fig. 1. Original (a) and pre-processed (b) images, and corresponding histograms 
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minimal background. The algorithm’s data 
augmentation properties extend all the 
occurrences annotated to many viable 
possibilities in what concerns scale and 
orientation. We choose to include two classes in 
the train, the two views “Top” and “Side”.   
 

The 57 remaining images were used to evaluate 
the performance of the inference using the 
notions of Precision and Recall. Precision is 
defined as the percent of particles correctly 
classified among all the particles identified by the 
algorithm as positives, given by the quotient True 
Positives/(True Positives + False Positives). 
Recall refers to the percentage of positives 
correctly detected in the sum of all occurrences 
of real positives, and is given by the quotient 
True Positives/(True Positives + False 
Negatives). 
 

Detected particles overlapped/overlaid by any 
debris, particles with heavily damaged 
boundaries, aggregates, and side-view particles 
larger than 1.5 times normal size were 
considered false positives (Fig. 2).  
 

Particles whose detection failed, to be counted 
as false negatives, were particles with the 
boundary in good condition and without any 
overlapping exogenous material nor aggregated 
with any other particle. 
 

3. RESULTS AND DISCUSSION 
 

The train specifications include 1000 epochs and 
a batch size of 4, for an image size of 1024, and 
526 epochs were performed in 32.5 hours, 
before the "early stop" interrupts the execution, 
due to stability conditions being reached. Overall 

precision achieved was 0.916 and recall 0.878, 
with a mean average precision (mAP@0.5) of 
0.930. Individually, the “Top” class has better 
scores on precision (0.976), recall (0.987) and 
mAP@0.5 (0.993) than the "Side" class 
(precision: 0.856, recall: 0.770, mAP@0.5: 
0.866), which could be explained by the larger 
variety included in the side views. 
 
Inference over each image (1024x1024 pixels) 
with the weights issued by the train is achieved in 
2.8 s on the previously described laptop. The 
outputs consist of a classified image with all 
occurrences detected by the algorithm 
differentiated by class (as Fig. 2) in different 
colors, and a numerical output, considered for 
evaluation purposes as the number of true 
positives founded. Each classified image was 
analyzed to account for false positives and false 
negatives with the criteria mentioned above.  
 
From the 57 test images, 63% had both precision 
and recall better than 90%, and 25% had both 
metrics above 95% simultaneously. The number 
of false positives comes mainly from the side 
views; although we experimented in the sense of 
reducing to zero the scaling parameter available 
in the train specifications for data augmentation, 
the results were no better. The higher contrast of 
perfect top views account for the better scores of 
the class. 

 
The global precision on the test dataset was 
91.6% and recall 98.1%. Considering each class 
separately, top views detections attain a 
precision of 91.7%, with 100% for recall; side 
views recall remains on 96.7%, while precision 
attain 91.5%. 

 

 
 

Fig. 2. Example of detections considered false positives - bottom left corner, one side view 
larger than normal, and on the right side of the image two top and one side views with 

corrupted boundaries 

about:blank
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Fig. 3. The image output with the confidence associate to each detection (left) can be used to 
tune the inference and reduce the number of false positives, using a higher confidence 

threshold, in the case 0.75 (right) 
 

4. CONCLUSIONS 
 

Deep learning methods based in heavily trained 
CNN’s such as the one used in this work, known 
as YOLOv5, are a promising tool for extracting 
large amounts of single particle views as needed 
for 3D macromolecular structure reconstruction. 
The methodology is simple to implement, and 
once the algorithm is trained, the inference 
phase is fast, and can be implemented on a large 
amount of images with little cost in time and 
labor, and last but not least, with minimal 
computer skills.  
 

A major advantage of the large CNN used, the 
model x of YOLOv5, is the small quantity of false 
positives and the almost absence of false 
negatives. These numbers can be tunned easily 
for a particular application using the parameters 
available for the inference command, in particular 
the confidence threshold that reflects the 
probability associated to the classification of 
each object detected, that can be displayed in 
the image output (Fig. 3).  
 

Obviously, if a higher threshold is selected for the 
inference process, fewer false positives will be 
detected, but some true particles that could be 
used will not be accounted for. If a large dataset 
is available, more demanding confidence 
thresholds will be a good option to reduce human 
curation of the final product.  
 

All the software used is open source, except 
Matlab which was used for the preprocessing of 
the images, but there are similar options 

available online [23] that could be used for the 
operations described, aiming to improve image 
contrast and radiometric range.  
 

The availability of online software that demands 
minimum informatic skills to be used, and the 
broad application that can be achieved using 
only limited computational resources and online 
tools, enables these methodologies to extend to 
other applications. In future work, we will look for 
new applications of deep learning methods for 
other microbiology tasks, focusing those that can 
be useful in technologically disadvantaged 
countries, in addition to those that we have 
already been able to demonstrate, such as 
counting microalgae [24] with a binocular loupe, 
detecting polyomaviruses [25] or localize 
exosomes [26] in transmission electron 
microscopy images.  
 

This is a tool that will facilitate and speed up 
some work that was previously imprecise and 
cumbersome, as well as prone to the subjectivity 
inherent in all human work.  
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