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Abstract
Physical systems are commonly represented as a combination of particles, the individual dynamics
of which govern the system dynamics. However, traditional approaches require the knowledge of
several abstract quantities such as the energy or force to infer the dynamics of these particles. Here,
we present a framework, namely, Lagrangian graph neural network (LGnn), that provides a strong
inductive bias to learn the Lagrangian of a particle-based system directly from the trajectory. We
test our approach on challenging systems with constraints and drag—LGnn outperforms baselines
such as feed-forward Lagrangian neural network (Lnn) with improved performance. We also show
the zero-shot generalizability of the system by simulating systems two orders of magnitude larger
than the trained one and also hybrid systems that are unseen by the model, a unique feature. The
graph architecture of LGnn significantly simplifies the learning in comparison to Lnn with∼25
times better performance on∼20 times smaller amounts of data. Finally, we show the
interpretability of LGnn, which directly provides physical insights on drag and constraint forces
learned by the model. LGnn can thus provide a fillip toward understanding the dynamics of
physical systems purely from observable quantities.

1. Introduction

Modeling physical systems involves solving the differential equations governing their dynamics [1]. These
equations, in turn, assumes the knowledge on the functional form of abstract quantities representing the
system such as the forces, energy, Lagrangian or Hamiltonian and parameters associated with them [2].
Recently, it has been shown that these dynamics can learned directly from the data using data-driven and
physics-informed neural networks (PINNs)[3–7], which significantly simplifies the model development of
complex physical systems.

Among PINNs, a particular family of interest is the Lagrangian (LNNs) and Hamiltonian neural networks
(HNNs), where a neural network is parameterized to learn the Lagrangian (or Hamiltonian) of the system
directly from the trajectory [4–6, 8–11]. The dynamics simulated by LNN and HNN has been shown to
preserve their own energy during roll-out, thereby respecting basic physical laws. Finzi et al [8] showed that
formulating LNNs in Cartesian coordinates with explicit constraints simplifies the learning process. Similarly,
Zhong et al [12–14] extended HNNs to dissipitative systems, contacts, and videos making the simulations
more realistic. In LNNs, it is assumed that since both the predicted and trained LNNs exhibit energy
conservation, their energy do not diverge during the roll-out. However, it has been shown that the energy
violation in LNNs and HNNs grow with the trajectory [15]. Moreover, these approaches have been
demonstrated on systems where the number of degrees of freedom are not large [6, 8, 9, 15]. The error in
energy violation is empirically shown to increase with the system size [15]. Thus, extending these models to
realistic systems with large degrees of freedom is posed as a challenging problem.
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An approach that has received lesser attention in physical systems is to learn their dynamics based on the
topology [7, 16]. To this extent, graph-based simulators have been used in physical and molecular systems,
successfully [4, 7, 16–18]. Here, the dynamics of a system can be broken down to the dynamics of its
individual components, which are then bound together based on their topological constraints. This raises an
interesting question: can we learn the dynamics of physical systems directly from their trajectory and infer it on
significantly larger ones, while preserving the desirable physical laws such as energy and momentum conservation?

To address this challenge, here, we propose a Lagrangian graph neural network (LGNN), where we
represent the physical system as a graph. Further, inspired from physics, we model the kinetic and potential
energy at the node and edge levels, which is then aggregated to compute the total Lagrangian of the system.
To model realistic systems, we extend the formulation of LNNs to include Pfaffian constraints, dissipative
forces such as friction and drag, and external forces—crucial in applications such as robotics, and computer
graphics. Our approach significantly simplifies the learning and improves the performance on complex
systems and exhibits generalizability to unseen time steps, system sizes, and even hybrid systems.

2. Theory and architecture

2.1. Lagrangian formulation of particle systems
The Lagrangian formulation presents an elegant framework to predict the dynamics of an entire system,
based on a single scalar function known as the Lagrangian L (see Methods section for details). The general
form of Euler–Lagrange (EL) equation considering Pfaffian constraints, drag or other dissipative forces, and
external force can be written as

d

dt

∂L
∂q̇

− ∂L
∂q

+AT(q)λ−Υ− F= 0 (1)

where A(q) ∈ Rk×D represents k velocity constraints,Υ represents any external non-conservative forces such
as drag or friction, and F represents any external forces on the system (see supplementary material for
details). The acceleration of a particle can then be computed as

q̈=M−1 (Π−Cq̇+Υ−AT(AM−1AT)−1
(
AM−1(Π−Cq̇+Υ+ F)+ Ȧq̇

)
+ F
)

(2)

whereM= ∂
∂q̇

∂L
∂q̇ represents the mass matrix, C= ∂

∂q
∂L
∂q̇ represents Coriolis-like forces, and Π= ∂L

∂q
represents the conservative forces derivable from a potential. This equation can be integrated to obtain the
updated configurations. Thus, once the Lagrangian of a system is learned, the trajectory of a system can be
inferred using the equation (2).

In this work, we employ a LGNN to learn the Lagrangian of the system directly from its trajectory. An
overview of the LGNN framework, along with example systems, is provided in figure 1. The graph topology is
used to predict the Lagrangian L, and non-conservative forces such as dragΥ. This is combined with the
constraints and any external forces in the EL equation to predict the future state. The parameters of the
model are learned by minimizing the mean squared error over the predicted and true positions across all the
particles in the system as detailed later. We next discuss the neural architecture of LGNN to predict the
Lagrangian.

2.2. Neural architecture of LGNN
The neural architecture of LGNN is outlined in figure 2. The aim of the LGNN is to directly predict the
Lagrangian of a physical system while accounting for its topological features. As such, the creation of a graph
structure that corresponds to the physical system forms the most important step. To explain the idea better,
we will use the running examples of two systems: (a) a double pendulum and (b) two balls connected by a
spring, that represent two distinct cases of systems with rigid and deformable connections.

2.2.1. Graph structure
The state of an n-body system is represented as a undirected graph, G = {U ,E}, where nodes ui ∈ U
represents the particles, | U |= n, and eij ∈ E represents edges corresponding to constraints or interactions. In
our running examples, the nodes correspond to the pendulum bobs and balls, respectively, and the edges
correspond to the pendulum rods and springs, respectively. Note that the edges of the graphs may be
predefined as in the case of a pendulum or spring system. The edges may also be defined as a function of the
distance between two nodes such as E = {eij = (ui,uj) | d(ui,uj)⩽ θ} where d(ui,uj) is a distance function
over node positions and θ is a distance threshold. This allows a dynamically changing edge set based on a
cutoff distance as in the case of a realistic breakable spring.

2



Mach. Learn.: Sci. Technol. 4 (2023) 015003 R Bhattoo et al

Figure 1. The LGNN framework. Visualization of a hybrid 2-pendulum-4-spring system and a 5-spring system.

Figure 2. General architecture of Lagrangian graph neural network. Note that the drag predictions are similar to the kinetic
energy computations. However, the drag is directly featured in EL equation and hence is not shown here.

2.2.2. Input features
Each node ui ∈ U is characterized by its type ti, position qi = (xi,yi,zi), and particle velocity (q̇i). The type ti
is a discrete variable and is useful in distinguishing particles of different characteristics within a system (Ex.
two different types of balls). For each edge eij, we store an edge weight wij = d(ui,uj) =∥ qi − qj ∥2.

Finally, we note that the node input features are classified into two: global and local features. Global
features are the ones that are not relevant to the topology and hence are not included in message passing. In
contrast, local features are the ones that are involved in message passing. In our running example, while
particle type is a local feature, particle position and velocity are global features.

2.2.3. Pre-processing
In the pre-processing layer, we construct a dense vector representation for each node ui and edge eij using
MLPem as:

h0i = squareplus(MLPem(one-hot(ti))) (3)

h0ij = squareplus(MLPem(eij)) (4)

squareplus is an activation function. As the acceleration of the particles is obtained using the EL equation,
our architecture requires activation functions that are doubly-differentiable and hence, squareplus is an
appropriate choice. In our implementation, we use different MLPems for node representation corresponding to
kinetic energy, potential energy, and drag. For brevity, we do not separately write the MLPems in equation (3).

2.2.4. Kinetic energy and drag prediction
Since the graph uses Cartesian coordinates, the mass matrix is diagonal and the kinetic energy τ i
of a particle depends only on the velocity q̇i and massmi of the particle. Here, we learn the parameterized
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masses of each particle type based on the embedding h0i . Thus, the τ i of a particle is predicted as
τi = squareplus(MLPτ (h0i ∥ q̇i)), where ∥ represent the concatenation operator, MLPτ represents an MLP
for learning the kinetic energy function, and squareplus represents the activation function. The total
kinetic energy of the system is computed as T =

∑n
i=1 τi. The drag of a particle also typically depends

linearly or quadratically to the velocity of the particle. Here, we compute the total drag of a system as
Υ=

∑n
i squareplus(MLPΥ(h0i ∥ q̇i)). Note that while T directly goes into the prediction of L,Υ is featured

in the EL equation.

2.2.5. Potential energy prediction
In many cases, the potential energy of a system is closely dependent on the topology of the structure. To
capture this information, we employ multiple layers ofmessage-passing between the nodes and edges. In the
lth layer of message passing, the node embedding is updated as:

hl+1i = squareplus

MLP

hli +∑
j∈Ni

Wl
U ·
(
hlj||hlij

) (5)

where,Ni = {uj ∈ U | (ui,uj) ∈ E} are the neighbors of ui.Wl
U is a layer-specific learnable weight matrix. h

l
ij

represents the embedding of incoming edge eij on ui in the lth layer, which is computed as follows.

hl+1ij = squareplus
(

MLP
(
hlij +W

l
E ·
(
hli||hlj

)))
. (6)

Similar toWl
U ,W

l
E is a layer-specific learnable weight matrix specific to the edge set. The message passing is

performed over L layers, where L is a hyper-parameter. The final node and edge representations in the Lth
layer are denoted as zi = hLi and zij = h

L
ij respectively.

The total potential energy of an n-body system is represented as V =
∑

ui∈U vi +
∑

eij∈E vij, where vi
represents the energy of ui due to its position and vij represents the energy due to interaction eij. In our
running example, vi represents the potential energy of a bob in the double pendulum due to its position in a
gravitational field, while vij represents the energy of the spring connected with two particles due to its
expansion and contraction. In LGNN, vi is predicted as vi = squareplus(MLPvi(h

0
i ∥ qi)). Pair-wise

interaction energy vij is predicted as vij = squareplus(MLPvij(zij)). Although not used in the present case,
sometime vi can be a function of the local features dependent on the topology. For instance, in atomic
systems, the charge of an atom can be dependent on neighboring atoms and hence the potential energy due
to these charges can be considered as a combination of topology-dependent features along with the global
features. In such cases, vi is predicted as vi = squareplus(MLPvi(h

0
i ∥ qi))+ squareplus(MLPmp,vi(zi)),

where MLPmp represents the node MLP associated with the message-passing graph architecture.

2.2.6. Trajectory prediction and training
Based on the predicted V,T , andΥ, the acceleration ˆ̈qi is computed using the EL equation (2). The loss
function of LGNN is on the predicted and actual accelerations at timesteps 2,3, . . . ,T in a trajectory T, which
is then back-propagated to train the MLPs. Specifically, the loss function is as follows.

L=
1

n

(
n∑

i=1

(
q̈T,ti −

(
ˆ̈qT,ti

))2)
. (7)

Here, (ˆ̈qT,ti ) is the predicted acceleration for the ith particle in trajectory T at time t and q̈T,ti is the true
acceleration. T denotes a trajectory from T, the set of training trajectories. It is worth noting that the
accelerations are computed directly from the position using the velocity-Verlet update and hence training on
the accelerations is equivalent to training on the updated positions.

3. Experimental systems

3.1. n-Pendulum
In an n-pendulum system, n-point masses, representing the bobs, are connected by rigid bars which are not
deformable. These bars, thus, impose a distance constraint between two point masses as

||qi − qi−1||= li (8)
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where, li represents the length of the bar connecting the (i− 1)th and ith mass. This constraint can be
differentiated to write in the form of a Pfaffian constraint as

qiq̇i − qi−1q̇i−1 = 0. (9)

Note that such constraint can be obtained for each of the nmasses considered to obtain the A(q).
The Lagrangian of this system has contributions from potential energy due to gravity and kinetic energy.

Thus, the Lagrangian can be written as

L=
n∑

i=1

(
1/2miq̇i

Tq̇i −migyi
)

(10)

where g represents the acceleration due to gravity in the y direction.

3.2. n-spring system
In this system, n-point masses are connected by elastic springs that deform linearly with extension or
compression. Note that similar to a pendulum setup, each massmi is connected only to two massesmi−1 and
mi+1 through springs so that all the masses form a closed connection. The Lagrangian of this system is given
by

L=
n∑

i=1

1/2miq̇i
Tq̇i −

n∑
i=1

1/2k(||qi−1− qi|| − r0)
2 (11)

where r0 and k represent the undeformed length and the stiffness, respectively, of the spring.

3.3. Hybrid system
The hybrid system is a combination of the pendulum and spring system. In this system, a double pendulum
is connected to two additional masses through four additional springs as shown in figure 1 with gravity in y
direction. The constraints as present in the pendulum system are present in this system as well. The
Lagrangian of this four-mass system is

L=
4∑

i=1

1/2miq̇i
Tq̇i −

2∑
i=1

migyi −
4∑

i=3

1/2k(||qi−1− qi|| − r0)
2 (12)

wherem1 andm2 represent masses in the double pendulum andm3 andm4 represent masses connected by
the springs.

Theorem 1. In the absence of an external field, LGNN exactly conserves the momentum of a system.

A detailed proof is given in supplementary material C. As shown empirically later, this momentum
conservation in turn reduces the energy violation error in LGNN.

4. Implementation details

4.1. Dataset generation
4.1.1. Software packages
numpy-1.20.3, jax-0.2.24, jax-md-0.1.20, jaxlib-0.1.73, jraph-0.0.1.dev0

4.1.2. Hardware
Memory: 16GiB System memory, Processor: Intel(R) Core(TM) i7-10 750 H CPU @ 2.60GHz

All the datasets are generated using the known Lagrangian of the pendulum and spring systems, along
with the constraints, as described in section 3. For each system, we create the training data by performing
forward simulations with 100 random initial conditions. For the pendulum and hybrid systems, a timestep of
10−5 s is used to integrate the equations of motion, while for the spring system, a timestep of 10−3 s is used.
The velocity-Verlet algorithm is used to integrate the equations of motion due to its ability to conserve the
energy in long trajectory integration.

All 100 simulations for pendulum and spring system were generated with 100 datapoints per simulation.
These datapoints were collected every 1000 and 100 timesteps for the pendulum and spring systems,
respectively. Thus, each training trajectory of the spring and pendulum systems are 10 s and 1 s long,
respectively. It should be noted that in contrast to the earlier approach, here, we do not train from the
trajectory. Rather, we randomly sample different states from the training set to predict the acceleration. For
simulating drag, the training data is generated for systems without drag and with linear drag given by−0.1q̇,
for each particle.

5
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4.2. Architecture
For LNN, we follow a similar architecture suggested in the literature [6, 8]. Specifically, we use a fully
connected feedforward neural network with two hidden layers each having 256 hidden units with a
square-plus activation function. For LGNN, all the MLPs consist of two layers with five hidden units,
respectively. Thus, LGNN has significantly lesser parameters than LNN. The message passing in the LGNN was
performed for two layers in the case of pendulum and one layer in the case of spring.

The kinetic energy term in LNN is handled as in the earlier case where in the parametrized masses are
learned as a diagonal matrix. In the case of LGNN, the masses are directly learned from the one-hot
embedding of the nodes. Interestingly, we observe that the mass matrix exhibits a diagonal nature in LGNN
without enforcing any conditions due to its topology-aware nature.

4.3. Training details
The training dataset is divided in 75:25 ratio randomly, where the 75% is used for training and 25% is used
as the validation set. Further, the trained models are tested on its ability to predict the correct trajectory, a
task it was not trained on. Specifically, the pendulum systems are tested for 10 s, that is 106 timesteps, and
spring systems for 20 s, that is 2× 104 timesteps on 100 different trajectories created from random initial
conditions. All models are trained for 10 000 epochs with early stopping. A learning rate of 10−3 was used
with the Adam optimizer for the training. The performance of both L1 and L2 loss functions were evaluated
and L2 was chosen for the final model. The results of LGNN and LNN with both the losses are provided in the
supplementary material.

• Lagrangian graph neural network

Parameter Value

Node embedding dimension 5
Edge embedding dimension 5
Hidden layer neurons (MLP) 5
Number of hidden layers (MLP) 2
Activation function Squareplus
Number of layers of message passing (pendulum) 2
Number of layers of message passing (spring) 1
Optimizer ADAM
Learning rate 1.0× 10−3
Batch size 100

• Lagrangian neural network

Parameter Value

Hidden layer neurons (MLP) 256
Number of hidden layers (MLP) 2
Activation function Squareplus
Optimizer ADAM
Learning rate 1.0× 10−3
Batch size 100

• Trajectory visualization For visualization of trajectories of actual and trained models, videos are provided
as supplementary material. The GitHub link https://github.com/M3RG-IITD/LGNN contains:

(a) Hybrid system: double pendulum and two masses connected with four springs under gravitational
force as shown in figure 1.

(b) Hybrid system with external force: double pendulum and two masses connected with four springs
under gravitational force as shown in figure 1. A force of 10 N in x-direction is applied on the second
bob of double pendulum.

(c) Five spring system: five balls connected with five springs as shown in figure 1.

5. Empirical evaluations

In this section, we evaluate LGNN and establish that, (a) LGNN is more accurate than LNN in modeling
physical systems, and (b) owing to topology-aware inductive modeling, LGNN generalizes to unseen systems,
hybrid systems with no deterioration in efficacy for increasing system sizes.

6
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Figure 3. Energy violation (left) and rollout error (right) of LGNN (red) and LNN (blue) for pendulum and spring systems having
3, 4, and 5 links and subjected to linear drag. Note that the LGNNs for pendulum and springs are trained on 3 and 5 links,
respectively, and tested on all the systems. LNNs are trained and tested separately on each of the systems. Shaded region shows the
95% confidence interval from 100 initial conditions.

5.1. LGNN for n-pendulum and n-spring systems
In order to evaluate the performance of LGNN, we first consider two standard systems, that have been widely
studied in the literature, namely, n-pendulum and n-spring systems [4, 6, 8, 9], with n= (3,4,5). Following
the work of [8], we evaluate performance by computing the relative error in (a) the trajectory, known as the
rollout error, given by RE(t) = ||q̂(t)− q(t)||2/(||q̂(t)||2+ ||q(t)||2) and (b) energy violation error given by
||Ĥ −H||2/(||Ĥ||2+ ||H||2). The training data is generated for systems without drag and with linear drag
given by−0.1q̇, for each particle. The timestep used for the forward simulation of the pendulum system is
10−5 s with the data collected every 1000 timesteps and for the spring system is 10−3 s with the data
collected every 100 timesteps. The details of the experimental systems, data-generation procedure, the
hyperparameters and training procedures are provided in the Methods section.

LGNN is compared with (a) LNN in Cartesian coordinates with constraints as proposed by [8], which
gives the state-of-the-art performance. Since, Cartesian coordinates are used, the parameterized masses are
learned as a diagonal matrix as performed in [8]. In addition, LGNN is also compared with two other
graph-based approaches suggested in [5, 6], named as (b) Lagrangian graph network (LGN), and (c) Graph
network simulator (GNS). LGN exploits a graph architecture to predict the Lagrangian of the physical system,
which is then used in the EL equation. GNS uses the position and velocity of the particles to directly predict
their updates for a future timestep [4]. For both these approaches, since no details of the exact architecture is
provided [5, 6], a full graph network is employed [16]. All the simulations and training were performed in
the JAX environment [18]. The graph architecture of LGNN was developed using the jraph package [19]. All
the codes related to dataset generation and training are available at https://github.com/M3RG-IITD/LGNN.

Figure 3 shows the energy violation and rollout error of LGNN and LNN for pendulum and spring systems
with 3, 4, and 5 links without drag on each of the particles. For the pendulum system, LGNN is trained on

7
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Figure 4. (a) Energy violation and (b) rollout error for 5, 50, and 500 spring system with LGNN trained on 5 spring system.
Shaded region shows the 95% confidence interval from 100 initial conditions.

3-pendulum and for spring, LGNN is trained on 5-spring systems. The trained LGNN is used to perform the
forward simulation on the other unseen systems. In contrast, the LNNs are trained and tested on the same
systems. We observe that the LGNN exhibits comparable rollout error with LNN for pendulum system, even
on unseen systems. Further, LGNN exhibits significantly lower rollout error for spring systems—where the
topology plays a crucial role—giving superior performance than LNNs consistently. Due to the chaotic nature
of these systems, it is expected that the rollout error diverges. However, energy violation error gives a better
evaluation of the realistic nature of the predicted trajectory. Interestingly, we note that the energy violation
error is fairly constant for LGNN for both pendulum and spring systems. Moreover, the error on both seen
and unseen systems are comparable suggesting a high degree of generalizability for LGNN. The geometric
mean of energy violation error and rollout error of LNN and LGNN for systems with and without drag are
provided in the Supplementary material.

5.2. Generalizability
Now, we examine the ability of LGNN to push the limits of the current approaches. A regular LNN uses a
feed-forward NN to take the entire q, q̇ as the input and then predicts the Lagrangian. Owing to this design,
the number of model parameters grows with the input size. Hence, an LNN trained on an n-sized system
cannot be applied for inference on an n′-sized system, where n ̸= n ′. This makes LNN transductive in nature.
In contrast, LGNN is inductive, wherein the parameter space remains constant with system size. This is a
natural consequence of our design where the learning happens at node and edge levels. Hence, given an
arbitrary-sized system, we only need to predict the potential and kinetic energies at each node and edge,
which we then aggregate to predict the combined energies at a system level. Further, a complex system that is
unseen, if divisible into multiple sub-graphs with each sub-graph representing a learned system, the overall
system can be simulated with zero-shot generalizability.

Figure 4 shows the energy and rollout error of spring systems with 5, 50, 500 links using LGNN, LGN and
GNS trained on 5-spring system. We observe that LGNN performs significantly better than the other baselines.
Note that the results of LGN for 500 springs are not included due to significantly increased computational
time for the forward simulation in comparison to the other models. In addition to the rollout error, we
observe that the energy violation error of LGNN remains constant with low values even for systems that are
two orders of magnitude larger than the training set. This suggests that the LGNN can produce realistic
trajectories on large scale systems when trained on much smaller systems. These results also establish the
superior nature of LGNN architecture, which exhibits improved performance with higher computational
efficiency. The performance of similar systems with drag is provided in the supplementary material.

To test generalizability to an unseen system, we consider a hybrid system with 2-pendulum-4-springs as
shown in figure 1. The LGNNs trained on the 5-spring and 3-pendulum systems are used to model the hybrid
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Figure 5. (a) Energy violation and (b) rollout error of LGNN in the unseen hybrid system. (c) Learned node-level drag force. (d)
Data efficiency of LNN and LGNN on 3-spring system.

system. Specifically, the V of the physical system is considered as the union of the V of two subgraphs, one
representing the pendulum system and the other representing the spring systems. Then, the computed V is
substituted in the EL equation to simulate the forward trajectory. Figures 5(a) and (b) shows the energy
violation and rollout error on the hybrid system. We observe that both these errors are quite low and are not
growing with time. This suggests that LGNN, when trained individually on several subsystems, can be
combined to form a powerful graph-based simulator. Videos of simulated trajectories under different
conditions, such as external force, are provided at https://github.com/M3RG-IITD/LGNN for visualization.

5.3. Interpretability and data efficiency
The trained LGNN provides interpretability, thanks to the graph structure. That is, since the computations of
LGNN are carried out at the node and edge levels, the functions learned at these level can be used to gain
insight into the behavior of the system. Further, the parameterized masses of the systems are learned directly
during the training of LGNN, leading to a diagonal mass matrix. This is in contrast to LNN where the prior
information that mass matrix remains diagonal in the Cartesian coordinates is imposed to make the learning
simpler [8].

Figure 5(c) shows the learned drag force as a function of velocity. We observe that the neural network has
learned the drag in excellent agreement with the ground truth. Thus, in cases of systems where the ground
truth is unknown, the learned drag can provide insights into the nature of dissipative forces in the system.
Similarly, the λ learned during the training directly provides insights into the magnitude of the constraint
forces.

Finally, we analyze the efficiency of LGNN to learn from the training data. To this extent, we train both
models on a 3-spring system with (100, 500, 1000, 5000, 10 000) datapoints. Figure 5(d) shows the geometric
mean of relative error on the trajectory of the system. We observe that LGNN consistently outperforms LNN,
Further, the performance of LGNN saturates with 500 datapoints. In addition, LGNN trained on these 500
datapoints exhibits∼25 and∼3 times better performance in terms of geometric relative error than LNN
trained on 500 and 10000 datapoints. This confirms that the topology-aware LGNN can learn efficiently from
small amounts of data, still yield better performance than LNN.

6. Conclusions and outlook

Altogether, we demonstrate a novel graph architecture, namely LGNN, which can learn the dynamics of
systems directly from the trajectory, while exhibiting superior energy and momentum conservation. We
show that the LGNN can generalize to any system size ranging orders of magnitude, when learned on a small
system. Further, LGNN can even simulate unseen hybrid systems when trained on the systems independently.
Finally, we also show that LGNN exhibits better data-efficiency, learning from smaller amounts of data in
comparison to the original LNN.

There are several future directions that the present work opens up. The LGNN, at present, is limited to
systems without collisions and other deformations. Extending LGNN to handle elastic and plastic
deformations in addition to collisions can significantly widen the application areas. Further, LGNN assumes
the knowledge of constraints. Automating the learning of the constraints while training the model using
neural networks can provide a new paradigm to learn the constraints along with the Lagrangian. The graph
nature of LGNN can potentially supplement the learning of constraints. Although, the message passing in
LGNN is translationally and rotationally invariant, the expressive power is limited as only the distance is given
as the edge feature. Enhancing the feature representation, and message passing through architectural
modifications as in the case of equivariant GNNs can increase the applicability to more complex applications
such as atomistic simulations of materials.
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