Machine Learning: Science and Technology

TECHNICAL NOTE « OPEN ACCESS

Artificial applicability labels for improving policies in retrosynthesis
prediction

To cite this article: Esben Jannik Bjerrum et al 2021 Mach. Learn.: Sci. Technol. 2 017001

View the article online for updates and enhancements.

This content was downloaded from IP address 106.213.19.213 on 30/06/2023 at 08:58

https://doi.org/10.1088/2632-2153/abcf90

I0P Publishing

@ CrossMark

OPEN ACCESS

RECEIVED
27 July 2020

REVISED
20 October 2020

ACCEPTED FOR PUBLICATION
1 December 2020

PUBLISHED
24 December 2020

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOL.

Mach. Learn.: Sci. Technol. 2 (2021) 017001 https://doi.org/10.1088/2632-2153/abct90

LEARNING

TECHNICAL NOTE

Artificial applicability labels for improving policies
in retrosynthesis prediction

Esben Jannik Bjerrum' ©, Amol Thakkar"*® and Ola Engkvist'
I Molecular AL Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
2 Department of Chemistry and Biochemistry, University of Bern, Bern CH-3012, Switzerland

E-mail: esben.bjerrum@astrazeneca.com

Keywords: retrosynthesis prediction, policy network, policy guided tree search, reaction rule applicability

Supplementary material for this article is available online

Abstract

Automated retrosynthetic planning algorithms are a research area of increasing importance.
Automated reaction-template extraction from large datasets, in conjunction with
neural-network-enhanced tree-search algorithms, can find plausible routes to target compounds in
seconds. However, the current method for training neural networks to predict suitable templates
for a given target product leads to many predictions that are not applicable in silico. Most templates
in the top 50 suggested templates cannot be applied to the target molecule to perform the virtual
reaction. Here, we describe how to generate data and train a neural network policy that predicts
whether templates are applicable or not. First, we generate a massive training dataset by applying
each retrosynthetic template to each product from our reaction database. Second, we train a neural
network to perform near-perfect prediction of the applicability labels on a held-out test set. The
trained network is then joined with a policy model trained to predict and prioritize templates using
the labels from the original dataset. The combined model was found to outperform the policy
model in a route-finding task using 1700 compounds from our internal drug-discovery projects.

1. Introduction

Using computers to assist with retrosynthetic planning is a decades-old idea [1]. The ability to search
efficiently for synthetic routes to target compounds is of paramount interest in drug discovery and materials
design, where molecular candidates are often first virtually designed by a chemist’s intuition or rationale, via
computer-aided drug design [2], de-novo design [3] or selected via virtual screening [4], but must be
synthesized for evaluation in, for example, biological assays and evaluation of their physico-chemical
properties to provide information for further optimization. Moreover, finding alternative routes for
established chemical synthesis is important as part of process optimization, which allows more
resource-efficient or green methods of chemical synthesis to be discovered [5]. Research into, and interest in,
automated retrosynthesis planning have been invigorated by the successful application of deep learning and
artificial-intelligence approaches [6]. Here, large reaction databases are used as a knowledge base to extract
reaction templates that represent generalized reactions. Typically, the reaction templates are extracted as
SMIRKS patterns containing the atoms that change during the reaction (the core), and the nearest atoms up
to a given bond distance from the reaction core [7]. These patterns can be reversed and used to break a given
target product into its proposed reactants. Applying the templates to the products will often give
intermediates that are not available from stock or purchasable and further retrosynthetic steps are needed to
create a plausible synthetic route to an available starting material. As multiple possible disconnections are
available in the template library, this search for synthesis routes can be viewed as a tree-search problem.
However, as the reaction-template libraries often exceed 100 000 templates, this quickly leads to an
intractable computational problem. Already, with only two steps of disconnection, up to

100 000% = 1000 000 000 000 combinations would need to be evaluated. Using neural networks in
conjunction with the Monte Carlo tree-search algorithm can, however, permit efficient tree search, as

© 2020 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/abcf90
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/abcf90&domain=pdf&date_stamp=2020-12-24
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-1614-7376
https://orcid.org/0000-0003-0403-4067
https://orcid.org/0000-0003-4970-6461
mailto:esben.bjerrum@astrazeneca.com
https://iop.org/10.1088/2632-2153/abcf90

10P Publishing Mach. Learn.: Sci. Technol. 2 (2021) 017001 EJ Bjerrum et al

0.8 A~
Non applicable, Scaled
Non applicable, Normalized
0.6 A Applicable, Normalized

0.5 +

0.7 1

0.4 -

Density

0.3 1
0.2 A
0.1 +

0 . 0 T T T T T 1
-15.0 -12.5 -10.0 -7.5 -5.0 =25 0.0
Log(SoftMax)
Figure 1. Histograms of probability predictions for an exemplary product. The applicable templates (orange) and the
non-applicable templates (blue) appear to be well separated by the policy network. However, the scaled non-applicable histogram

(grey, scaled to match the normalized applicable) reveals that the policy network wrongly predicts many non-applicable templates
in the top probability range, due to massive differences in the numbers of positive and negative samples.

demonstrated by the 3N-MCTS algorithm [6]. Here, knowing the association between products from the
reactions in the database and the extracted templates, deep neural networks are trained to predict which
templates should be used on the target products. These policy networks give a strong prior search direction
as well as template prioritization and branch pruning for the subsequent tree-search algorithm used to search
for plausible routes. Often, only the top prioritized templates, e.g. the top 50, are used, out of several
hundred thousand available templates. This filtering efficiently limits the branching factor in the tree-search
algorithm, which would otherwise lead to infeasible computation times. Frequently, the algorithms can
construct synthetic routes to target compounds from stock reactants in seconds.

However, while implementing an algorithm for retrosynthesis prediction [8], we noted that these policies
often have many false positive templates in the top 50 predictions, leading to a low number of successful
templates in the top 50 predictions. These templates lead to wasted computational time trying to apply the
templates. We hypothesized that this may be because our dataset contains many false negatives. In principle,
if a product is not associated with a template, it does not mean that that reaction could not have been used to
make that product, but just that the reaction is not part of the reaction database. When testing the in silico
application of the templates, we observed that the policy network seems to make a good distinction between
the non-applicable and applicable templates (orange and blue histograms in figure 1).

Unfortunately, this discrimination is only clear when the histograms are both normalized individually.
Often, only a few hundred templates are applicable for any given product, compared to the hundreds of
thousands of non-applicable templates. This large imbalance in the amount of applicable vs. non-applicable
templates leads to a situation where the applicable templates are not separated from the non-applicable
templates. The grey histogram in figure 1 shows the situation where the histogram of the non-applicable
templates has been scaled to match the applicable histogram (figure 1; grey histogram). This enlargement of
the thin tail of the non-applicable templates explains why the top 50 prioritized templates often contain
many non-applicable templates.

Here, we show how it is possible to train an applicability filter network to remove the non-applicable
templates from the policy model predictions. In principle, this can be done with serial application and testing
on a CPU but transferring this to a prediction task using a GPU enables efficient embedding in the final
algorithm. The combined model was found to have increased route-finding capabilities in a retrosynthetic
test using 1700 compounds from our internal electronic lab notebooks.

2. Methods

2.1. Molecular representation

The molecules are represented as Morgan fingerprints, which are an RDKit [9] implementation of extended
connectivity fingerprints [10], where a detailed description is available. Briefly explained, the fingerprints use
a variation of the Morgan algorithm [11] to create a selection of unique keys based on atomic invariants and
their topological arrangements. Each atom is encoded using an invariant code that is derived from seven
properties of the atom which are encoded as information by being hashed to a 32 bit key:

2

10P Publishing Mach. Learn.: Sci. Technol. 2 (2021) 017001 EJ Bjerrum et al

Structure Keys Hashed
Keys
3217380708 < 290
616353455 7’{1711
—» 2953883938 1380
10565946
98466654

864942730

Figure 2. Extended connectivity fingerprints [10], such as Morgan fingerprints [9], encode the atoms and their environments
up to a given radius as unique keys. The (often large) keys are then converted to a fixed fingerprint size via a hashing algorithm.

(a) the number of immediate neighbors which are ‘heavy’ (nonhydrogen) atoms;
(b) the valence minus the number of hydrogen atoms;

(c) the atomic number;

(d) the atomic mass;

(e) the atomic charge;

(f) the number of attached hydrogen atoms (both implicit and explicit);

(g) whether the atom is contained in at least one ring.

The invariants are converted to Morgan keys via an analysis of the neighborhood up to a given radius.
Each key thus describes both the atomic properties and its molecular neighborhood. Figure 2 illustrates how
a single carbon atom yields three keys, corresponding to radii of zero, one and two, which are subsequently
mapped to the final fingerprint bits via a hashing algorithm.

2.2. Dataset and label generation

A combined dataset of Reaxys, USPTO, Pistachio and our internal data was prepared as described previously
[8]. The final template set was filtered for a minimum of two occurrences and grouped based on the
identities of the products into a multilabel dataset, as described elsewhere [12]. The final dataset consisted of
4155 352 products associated with 159 411 templates. For each product, the reaction template was applied,
and a label of ‘one’ was assigned if the reaction template was able to be applied and a label of ‘zero’ otherwise.
The application was parallelized by splitting the dataset into 2048 parts which were submitted for processing
on individual computational nodes in the cluster using a simple linux utility for resource management
(SLURM) array job. The script included a 60 s time-limit on the application of templates to a given product.
If not all templates were able to be applied to a product within the time limit, the computation was stopped,
and the product was removed from the final dataset. Finally, the Morgan bit fingerprints of the products for a
radius of two, folded to a length of 2048 bits, were calculated using RDKit [9] and stored in SciPy sparse
arrays [13]. The choice of fingerprint was fixed to enable compatibility with our existing implementation of
the tree-search code [8].

2.3. Neural networks

Neural networks were created using Keras [14] 2.2.4 with TensorFlow 1.12 [15] as a backend. The ‘SoftMax’
neural networks consisted of five hidden dense layers of 1024 neurons with skip connections to the output of
the n — 2 layer, followed by a ‘bottleneck’ dense layer of 256 neurons with the ELU activation function. A
dropout of 0.35 was applied after each rectified linear unit (ReLU) activation function. The outputs were
provided by 159 411 neurons with a kernel L2 regularization of 0.005 before the final SoftMax activation
function. The categorical cross-entropic loss function was used. Training was conducted using the original
database labels for a total of 150 epochs using the Adam optimizer with default settings, except for the
learning rate, which was adjusted during training. The learning rate was adjusted using a scheme with a
two-epoch warmup phase from 107> to a maximum learning rate of 4 x 10~>. The learning rate was fixed
for 15 epochs, followed by a stepwise exponential decay for the remaining epochs. The exponential decay was
adjusted so that the final learning rate was 107°.

The ‘Applicability’ models had a similar architecture as regards skip connections, but only three ReLU
layers and the final layer used a sigmoid activation function with a binary cross-entropic loss function. The
applicability model was trained for a total of 50 epochs with a two-epoch warmup period, a ten-epoch fixed
learning rate and exponential decay and learning rates as described for the SoftMax model.

Post training, both models were loaded and combined into a new Keras model. The input layer was
shared. The final output tensor from the applicability model was binarized with a threshold of 0.1 using
TensorFlow operations before being elementwise multiplied with the output tensor from the SoftMax model,

3

10P Publishing Mach. Learn.: Sci. Technol. 2 (2021) 017001 EJ Bjerrum et al

_. Non Appl. -JREEEEREMY 7200
2
=S
[}
E
Appl. 10017 499856
I T
> 3
?,QQ ?:QQ
&

Predicted label

Figure 3. Confusion matrix of the predictions of the applicability labels for 1000 compounds from the test-set.

giving the final predictions of the combined model. The architecture of the model is shown in supplementary
figure 1 (available online at stacks.iop.org/MLST/2/017001/mmedia).

2.4. Route-finding
The dataset of 1731 compounds used for a previous analysis was subjected to route finding using the
tree-search code as described earlier [8]. If a route was found to stock compounds within 180 s, the
route-finding was considered a success and the time was recorded. Both the standard model and the
combined model were tested using the same settings for route finding. The exploration/exploitation
constant, C, was set to 1.4, and the maximum number of transforms was set to 6. Template expansion was set
to a maximum of 25 or a cumulative cutoff of 0.999999, and the time limit in seconds was set to 180. The
stocks used were a combination of ACD, Enamine and in-house reagent stocks.

Route finding was performed on cluster nodes equipped with Intel(R) Broadwell Xeon(R) E5-2683 v4
CPUs @ 2.10 GHz with 128 GB RAM, from which 10 GB was reserved for running. Neural network inference
was performed on the CPU.

3. Results

3.1. Applicability label calculation

The 60 s timeout applied during application-label calculation resulted in the removal of 1277 compounds.
The size distribution of the removed compounds is slightly shifted to the higher side, compared to the size
distribution of the compounds where labels were successfully calculated (supplementary figure 2). A closer
investigation of the compounds that timed out revealed that the templates contained many repeating
patterns and functional groups such as alcohol groups (examples in supplementary figure 3). Likewise, the
slowest template contained 12 repeating units that matched alcohol groups (supplementary figure 3). The
timeout thus appears to be triggered by a combinatorial application problem whereby, for example, all
combinations of alcohol groups matching SMARTS in the template needed to be matched to all alcohol
groups. For 12 SMARTS and 12 alcohol groups, this led to 12! = 479 001 600 combinations. A further 209
compounds were removed, as they had no calculated applicable templates. Thus, the final dataset for training
consisted of 4 153 866 compounds.

3.2. Performance of the applicability filter network

The applicability model converged with a validation loss of 0.0003 and a validation accuracy of 0.9999.
Calculating the area under the receiver-operator curve (AUC-ROC) of molecules from the test-set often
showed a near-ideal performance of 0.99999. However, both accuracy and AUC-ROC are misleading metrics,
due to the highly imbalanced labels in the dataset. This is evident from the confusion matrix shown in

figure 3. Here the 158 million correct predictions of non-applicable templates outnumber the wrongly
predicted labels by orders of magnitude. If the network predicts that a template is not applicable, it is correct
over 99.995% of the time (true negative rate). Rather, as the model is intended to be a filter network, we are
only interested in samples that are predicted as applicable. The model’s performance is thus better measured
using ‘Recall’ and ‘Precision) i.e. measuring the amount of correctly predicted applicable templates and the
predicted percentage of false positives, respectively. Recall is also known as the true positive rate and is
calculated as TP/(FN + TP), whereas Precision is defined as TP/(TP + FP). Recall measures how many of the

4

https://stacks.iop.org/MLST/2/017001/mmedia

10P Publishing

Mach. Learn.: Sci. Technol. 2 (2021) 017001 EJ Bjerrum et al

Compounds with false negatives

)

a 3

=

o

£

g 2

S

S

)

a &5

g

=

=)

: ” h HH
i

o

L

_]. = 1]
0 50 100 150 200 250

False negatives

Figure 4. Distribution of the number of false negatives per compounds of the test set.

Correlation between number of false positives and negatives pr. template
350 o

300 -
250 - ®
200 A
150
100 A

50-&:",
0_

T T T T

0 50 100 150
number false positives

number false negatives

Figure 5. Scatter plot showing the correlation between the number of false positives and false negatives of the test set per template.

applicable templates we recover and Precision measures how many of the templates we predict to be
applicable are actually applicable. Impressively, Recall is still high at 0.98 with a Precision of 0.99.

The speed of prediction was compared by the prediction of 1000 compounds on a workstation equipped
with an RTX 2080 Ti graphics card. SoftMax alone had a prediction time of 4.4 ms on average, and the
applicability model was faster with an average prediction time of 2.4 ms. The combined model had an
average prediction time of 6.1 ms. This reflects the number of parameters in the networks, with a possible
overhead from I/O to the GPU. In comparison, the application time required to check the applicability of
approximately 159 000 templates one by one was, on average, approximately 2 s.

3.3. Error analysis

The distribution of errors follows a distribution whereby most compounds have a few errors, whereas a few
compounds have many errors. The distribution of false negatives per compound is shown in figure 4. False
negatives follow a qualitatively similar distribution, as do the errors per template (SI figures 5-7). There was
no correlation between false negatives and positives per compound, whereas there was a correlation between
the numbers of false positives and negatives per template (figure 5). It thus appears that some templates are
more error prone than others. Examination of the most error-prone templates showed many templates
where two similar reaction sites in the product are involved in the template’s application (see the example in
figure 6). This is probably due to the use of bit fingerprints, where similar fingerprint bits for each duplicate
atom make them indistinguishable from the unduplicated version. The neural network thus has no chance of
discriminating between a compound with duplicated features and one without, and the template cannot be
applied to the product without duplicated features.

5

10P Publishing Mach. Learn.: Sci. Technol. 2 (2021) 017001 EJ Bjerrum et al

c 6/0:4\1\1 5
. 0
/c‘l\
c3 N:2 0
C:4\ | |
e .
c:6 N5 PN
C:3 N:2

Figure 6. Example of a problematic template displaying duplicated features giving a high number of errors on the test set.

500 - o - 50 91— SoftMax Model
7 / - + Applicability Model
T 400 - i % 40 A + Maximum
] g
£ 300 - S 307
2 . ®
= * = 4
8200 1 | _ —— SoftMax Model 8 20
= | . + Applicability Model =
a I
< 100 | Max fﬂl 10 -
| .~ - — Random
04" 0 4
T T T T T T T T T T
0 50000 100000 150000 0 10 20 30 40 50
A Num. Templates B Num. Templates

Figure 7. Prioritization of templates by the SoftMax and combined models. The templates were sorted according to the model’s
prediction and the cumulative number of applicable templates recorded. The curves are an average of 1000 compounds. (a) The
full curve. (b) Early enrichment of the top 50 templates.

3.4. Prioritization of templates

An important part of the policy network’s function is to enrich the top predictions with plausible and
applicable templates. Figure 7 shows a comparison between the standard SoftMax model and the combined
model. Overall, the combined model is closer to the theoretical maximum. However, it is the early
enrichment that is of particular interest, as shown in panel B. Here, filtering for applicability leads to a large
increase in the number of applicable templates in the top 50. These can then be considered during the
tree-search algorithm. As the applicability prediction is binarized before multiplication with the SoftMax
prediction, the order of the applicable templates is not changed.

The combined model thus shows a very good separation between applicable and non-applicable
templates, as is evident from figure 8. There is a clear separation between the two categories of templates and
even in the non-normalized instance, there are only a few instances of non-applicable templates predicted in
the range that contains applicable templates (small shadows between log SoftMax —10 and —5). Most of the
non-applicable templates have been assigned a value of 108 if they were set to zero, and thus appear in the
plot as a single bar at —18.

3.5. Route-finding capability

The two models were tested regarding route-finding capability on a dataset of 1731 in-house project
compounds used in a previous study [8]; the results are shown in figure 9. The two models show a similar
performance for the first 40 s, whereas the combined network outperforms the standard model after 50 s of
runtime. As the prioritization is not changed by the combined network, the same templates are most likely to
be tried in the early phase of the tree search when routes are found for easy compounds, whereas the higher
number of applicable templates available after prediction by the combined model allows the algorithm to
find routes in the later phase of the tree search for more difficult cases. The SoftMax policy and
applicability-filtered policy led to 87% and 91% of solved routes, respectively. Thus, 13% of the routes were
not able to be solved with the SoftMax policy, which decreased to 9% with the applicability-filtered policy.
This constitutes a 30% decrease in the unsolvable compounds. The slightly longer prediction time of the
combined model (6.1 ms vs 4.4 ms) may explain the slight performance advantage the standard model has in
the early phase of the tree search.

10P Publishing

Mach. Learn.: Sci. Technol. 2 (2021) 017001 EJ Bjerrum et al

BB Applicable, Normalized
| Non applicable, Scaled

0.6 - Non applicable, Normalized
ey
‘@
2 0.4 A
A

0.2 A

0.0 | E— E— —T 1

-20 -15 -10 -5 0
Log(SoftMax)

Figure 8. Histogram comparison of the SoftMax predictions of the combined model. Predictions of zero were set to 10~ before
logarithmic conversion. Only a few non-applicable templates are intermixed with the applicable ones (small shadows between log
SoftMax —10 and —5). Y-axis truncated at 0.8. Compare with figure 1.

1.0 A~
0.9 A —
o /
)
> p
S 0.8 A
w
=
=
© 0.7
@
—
=
0.6 ~ —— Softmax
+ Applicability Filter
0.5 1 1 1 1
0 50 100 150
Time (S)

Figure 9. Route-finding capability of the two models for a dataset of 1731 in-house project compounds. The combined model
shows an increased route-finding capability for run times above 50 s.

4. Discussion

The filter network shows a suspiciously high discriminatory power, but it must be kept in mind that the
dataset is essentially noise free, as it is artificially created. Moreover, the information needed for
discrimination is encoded directly into the molecular representation. Figure 10 shows an example SMARTS
definition from the product side of a template. The atoms are specified in square brackets via atomic type
and eventual degree, hydrogen count and charge. The structural topology is mapped via bonds (- single,

= double), and the branching is specified with parentheses. The degree of an atom is defined by its number
of directly bonded neighbors and is independent of bond orders; however, explicit hydrogen atoms are
included. Thus, as explicit hydrogen atoms are usually not present in the templates, this will correspond to
the first atomic property included in the Morgan atomic invariants, as described in the ‘methods’ section.
The number of hydrogens attached to the atom (implicit and explicit) can be inferred from the other atomic
properties which compose the atom’s invariant keys in the Morgan algorithm. The charge is also a direct part
of the atom’s invariant calculation. Therefore, there is a direct mapping between the atomic invariants and
the specification of the atom in SMARTS. This means that if there is a key in the Morgan fingerprint of a
product that is not mapped in SMARTS, the template can be immediately discarded. Furthermore, the
structural information will also be included in the Morgan fingerprint, which can be important for
discrimination. The SMARTS definition shown in figure 10 will not match the structure in figure 2, even

7

10P Publishing Mach. Learn.: Sci. Technol. 2 (2021) 017001 EJ Bjerrum et al

SMARTS:
[C]-[INH;D2;+0]-[C;H0;D3;+0] (-[C])=[0;D1;H0]

Structure: 2:40] I
NH;D2;+
/ . /
[C] [C;HO;D3;+0]
[0;D1;HO]

Figure 10. Example of a SMARTS definition, both in linear form and mapped to a molecular graph. The atomic definitions in
square brackets specify the number of hydrogen atoms (H) and the degree (connections to heavy atoms and formal charge).

though it seemingly contains the correct atoms, there is a single bond specified between the carbon and
nitrogen atoms to the left, which is a double bond in the structure in figure 2.

In our initial attempts at network architectures, the model had shared layers and only diverged at the
final output layers. We did this because our hypothesis was that the learned features would be synergistic to
both tasks, in a similar way to that observed for multi-task learning models. However, this turned out not to
work as expected. The network hyperparameters were able to be tuned to have either good prioritization
(accuracy of the SoftMax model) or a good filtering capability (recall of the applicability prediction), neither
of which was able to perform as well as models trained on their specific kind of label on their own. Moreover,
we observed that a high recall was important for the route-finding capability. A recall as high as 0.9 still led to
a decreased route-finding capacity in comparison with the standard SoftMax model, probably because some
of the 10% of removed templates were crucial to finding routes to some compounds. These observations are
in contrast to the findings of a recent paper [16], where artificial labels were used to pretrain a network that
was then subsequently fine-tuned directly on the database labels to yield the final policy model. The benefits
of transfer learning suggest that at least some level of synergy is to be expected, which was not observed here,
and led us to the final training regime of separate training and combination into a compound model
post-training with explicit TensorFlow operations.

The results show that it is possible to improve the route-finding capability of template-based
policy-guided retrosynthetic tree-search algorithms using artificially created labels. As the template
applicability is binarized, it does not change the order of the applicable templates predicted with the SoftMax
layer. There would be no expected difference between the outcome if instead of the top 50 predictions of the
standard model, the number was expanded to perhaps the top 2000, and the non-applicable templates sorted
out. This would, however, lead to many wasted template trials during processing of the tree-search algorithm
and consequent prolonged runtimes. The solution proposed here is a plug-and-run solution for our existing
route-finding software that has a minimal computation-time overhead.

In this study, we did not assess the plausibility and quality of the proposed routes. The higher number of
templates tested for each expansion carries an inherent risk that, reactions are suggested that are applicable
in silico, but chemically infeasible. This would then need to be counteracted with a feasibility model, as also
included in the original 3N-MCTS algorithm [6].

It is also worth noting that the applicability-filter network proposed here is a very strong and accurate
filter, which could in turn enable even more exhaustive searches for retrosynthetic routes. As an alternative,
the standard policy network could be skipped entirely. As the applicability filter already limits the branching
factor to a few hundred applicable reactions, these could be passed through a feasibility test before being used
in the tree-search algorithm and still give realistic search times for exhaustive searching. As the filtering is not
based on existing reactions, the occurrence of a template reflecting the popularity of the associated reactions
in the dataset would not influence the filtering. However, as more frequently occurring reaction types can
give rise to several different templates, there is a chance that a given product will still be associated with given
reaction classes more often, as there simply are more templates to match. On the other hand, the different
templates arise due to differences in the environment around the reaction core and will not have the same
applicability. More seldomly occurring reaction templates could thus get a more even chance of being used,
with a higher number of alternative routes being suggested. This would probably be more useful in a process
optimization setting than a medicinal chemistry scenario, as the former will prioritize the difference of the
routes considered over well-known reactions that will just give enough compound to be tested. This clear
division between a network that limits the number of choices to the applicable, and a second feasibility
network that tests these results one-by-one, considering the full scope of the reaction, could lead to an even
better route-finding capability where the quality of the route finding can be directly tuned by the settings and

8

10P Publishing

Mach. Learn.: Sci. Technol. 2 (2021) 017001 EJ Bjerrum et al

the performance of the feasibility filter. If the template quality is high and already contains rules that limit the

scope of the application, similarly to the expert rules used in Chematica (now Synthia ') [17], the
applicability filter could significantly speed up the search time, with no impact on the quality of the final
routes.

5. Conclusions

Artificial applicability labels can be used to increase the route-finding capability of template-based
policy-guided tree-search algorithms for retrosynthetic route finding. The trained applicability-filter
network has near-perfect performance and can be combined directly with existing SoftMax models with
minimal computational overhead due to the high parallelism of the GPU. The applicability filter represents a
new way of limiting the branching factor of the tree-search algorithm which is independent of the popularity
of the reactions and can be used in alternative algorithmic designs with better templates or feasibility models.

Funding

Amol Thakkar is supported financially by the European Union’s Horizon 2020 research and innovation
program under the Marie Sktodowska-Curie Grant Agreement No. 676434, ‘Big Data in Chemistry’
(‘BIGCHEM’ http://bigchem.eu).

Data availability statement

No new data were created or analyzed in this study.
ORCID iDs

Esben Jannik Bjerrum ® https://orcid.org/0000-0003-1614-7376
Amol Thakkar ® https://orcid.org/0000-0003-0403-4067
Ola Engkvist ® https://orcid.org/0000-0003-4970-6461

References

[1] Corey E J and Wipke W T 1969 Computer-assisted design of complex organic syntheses Science 166 178-92
[2] Muegge I, Bergner A and Kriegl] M 2017 Computer-aided drug design at Boehringer Ingelheim J. Comput. Aided. Mol. Des.
31275-85
[3] Kotsias P-C, Arus-Pous J, Chen H, Engkvist O, Tyrchan C and Bjerrum E J 2020 Direct steering of de novo molecular generation
with descriptor conditional recurrent neural networks Nat. Mach. Intell. 2 254—65
[4] Chen H, Kogej T and Engkvist O 2018 Cheminformatics in drug discovery, an industrial perspective Mol. Inform. 37 1800041
[5] Roschangar F, Sheldon R A and Senanayake C H 2015 Overcoming barriers to green chemistry in the pharmaceutical
industry—the green aspiration level™ concept Green Chem. 17 752-68
[6] Segler M H S, Preuss M and Waller M P 2018 Planning chemical syntheses with deep neural networks and symbolic Al Nature
555 604-10
[7] Coley C W, Green W H and Jensen K F 2019 RDChiral: an RDKit wrapper for handling stereochemistry in retrosynthetic template
extraction and application J. Chem. Inf. Model. 59 2529-37
[8] Thakkar A, Kogej T, Reymond J-L-L, Engkvist O and Bjerrum E] 2019 Datasets and their influence on the development of
computer assisted synthesis planning tools in the pharmaceutical domain Chem. Sci. 11 1
[9] 2019 RDKIT: open source cheminformatics (available at: www.rdkit.org) (Accessed: 12 September 2019)
[10] Rogers D and Hahn M 2010 Extended-connectivity fingerprints J. Chem. Inf. Model 50 742-54
[11] Morgan H L 1965 The generation of a unique machine description for chemical structures—a technique developed at chemical
abstracts service J. Chem. Doc. 5 107-13
[12] Thakkar A, Selmi N, Reymond J-L, Engkvist O and Bjerrum E J 2020 ‘Ring Breaker’: assessing synthetic accessibility of the ring
system chemical space J. Med. Chem 63 8791-8808
[13] Virtanen P ef al 2020 SciPy 1.0: fundamental algorithms for scientific computing in Python Nat. Methods 17 261-72
[14] Chollet F 2015 Keras (https://keras.io/)
[15] Abadi M et al 2016 TensorFlow: a system for large-scale machine learning Proc. 12th USENIX Symp. Oper. Syst. Des.
Implementation, OSDI 2016 May 26583
[16] Fortunato M E, Coley C W, Barnes B C and Jensen K F 2020 Data augmentation and pretraining for template-based retrosynthetic
prediction in computer-aided synthesis planning J. Chem. Inf. Model. 60 3398—407
[17] Klucznik T et al 2018 Efficient syntheses of diverse, medicinally relevant targets planned by computer and executed in the
laboratory Chem 4 522-32

http://bigchem.eu
https://orcid.org/0000-0003-1614-7376
https://orcid.org/0000-0003-1614-7376
https://orcid.org/0000-0003-0403-4067
https://orcid.org/0000-0003-0403-4067
https://orcid.org/0000-0003-4970-6461
https://orcid.org/0000-0003-4970-6461
https://doi.org/10.1126/science.166.3902.178
https://doi.org/10.1126/science.166.3902.178
https://doi.org/10.1007/s10822-016-9975-3
https://doi.org/10.1007/s10822-016-9975-3
https://doi.org/10.1038/s42256-020-0174-5
https://doi.org/10.1038/s42256-020-0174-5
https://doi.org/10.1002/minf.201800041
https://doi.org/10.1002/minf.201800041
https://doi.org/10.1039/C4GC01563K
https://doi.org/10.1039/C4GC01563K
https://doi.org/10.1038/nature25978
https://doi.org/10.1038/nature25978
https://doi.org/10.1021/acs.jcim.9b00286
https://doi.org/10.1021/acs.jcim.9b00286
https://doi.org/10.1039/C9SC04944D
https://doi.org/10.1039/C9SC04944D
www.rdkit.org
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/c160017a018
https://doi.org/10.1021/c160017a018
https://doi.org/10.1021/acs.jmedchem.9b01919
https://doi.org/10.1021/acs.jmedchem.9b01919
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://keras.io/
https://doi.org/10.1021/acs.jcim.0c00403
https://doi.org/10.1021/acs.jcim.0c00403
https://doi.org/10.1016/j.chempr.2018.02.002
https://doi.org/10.1016/j.chempr.2018.02.002

	Artificial applicability labels for improving policies in retrosynthesis prediction
	1. Introduction
	2. Methods
	2.1. Molecular representation
	2.2. Dataset and label generation
	2.3. Neural networks
	2.4. Route-finding

	3. Results
	3.1. Applicability label calculation
	3.2. Performance of the applicability filter network
	3.3. Error analysis
	3.4. Prioritization of templates
	3.5. Route-finding capability

	4. Discussion
	5. Conclusions
	Funding
	References

