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Treatment response is heterogeneous. However, the classical methods treat the

treatment response as homogeneous and estimate the average treatment effects. The

traditional methods are difficult to apply to precision oncology. Artificial intelligence (AI)

is a powerful tool for precision oncology. It can accurately estimate the individualized

treatment effects and learn optimal treatment choices. Therefore, the AI approach can

substantially improve progress and treatment outcomes of patients. One AI approach,

conditional generative adversarial nets for inference of individualized treatment effects

(GANITE) has been developed. However, GANITE can only deal with binary treatment and

does not provide a tool for optimal treatment selection. To overcome these limitations,

we modify conditional generative adversarial networks (MCGANs) to allow estimation

of individualized effects of any types of treatments including binary, categorical and

continuous treatments. We propose to use sparse techniques for selection of biomarkers

that predict the best treatment for each patient. Simulations show that MCGANs

outperform seven other state-of-the-art methods: linear regression (LR), Bayesian linear

ridge regression (BLR), k-Nearest Neighbor (KNN), random forest classification [RF (C)],

random forest regression [RF (R)], logistic regression (LogR), and support vector machine

(SVM). To illustrate their applications, the proposed MCGANs were applied to 256

patients with newly diagnosed acute myeloid leukemia (AML) who were treated with high

dose ara-C (HDAC), Idarubicin (IDA) and both of these two treatments (HDAC+IDA) at M.

D. Anderson Cancer Center. Our results showed that MCGAN can more accurately and

robustly estimate the individualized treatment effects than other state-of-the art methods.

Several biomarkers such as GSK3, BILIRUBIN, SMAC are identified and a total of 30

biomarkers can explain 36.8% of treatment effect variation.

Keywords: causal inference, generative adversarial networks, counterfactuals, treatment estimation, precision

medicine
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INTRODUCTION

Traditional clinical management estimates the average treatment
effects from observational data, assuming that the complex
disease is homogeneous (Rosenbaum and Rubin, 1983; Hansen,
2004; Diamond and Sekhon, 2013; Kennedy et al., 2017; Liu et al.,
2018; Luo and Zhu, 2020). Alternatives to traditional clinical
management, “precision medicine” or “precision oncology”
attempts tomatch themost accurate and effective treatments with
the individual patient (Shin et al., 2017; Ali and Aittokallio, 2019),
rather than using monotherapy that treats all patients. In the real
world, treatment response is heterogeneous. Therapy should be
tailored with the best response possible and highest safety margin
to ensure that the right therapy is offered to “the right patient at
the right time” (Subbiah and Kurzrock, 2018). Precision oncology
can substantially improve progress and treatment outcomes of
patients. It plays a central role in revolutionizing cancer research.
Consequently, alternative to calculating the average effect of an
intervention over a population, many recent methods attempt
to estimate individualized treatment effects (ITEs) or conditional
average treatment effects from observational data (Makar et al.,
2019). To accurately estimate the individualized treatment effects
and learn optimal treatment choices are key issues for precision
oncology. More accurate estimation of individualized treatment
effects, which provides information to guide the individual
selection of the target therapies, is essential for the success of
precision medicine (Kornblau et al., 2009).

Methods for estimation of individualized treatment effects
(ITEs) using observational data largely differ from standard
statistical estimation methods. Estimating of ITEs and learning
optimal treatment strategies raise a great challenge for the
following reasons. First, a common framework for treatment
effect estimation is the potential outcomes assumptions (Ray
and Szabo, 2019) where every individual has two “potential
outcomes” covering the hypothesized individual’s outcomes with
and without treatment. Estimation of ITEs requires estimation
of both factual and counterfactual outcomes for each individual.
However, only the factual outcome is actually observed.We never
observe the counterfactual outcomes (Rosenbaum and Rubin,
1983; Chen and Paschalidis, 2018; Yoon et al., 2018a).

If the effect of each treatment in the subpopulation which
is separately estimated is taken as an individual effect, this can
create large biases. The estimated effect of each treatment in the
subpopulation is still the average effect of the treatment in that
subpopulation and is not an individualized treatment effect in
the subpopulation.

Second, clinical data often have many missing values.
Simultaneously imputing both counterfactual values and
missing values is not easy. Third, the function forms of
the treatment effects which are often non-linear functions
are unknown (Ray and Szabo, 2019). Statistical methods
and computational algorithms that can efficiently deal with
unknown forms of non-linear functions are still lacking
(Lengerich et al., 2019).

Classical works such as random forest and hierarchical models
are adapted to estimate heterogeneous treatment effects (Wager
andAthey, 2015). Recently, machine learning and neural network

methods are used to move away from average treatment effect
estimation to personalized estimation (Johansson et al., 2016;
Shalit et al., 2016; Alaa and van der Schaar, 2017). AI and
causal inferences are becoming a driving force for innovation in
precision oncology (Seyhan and Carini, 2019). A key issue for
ITE estimation is to learn unobserved (missing) counterfactuals.
The idea of using generative adversarial networks (GANs) for
handling missing data is a very promising approach to imputing
counterfactual (Goodfellow et al., 2014; Ding and Li, 2017; Yoon
et al., 2018a). Using conditional GAN (CGAN) to estimate the
individualized treatment effects (GANITE) has been developed
(Yoon et al., 2018a,b). The CGANs consist of a generator and a
discriminator. The generator (G) observes the factual part of real
data and imputes the counterfactuals (missing part) conditioned
on observed factual data, and outputs the complete dataset. The
discriminator (D) inputs the real dataset and tries to determine
which part was actually observed and which part was imputed
counterfactuals. The discriminator enforces the generator to
learn the desired distribution (hidden data distribution) (Yoon
et al., 2018b).

However, the original GANITE was designed for estimation
of the effects of binary treatment and cannot be applied to
continuous and categorical treatments. The treatment variable in
the original GANITE is a binary variable which only represents
the presence and absence of treatment. Therefore, the treatment
variable in the original GANITE is unable to quantify the dosage
of the treatment, and hence the original GANITE cannot be
applied to continuous treatment. To overcome this limitation,
we introduce a treatment assignment indicator variable and
treatment quantity variable. The treatment quantity variable
can represent binary treatment, categorical treatment, and
continuous treatment. We change mathematical formulations
of the generator and discriminator and extend GANITE from
binary treatment to all types of treatments including binary,
categorical, and continuous treatments. The modified GANITE
is abbreviated as MGANITE.

GANITE or in general, CGAN has not systematically
investigated the estimation of ITE for chemotherapy and
other types of treatments in cancer and compared the results
from causal inference using observed data with the results
of randomized clinical trials. One of our goals in this
manuscript is to examine whether MGANITE still works well in
cancer research.

InMGANITE, biomarkers that serve as conditioned variables,
will be used to estimate the ITEs of both single and multiple
treatments (Mirza andOsindero, 2014; Yoon et al., 2018a). Sparse
techniques will be employed to select biomarkers for prediction
of treatment effects and to learn optimal treatment choices of
patients (Emmert-Streib and Dehmer, 2019).

In summary, The novelty of modified GANITE (MGANITE)
is summarized below.

1. The previous conditional generative adversarial network

(CGAN)-based causal inference methods (GANITE) only

can estimate the individualized effects of binary treatment

and cannot estimate the individualized effects of continuous

treatments. The proposed MGANITE is the first time to use
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modified CGANs for estimation of individualized effects of
continuous treatments.

2. We develop new network structures for the generator and
discriminator in the CGANs.

3. We combined sparse techniques for selection of biomarkers
with MGANITE to predict the best treatment for each patient.

To evaluate its performance for estimating ITEs, simulations
are conducted to estimate ITEs using simulated data and
MGANITE, and to compare its estimation accuracy with five
other state-of-the-art methods (LR, KNN, BLR, random forest,
and SVM). To further evaluate its performance, MGANITE is
applied to 256 newly diagnosed acute myeloid leukemia (AML)
patients, treated with high dose ara-C (HDAC), Idarubicin
(IDA), and HDAC+IDA at M. D. Anderson Cancer Center
to estimate ITEs and identify the optimal treatment strategy
for each patient. Preliminary results from simulations and real
data analysis show that MGANITE outperforms five other
state-of-the-art methods. A program for implementing the
proposed MGANITE for ITE estimation and optimal treatment
selection can be downloaded from our website https://sph.uth.
edu/research/centers/hgc/software/xiong/.

MATERIALS AND METHODS

Potential Outcome Framework for
Estimation of Treatment Effects
We assume the Rubin causal model for estimation of treatment
effects (Rubin, 1974) and modifies the approach to the
individualized treatment effect estimation in Yoon et al.,
2018a). The original GANITE only can estimate ITE of binary
treatments, but it cannot be applied to categorical and continuous
treatments. We developMGANITE which can estimate ITE of all
types of treatments including binary, categorical, and continuous
treatments by introducing a treatment assignment indicator
variable and changing the formulation of the generator and
discriminator. ConsiderK treatments. Let Tk be the k

th treatment
variable that can be binary, categorical or continuous, and T =

[T1, . . . ,TK]
T be the treatment vector. We assume that there is

precisely one non-zero component of the treatment vector T,
which is denoted by Tη, where η is the index of this component.
Each sample has one and only one assigned treatment Tη.
To extend the binary treatment to include categorical and
continuous treatments, we define the treatment assignment
indicator vectorM = [M1, . . . ,Mk, . . . ,MK]

T as

Mk =

{

1 k = η

0 otherwise

where
∑K

k=1Mk = 1.
For example, if

T =





0
T2

0





then η = 2 and

M =





0
1
0





If we consider treated and untreated cases, then K = 2. Let T1

denote the treatment and T2 denote no treatment where T2 = 1.
For the sample with the treatment, we have

T =

[

T1

0

]

and M =

[

1
0

]

For the sample with no treatment, we have

T =

[

0
T2

]

and M =

[

0
1

]

.

Define the vector of potential outcome Y (T) =

[Y (T1) , . . . , Y(TK)]
T , where Y(Tk) is the potential outcome of

the sample under the treatment Tk. When K = 2, the potential
outcome Y(T1) corresponds to the widely used notation for
one treatment Y1, the potential outcome of the treated sample,
while the potential outcome Y(T2) corresponds to Y0, the
potential outcome of the untreated sample. Only one of the
potential outcomes can be observed. The observed outcome
that corresponds to the potential outcome of the individual
receiving the treatment Tη is denoted by Y(Tη). The observed
outcome is called the factual outcome and the unobserved
potential outcomes are called counterfactual outcomes, or simply
counterfactuals. For the convenience of notation, the factual
outcome is also denoted by Yf and the counterfactuals are
denoted by Ycf .

The observed outcome Yf can be expressed as

Yf = Yη =

K
∑

k= 1

MkY(Tk)

WhenK = 2, we haveM2 = 1−M1. The above equation becomes

Yf = M1Y (T1) + (1−M1)Y (T2) = M1Y
1 + (1−M1)Y

0

which coincides with the standard expression of the observed
outcome for one treatment.

Let X = [X1, . . . , Xq]
T be the q-dimensional feature

vector. Assume that n individuals are sampled. Let T(i) =

[T
(i)
1 , . . . , T

(i)
K ]T , Y(i) = [Y(i)(T

(i)
1 ), . . . , Y(i)(T

(i)
K )]T and

X(i) = [X
(i)
1 , . . . , X

(i)
q ]T , i = 1, . . . , n be the treatment vector,

the vector of potential outcomes, and feature vector of the ith

individual, respectively.
The most widely used measure of the treatment effect for

the multiple treatment is the pair-wise treatment effect. The

individual effect ξ
(i)
jk

between the pairwise treatments: Tj and Tk

is defined as ξ
(i)
jk

= Y(i)
(

T
(i)
j

)

− Y(i)(Ti
k
), the average pairwise

treatment effect
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τjk = E
[

ξ
(i)
jk

]

. The average pairwise treatment effect τjk|Tj on

the patients treated with Tj is defined as τjk|Tj = E
[

ξ
(i)
jk
|Tj

]

.

The focus of this paper is on the conditional distribution
of treatment effect, given the feature vector X. Let FY|X(Tk)
be the conditional distribution of the potential outcome Y (Tk)

under the treatment Tk, given the feature vector X, and FY|X(T)
be the conditional joint distribution of the potential outcome
vector Y(T) under the K treatment T, given the feature vector X.
Assume that n individuals are sampled. For the ith individual, Tη

treatment (Mη = 1) is assigned. Let X(i) and Y
(i)
η

(

T
(i)
η

)

= Y
(i)
f

be

the observed feature vector and the observed potential outcome
of the ith individual. Therefore, the observed dataset is given

by D = (X(i), T(i), Y
(i)
η , i = 1, . . . , n). The factual and

counterfactual outcomes of the ith individual are denoted by y
(i)
f

and y
(i)
cf
, respectively.

To estimate the treatment effects, we often make the following
three assumptions (Rubin, 1974; Yoon et al., 2018a):

Assumption 1 (Ignorability Assumption). Conditional
on X, the potential outcomes, Y(T) and the treatment T
are independent,

Y (T) = (Y (T1) , . . . , Y (TK))T|X (1)

This assumption requires no unmeasured confounding variables.
Assumption 2 (Common Support). For the feature vector X

and all treatment,

0 < P (Tk = tk|X) < 1 (2)

Assumption 3 (Stable Unit Treatment Value Assumption). No
interference (units do not interfere with each other).

Conditional Generative Adversarial
Networks as a General Framework for
Estimation of Individualized Treatment
Effects
The key issue for the estimation of individualized treatment
effects is unbiased counterfactual estimation. Counterfactuals
will never be observed and cannot be tested by data. The true
counterfactuals are unknown. Recently developed generative
adversarial networks (GANs) started a revolution in deep
learning (Luo and Zhu, 2020). GANs are a perfect tool formissing
data imputation. An incredible potential of GANs is to accurately
generate the hidden (missing) data distribution given some of
the features in the data. Therefore, we can use GANs to generate
counterfactual outcomes.

GANs consist of two parts: the “generative” part that
is called the generator and “adversarial” part that is called
the discriminator. Both the generator and discriminator are
implemented by neural networks. Typically, a K-dimensional
noise vector is input into the generator network that converts
the noise vector to a new fake data instance. Then the generated
new data instance is input into the discriminator network to
evaluate them for authenticity. The generator constantly learns

to generate better fake data instances while the discriminator
constantly obtains both real data and fake data and improves
accuracy of evaluation for authenticity.

Architecture of Conditional Generative Adversarial

Networks (CGANs) for Generating Potential

Outcomes
Features provide essential information for estimation of
counterfactual outcomes. Therefore, we use conditional
generative adversarial networks (CGANs) (Mirza and Osindero,
2014) as a general framework for individualized treatment effect
(ITE) estimation. The CGANs for ITE estimation consist of two
blocks. The first imputation block is to impute the counterfactual
outcomes. The second ITE block is to estimate distribution of
the treatment effects using the complete dataset that is generated
in the imputation block. The architecture of CGANs is shown
in Figure 1.

Both the generator and discriminator are implemented by
feedforward neural networks. The architectures of the neural
networks are described as follows. The generator consists of
seven layers of feedforward neural network. The first layer is
the covariate input layer that input a vector X of covariates.
The second and third layers are hidden layers, each layer with
64 nodes. The fourth layer concatenates the output of the third
layer, the response vector Y, treatment vector T and treatment
assignment indicator vector M and noise vector Z. The fifth and
sixth layers are hidden layers, each layer with 64 nodes. Finally,
the seventh layer is the output layer. All activation functions
of the neurons were sigmoid function. The architecture of the
discriminator is similar to the architecture of the generator
except for adding one more output layer with sigmoid non-linear
activation function.

Imputation Block
To extend GANTITE from binary treatments to all types of
treatments, we introduce the treatment assignment vector and
change some mathematical formulation of the generator. A
counterfactual generator in the imputation block is a non-linear
function of the feature vector, treatment vector T, treatment
assignment indicator vectorM, observed factual outcome yf and
K dimensional random vector zG with uniform distribution zG ∼

U((−1, 1)K) where Yf = Yη. The generator is denoted by

Ỹ = G
(

X,Yf ,T ⊙M, (1−M)⊙ zG, θG
)

(3)

where output Ỹ represents a sample of G. It can take binary
values, categorical values or continuous values. 1 is a vector of 1,
⊙ denotes element-wise multiplication, and θG is the parameters
in the generator. We use Y to denote the complete dataset that is
obtained by replacing Ỹηwith Yf .

The distribution of Ỹ depends on the determinant
of the Jacobian matrix of the transformation function
G

(

X,Yf ,T,M, zG, θG
)

. Changing the transformation function
can change the distribution of the generated counterfactual
outcomes. Let PY|x,t,m,yf

(y) be the conditional distribution of the

potential outcomes, given X = x,T = t,M = m,Y f = yf . The
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FIGURE 1 | Scheme of MGANITE for the estimation of potential outcomes.

goal of the generator is to learn the neural network G such that
G

(

x, yf , t,m, zG, θG
)

∼ PY|x,t,m,yf
(y).

Unlike the discriminator in the standard CGANs where the
discriminator evaluates the input data for their authenticity
(real or fake data), the counterfactual discriminator DG that
maps pairs (x, y) to vectors in [0, 1]k attempts to distinguish
the factual component from the counterfactual components.
The output of the counterfactual discriminator DG is a vector
of probabilities that the component represents the factual
outcome. Let DG(x, ỹ, t, m, θd)i represent the probability
that the ithcomponent of ỹ is the factual outcome, i.e., i =

η, where θd denotes the parameters in the discriminator.
The goal of the counterfactual discriminator is to maximize
the probability DG(x, ỹ, t,m, θd)i for correctly identifying
the factual component η via changing the parameters in the
discriminator neural network DG.

Loss Function
The imputation block in MGANITE attempts to impute
counterfactual outcomes by extending the loss function of the
binary treatment in GANITE (Yoon et al., 2018a) to all types
of treatments: binary, categorical or continuous treatments. We
define the loss function V(DG, G) as

E(x,t,m,yf )∼Pdata(x,t,m,yf )
EzG∼u((−1,1)K )

[

MT logDG
(

X, Ỹ , T, M
)

+ (1−M)T log (1− DG
(

X, Ỹ ,T, M
)

)
]

where log is an element-wise operation. The goal of the
imputation block is tomaximize the counterfactual discriminator

DG and then minimize the counterfactual generator G:

minGmaxDGV(DG, G, θd) (4)

In other words, we train the counterfactual discriminator DG to
maximize the probability of correctly identifying the assigned
treatment Mη and the quantity of the treatment Tη or Yf (Yη),
and then train the counterfactual generator G to minimize
the probability of correctly identifying Mη and Tη. After the
imputation block is performed, the counterfactual generator
G produces the complete dataset D = {x, y}. Next, we use
the imputed complete dataset D = {X, Y} to generate the
distribution of potential outcomes and to estimate the ITE via
CGANs which is called the ITE block.

ITE Block
The CGANs consist of three parts: generator, discriminator
and loss function which are summarized as follows
(Yoon et al., 2018a).

ITE Generator

Unlike the ITE in GANITE where the ITE generator is a non-
linear transform function of only X and ZI , the ITE generator GI

in MGANITE is a non-linear transform function of X, T and ZI :

Ŷ = GI(X,T, ZI , θgI ) (5)

where Ŷ is the generated K-dimensional vector of potential
outcomes, X is a feature vector, T is a treatment vector, and
ZI is a K-dimensional vector of random variables and follows
the uniform distribution ZI ∼ u((−1, 1)K). The ITE generator
attempts to find the transformation Ŷ = GI(X,T, ZI, θgI ) such

that Ŷ ∼ PY|X,T(y).
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ITE Discriminator

Following the CGANs, we define a discriminator DI as a non-
linear classifier with (X,T,Y∗ = Y) or (X,T,Y∗ = Ŷ) as input
and a scalar that outputs the probability of Y∗ being from the
complete dataset D.

Loss Function
Again, unlike the loss function in GANITE where the decision
function is DI(X,Y

∗), a decision function in MGANITE is
defined as D(X,T,Y∗). The loss function for the ITE block in
MGANITE is then defined as

VI (DI , GI) = EX,T∼P(x,T)
[

EY∗∼PY|X,T (y)
[

logDI(X,T,Y
∗ )

]

+ EZI∼u((−1,1)K )

[

log (1− DIX,T,Y
∗)

]]

(6)

where DI(X,T, Y
∗) is the non-linear classifier that determines

whether Y∗ is from the complete dataset D or from generator
GI .The goal of the ITE block is to maximize the probability
of correctly identifying that Y∗ is from the complete dataset
D and to minimize the probability of a correct classification.
Mathematically, the ITE attempts

minGImaxDIVI (DI , GI) (7)

The algorithms for numerically solving the optimization
problems (4) and (7) are summarized in the
Supplementary Note.

The learning parameters for the feedforward neural networks
are given below. We set batch size equal to 16. We assumed
that the learning rates for the discriminator and generator were
0.0001 and 0.001, respectively. We further assume that the decay
rate was 0.1. The learning rate decayed (exponentially) to 10%
of the starting learning rate during 70% of the total batches, and
stayed at 10% during the last 30% batches. The total number of
batches was 1,000,000. Adam Optimizer was used to perform
optimization. We assume that 20% of the nodes were dropped
randomly during the training process.

Sparse Techniques for Biomarker
Identification
The LASSO (least absolute shrinkage and selection operator) that
performs both variable selection and regularization in order to
enhance the prediction accuracy and interpretability of the results
can be used to select biomarkers for optimal treatment selection
(Ali and Aittokallio, 2019). Let Y i

k
and X(i)denote the estimated

effect of the kth treatment and feature vector of the ith individual,
respectively. Let

YT =







Y1
1 · · ·Y

1
K

...
...
...

Yn
1 · · ·Y

n
K






,X =









x
(1)
1 · · · x

(1)
q

...
...
...

x
(n)
1 · · · x

(n)
q









, β =







β11 · · ·β1K

...
...
...

βq1 · · ·βqK







The outputs of the neural networks are in general a continuous
function even if the potential outcomes are binary. For the

TABLE 1 | Performance of six methods for estimating the potential outcomes.

Methods MSE STD Accuracy

MGANITE 0.062 0.235 0.938

LR 0.104 0.305 0.896

LogR 0.120 0.325 0.880

SVM 0.126 0.332 0.874

KNN 0.148 0.355 0.852

RF (C) 0.098 0.297 0.902

convenience of presentation, we assume that the treatment effects
are continuous regardless if the potential outcomes are binary,
categorical or continuous.

The LASSO estimators for identifying biomarkers that predict
treatment effects are given by

β̂λ = argminβ ||YT − Xβ||2F + λ

q
∑

j=1

K
∑

l=1

|βjl| (8)

where ‖.‖F is the Frobenius norm of the matrix. Non-zero
elements βjl 6= 0 predict treatment effect variation and

hence its correspondence Xj =
[

X
(1)
j · · ·X

(n)
j

]T
can be used

as biomarkers for investigation of the lth treatment. For the
continuous treatment, we define the treatment matrix T and its
associated coefficient matrix Ŵ:

T =









T
(1
1 ) · · ·T

(1)
K

...
...
...

T
(n)
1 · · ·T

(n)
K









, Ŵ =







γ11 · · · γ1K
...
...
...

γK1 · · · γKK







Equation (8) should be changed to

[ γ̂λ1 , β̂λ2
] = argminγ ,β ||YT − TŴ − Xβ||2F + λ1

K
∑

j=1

K
∑

l=1

|γjl| + λ2

q
∑

j=1

K
∑

l=1

|βjl| (9)

where λ1, λ2 are penalty parameters.

Biomarker Identification for Optimal
Treatment Selection
Consider K treatments. Let Ŷ i =

[

Ŷ i
1 · · · Ŷ

i
K

]T
be the K-

dimensional vector of the estimated potential outcomes for the
ith individual and zi = argmax1,...,k{Ŷ

i
1, . . . , Ŷ

i
K } be the index

for the optimal potential outcomes of the ith individual. To
select biomarkers for optimal treatment selection, we define the
following LASSO:

Ŷ i
zi
=

q
∑

j=1

x
(i)
j αj + λ

q
∑

j=1

|αj|, i = 1, . . . , n (10)

Solving the above categorical LASSO problem, we obtain a set of
non-zero coefficients that are denoted as α̂l 6= 0, l = 1, . . . , L.
The covariates that correspond to the non-zero coefficients of the
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LASSO solution are chosen as biomarkers for optimal treatment
selection. Again, for the continuous treatment, Equation (10)
needs to be changed to

Ŷ i
zi
=

K
∑

l=1

T
(i)
l

δl +

q
∑

j=1

x
(i)
j αj + λ1

K
∑

l=1

|δl| +λ2

q
∑

j=1

|αj|, i = 1, . . . , n. (11)

Data Collection
The proposed MGANITE was applied to 256 newly diagnosed
acute myeloid leukemia (AML) patients, treated with high dose
ara-C (HDAC), Idarubicin (IDA), and HDAC+IDA at M. D.
Anderson Cancer Center. There were 212 valid samples and
85 useable features (14 discrete and 71 continuous), including
51 total and phosphoprotein from several biological processes
such as apoptosis, cell-cycle, and signal transduction pathways
(Kornblau et al., 2009). Among the 212 valid samples, 37
were treated with HDAC, 9 were treated with IDA and 54
were treated with HDAC+IDA, and 112 were treated with
other drugs. Data were downloaded from the M. D. Anderson
Cancer Center database (http://bioinformatics.mdanderson.org/
Supplements/Kornblau-AML-RPPA/aml-rppa.xls) and (https://
pubmed.ncbi.nlm.nih.gov/18840713/).

Prediction accuracy was defined as the proportions of
correctly predicted potential outcomes. The false positive rate
was defined as the proportion of individuals who were wrongly
classified as having a positive treatment response. Discriminator
accuracy is defined as the proportion of correctly classified real
or fake samples. Replication error is defined as cross entropy
−yf log ŷf where ŷf = G

(

x, t, t∗ , yf , zG, θg
)

, t = t∗ and separate

distance is defined as

1

n

n
∑

i=1

|yif − ŷif |

where ŷif = G
(

x, t, t∗ , yf , zG, θg
)

, t 6= t∗ .

RESULTS

Simulations
We first examine the performance of MGANITE in estimating
the ITE of binary treatment using simulations. A synthetic
dataset is generated as follows. A total of 10,000 individuals with
30-dimentinal feature vectors follow the normal distributions
N(0, I). Let

ŷ0i = 0.05+ 0.4x2i1 + 0.25xi2 + ni0, ni0 ∼ N(0, 0.05)

and

ŷ1i = 0.15+ 0.5x2i1 + 0.25xi1xi2 + 0.25xi2 + ni1

i = 1, 2, . . . , 10, 000, ni1 ∼ N(0, 0.05),

where i is a sample index.
Then, the potential outcomes are generated as

y0i =

{

1 ŷ0i ≥ 0.5

0 ŷ0i < 0.5
and y1i =

{

1 ŷ1i ≥ 0.5

0 ŷ1i < 0.5

Treatment is assigned by the Bernoulli distribution:

M = T|X ∼ Bern(sigmoid
(

WT
t X + nt

)

)

FIGURE 2 | (A) The true potential outcomes with treatment Y1 and estimated potential outcomes ŷ1 using MGANITE, where the x axis denoted a value of covariate

X1, the y axis denoted the potential outcome, a blue color dot represented the true outcome Y1 and a red color dot represented the estimated outcomes ŷ1. (B) The

true potential outcomes without treatment Y0and estimated potential outcomes ŷ0 using MGANITE, where the x axis denoted a value of covariate X1, the y axis

denoted the potential outcome, a blue color dot represented the true outcome Y0 and a red color dot represented the estimated outcomes ŷ0.
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where t is a treatment index, WT
t ∼ u(−0.1, 0.1)30×1,

nt ∼ N(0, 0.1), and Bern represents the Bernoulli distribution.
When one sample has only one treatment assigned, then t = i.

Treatment effect can take three values 1, 0, and −1. In
other words,

ξi =







1 y1i = 1, y0i = 0

0 y1i = 1, y0i = 1 or y1i = 0, y0i = 0

−1 y1i = 0, y0i = 1

We compare MGANITE with linear regression (LR) (Makar
et al., 2019), logistic regression (LogR) (Emmert-Streib and
Dehmer, 2019; Makar et al., 2019), support vector machine
(SVM) (Makar et al., 2019), k- nearest neighbor (k-NN) (Crump
et al., 2008), Bayesian linear regression (BLR) (Johansson et al.,
2016), causal forest (CForest) ( Wager and Athey, 2015), and
random forest classification [RF (C)] (Breiman, 2001). We use
six methods: MGANITE, LR, LogR, SVM, kNN, and RF (C)
to estimate the counterfactual potential outcomes and calculate
the mean square error (MSE) between the estimated treatment
effect and the true treatment effect, standard deviation (STD) and
prediction accuracy. Table 1 presents MSE, STD, and prediction
accuracy of six methods to fit the generated data. We observe that
MGANITEmore accurately estimate the potential outcomes than
the other five state-of-the-art methods. Figure 2 presents the true
counterfactuals and estimates counterfactuals using MGANITE.
We observe that MGANITE reaches remarkably high accuracy
for estimating counterfactuals.

The treatment effect estimation of eight methods [MGANITE,
LR, LogR, SVM, KNN (5,10), BLR, RF (C), RF (R)] are
summarized in Table 2. Table 2 shows that MGANITE has the
highest accuracy of estimation of all treatment effects: average
treatment effect (ATE), average treatment effects on the treated
(ATT), and average treatment effect on the control (ATC),
followed by RF (R) or RF (C). We observe that the estimations
of ATE using all methods are inflated. The inflation rates of ATE
using MGANITE and RF (C) are 3.9 and 7.9%, respectively. The
SVM reaches the inflation rate of the estimation of ATE as high
as 29.8%. All inflation rates of estimation of ATE using LR, LogR,
SVM, KNN, and BLR are very high. The simulations also show
that the false positive rates using MGANITE, LR, LogR, SVC,

TABLE 2 | Treatment effects estimated for simulation data using nine methods.

Methods ATT ATC ATE ITE = −1 ITE = 0 ITE = 1

Ground truth 0.391 0.321 0.356 0 322 178

MGANITE 0.399 0.341 0.37 0 315 185

LR 0.52 0.369 0.444 0 278 222

LogR 0.52 0.393 0.456 0 272 228

SVM 0.524 0.401 0.462 0 269 231

KNN (5) 0.508 0.401 0.454 1 271 228

KNN (10) 0.524 0.325 0.424 1 286 213

BLR 0.524 0.369 0.446 0 277 223

RF (C) 0.452 0.325 0.388 0 306 194

RF (R) 0.431 0.337 0.384 1 306 193

KNN (5), KNN (10), BLR, RF (R), and RF (C) are 3.9, 24.7,
28.1, 29.8, 28/1, 19.7, 25.3, 9, and 8.4%, respectively. The results
show that false positive rates of LR, LogR, SVM, KNN, and BLR
for prediction of positive treatment response are too high to be
applied to treatment selection. Even RF (R) reaches the false
positive rate as high as 8.4%. Table 2 also shows that the number
of individuals that show positive treatment effects increases while
the number of individuals that show no treatment effect decreases
from ground truth.

Next we examine the performance ofMGANITE in estimating
the ITE of continuous treatment using simulations. A synthetic
dataset is generated as follows.

1. Draw the covariate variable X from the standard normal
distribution for 10,000 individuals.

2. The treatment T is exponentially distributed as
P (t) = e−(t−1), t ≥ 1. Define g (t) = 0.1t2.

3. Define a non-linear function f (x) = 1
2+exp(−20

(

x− 1
3

)

)
.

4. Define y0i = 0.3 + f (x) + n0i , i = 1, .., 10, 000, where
n0i is a randomly sampled noise variable from a normal
distribution N(0, 0.01).

5. Define y1i = 0.3 + f (x) + g (t) + n1i , i = 1, . . . , 10, 000,
where n1i is a randomly sampled noise variable from a normal
distribution N (0, 0.01) .

6. Treatment assignment indicator variable Mi is drawn from a
Bernoulli distribution with P = 0.5 for each subject.

The mean square errors (MSE) for MGANITE, Linear
Regression, KNN, Bayesian ridge regression, RF (R), and
SVM regression are 0.011004916, 0.08500695, 0.012520364,
0.085007192, 0.014281599, 0.013962992, respectively.
Figures 3A,B plot the true ITE and estimated ITE for in-
samples and out-of-samples data, using six methods: MGANITE,
LR, KNN, BLR, RF (R), and SVM, respectively, where a dash
straight line indicates that the true ITE and the estimated ITE
are equal. We observe from Figures 3A,B that many green cross
points for both in-sample and out-of-sample data are much
closer to the dash straight line than other types of points. This
shows that the estimated ITE points using MGANITE are much
closer to the true ITE point than using the other five methods. In
other words, the estimator of the ITE using MGANITE is more
accurate than that of using the other five methods. The results
clearly demonstrate that MGANITE outperforms the 5 other
state-of-the-art treatment effect estimation methods.

To further evaluate the performance of MGANITE, we
provide Figure 4 that plots the receiver operating characteristic
(ROC) curve for evaluation of the ability of MGANITE to predict
potential outcomes of treatment. Our calculation shows that area
under the ROC curve (AUC) for MGANITE reaches 0.98, which
is a very high value. The ROC curve and AUC value demonstrate
that the power of MGANITE for prediction of the potential
outcomes of the treatments is very high.

Real Data Analysis
MGANITE is applied to 256 newly diagnosed acute myeloid
leukemia (AML) patients from the clinical trial dataset (Kornblau
et al., 2009). We first present the results of treatment using
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FIGURE 3 | (A) True ITE and estimated ITE for in-sample data using six methods: MGANITE, LR, KNN, BLR, RF (R), and SVM, where MGANTE was denoted by a

green cross point, LR was denoted by an orange point, KNN was denoted by a green point, BLR was denoted by a red point, RF (R) was denoted by a purple point

and SVM was denoted by a dark red point, the x axis denoted the true ITE and the y axis denoted the estimated ITE. (B) True ITE and estimated ITE for out-of-sample

data using six methods: MGANITE, LR, KNN, BLR, RF (R), and SVM, where MGANTE was denoted by a green cross point, LR was denoted by a orange point, KNN

was denoted by a green point, BLR was denoted by a red point, RF (R) was denoted by a purple point and SVM was denoted by a dark red point, the x axis denoted

the true ITE and the y axis denoted the estimated ITE.

HDAC, HDAC+IDA (101) vs. all other drugs (111). A
key issue for MGANITE is how to train MGANITE. To
track the training process of MGANITE, we present Figure 5

that shows ATE, discriminator accuracy, replication error,
and separate distance curves as a function of the number
of batches.
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FIGURE 4 | ATE, discriminator accuracy, replication error and separate distance curves as a function of the number of batches where the x axis denoted the number

of batches, the y axis denoted values of the ATE, discriminator accuracy, replication error, and separation distance for ATE, discriminator, replication, and separation

curves, respectively, red, orange, blue and green curves were ATE, discriminator, replication and separation curves, respectively.

FIGURE 5 | Receiver operating characteristic (ROC) curve for evaluation of performance of MGANITE.
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TABLE 3 | Treatment effects estimated for AML dataset using nine methods.

Methods ATT ATC ATE Number of individuals with

positive treatment effect

HDAC and No Other

HDAC+IDA difference drugs

CGANs 0.011 0.356 0.208 59 138 15

LR 0.033 0.207 0.107 62 112 38

LogR 0.083 0.209 0.137 63 115 34

SVM 0.112 0.165 0.135 65 130 17

KNN (5) 0.248 −0.011 0.137 55 131 26

KNN (10) 0.314 0.066 0.208 62 132 18

BLR 0.129 0.139 0.133 57 136 19

RF (C) 0.157 0.286 0.212 70 117 25

RF (R) 0.052 0.099 0.072 37 155 20

We observe from Figure 5 that discriminator accuracy
converges to 1, replication error converges to zero, separation
distance converges to a constant, and ATE converges to a stable
value. Figure 4 demonstrates thatMGANITE is trained very well.

Next we compared the treatment effect estimations using
nine methods: MGANITE, LR, LogR, SVM, KNN (5), KNN
(10), BLR, RF (C), and RF (R) where 5 and 10 are the number
of neighbors. Treatment with HDAC or HDAC+IDA, and 85
protein expressions and other geographical variables are used as
covariates. The response status (response or no response) is used
as the outcome.

Table 3 summarizes results of the estimation of HDAC
treatment effect usingMGANITE and other eight methods where
individuals with HDAC or HDAC+IDA are taken as the treated
population and individuals with other drugs are taken as the
control population. Comparison of treatment effect estimation
algorithms on real data analysis is not easy because of the lack of
ground truth treatment effects and small sample sizes. In general,
using MGANITE, we observe that the majority of individuals
who are treated by other drugs do not show any response
and that 65% of the individuals who are treated by HDAC or
HDAC+IDA respond. Only 13.5% of individuals who are treated
by other drugs respond. To illustrate the difference between the
estimated treatment effect and treatment response, we present
Figure 6 that shows the histogram of the estimated effects of
the treatments HDAC or HDAC+IDA vs. other drugs using
MGANITE (Figure 6A), and observe the number of responses
of the individuals in the population who are treated with HDAC
or HDAC+IDA vs. other drugs (Figure 6B). ITE is calculated
based on both the factual and counterfactual. We observe that
ITE = 0 consists of two scenarios: (1) no response of the
patients to any drugs and (2) response of the patients to both
HDAC or HDAC+IDA, and other drugs. A proportion of the
patients with response to HDAC or HDAC+IDA on the right
side of Figure 6B and the patient with response to other drugs
on the left side of Figure 6B has ITE = 0. The observed
response of the patients to one drug does not imply that these
patients would not respond to other drugs. However, ITE = 1

or ITE = 0 implies that the patients respond to only one type
of drug. To further compare the performance of MGANITE
and other methods for evaluation of ITE, we split a given
data set into an in-sample dataset (190 samples), used for the
initial parameter estimation and model selection, and an out-
of-sample dataset (22 samples), used to evaluate performance
of ITE estimation. The results are summarized in Table 4. We
observe that the difference in the estimated ATT, ATC, ATE and
proportions of the ITE between in-samples and out-of-samples
using MGANITE are much smaller than using other methods.
This shows that the ITE estimation using MGANITE is more
robust than using other methods. We calculate the Kullback-
Leibler (K-L) divergence between the distributions of the ITE
using in-sample and out-of-samples, and using nine methods.
The results are summarized in Table 5. Table 5 shows that K-
L divergence using MGANITE is much smaller than that using
other methods, which implies that MGANITE is more robust
than the other eight methods.

LASSO is used to identify biomarkers for prediction of
treatment effect and treatment selection. Table 6 lists the top 30
biomarkers identified by LASSO. All top 30 biomarkers explain
36.82% of the variation of HDAC or HDAC+IDA treatment
effect. The top Gene GSK3 accounts for 4.4% of the explanation
of treatment effect variation.

Garson’s algorithm (Garson, 1991; Siu, 2017; Zhang et al.,
2018) that describes the relative magnitude of the importance
of input variables (biomarkers) in its connection with outcome
variables (ITE) of the neural network can also be used
to identify biomarkers for predicting the ITE. The top 30
biomarkers identified by the Garson algorithm are listed
in Supplementary Table 1 where the relative contribution
of each biomarker to the ITE variation and cumulative
contribution of biomarkers to the ITE variation are also listed in
Supplementary Table 1. The correlation coefficient between the
importance ranking of the markers using the Garson algorithm
and LASSO is only−0.05.

Next, we study the joint estimation of effects of the multiple
treatments. The number of individuals that are treated with
HDAC, HDAC+IDA, and other drugs are 37, 54, and 121,
respectively. The widely used treatment estimation methods with
multiple treatments are simultaneous estimations of the effects
of pairwise treatments. We estimate the effects of the pairwise
treatments HDAC vs. HDAC+IDA, HDAC vs. other drugs,
and HDAC+IDA vs. other drugs. The results are summarized
in Table 7. Pairwise comparisons listed in Table 7 does not
present the results of the treatment compared with a placebo
(without using any drugs). We compare the effect of one
treatment with another treatment. Specifically, we make pairwise
comparisons: HDAC vs. other drugs, HDAC+IDA vs. other
drugs, andHDAC+IDA vs. HDAC. The average treatment effects
(ATE) of these three pairwise treatments: HDAC vs. other drugs,
HDAC+IDA vs. other drugs, and HDAC+IDA vs. HDAC using
MGANITE, are 0.1001, 0.2311 and 0.1310, respectively. This
demonstrates that on the average, the effect of the HDAC+IDA
is the largest among the three treatments: HDAC+IDA, HDAC,
and other drugs, followed by the treatment HDAC. In other
words, the treatment HDAC is better than other drugs, in turn,
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FIGURE 6 | (A) Histogram of estimated drug treatment effect using MGANITE, where the x axis denoted the value of ITE and the y axis denoted the number of

patients, ITE = +1 denoted the ITE of patients treated with HDAC or HDAC+IDA, ITE = −1 denoted the ITE of patients treated with other drugs, and ITE = 0

denoted the ITE of two groups of patients: one group of the patients treated with HDAC or HDAC+IDA and another group of the patients treated with other drugs.

(B) Histogram of observed drug treatment response where the x axis indicated three scenarios as described in (B) and the y axis denoted the number of patients, the

right side in the (B) denoted the number of patients only responding to the HDAC or HDAC+IDA, the middle denoted the number of the patients that responds to

both (HDAC or HDAC+IDA) and other drugs or did not respond to both (HDAC or HDAC+IDA) and other drugs, and the left side denoted the number of patients only

responding to the other drugs.

the combination of HDAC and IDA is better than HDAC. It is
also noted that the effect of HDAC+IDA vs. other drugs—effect
of HDAC vs. other drugs = 0.2311–0.1001 = 0.1310 = effect of
HDAC+IDA vs. HDAC.

However, using LR, LogR, SVM, RF (C), and RF (R), we
observe that HDAC is the best treatment. This conclusion violates
the biological interpretation. We explain the reasons that causes
this incorrect conclusion as follows. The traditional methods
for treatment estimation are mainly based on the population

average of the treatment responses. The number of observed
responses and no responses of the individuals treated with
other drugs is 66 and 55, respectively. The average response
rate of the other drugs is 0.545. The number of observed
responses and no responses of the individuals treated with
HDAC is 29 and 8, respectively. The average response rate
for HDAC is 0.784. The number of observed response and no
response of individuals treated with HDAC + IDA is 33 and
21, respectively. The average response rate for HDAC +IDA is
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TABLE 4 | Treatment effects estimated for AML dataset using nine methods.

Method ATT ATC ATE ITE = −1 ITE = 0 ITE = 1

Proportion

In-sample

MCGAN 0.3152 0.2733 0.2911 0.0842 0.5474 0.3684

LR 0.1077 −0.021 0.0339 0.2474 0.4789 0.2737

BLR 0.0843 0.0817 0.0828 0.1158 0.6684 0.2158

KNN (5) −0.0247 0.1743 0.0895 0.1474 0.6158 0.2368

KNN (10) 0.0494 0.1835 0.1263 0.1211 0.6316 0.2474

RF (C) 0.2099 0.0826 0.1368 0.1421 0.5789 0.2789

RF (R) 0.0852 0.0459 0.0626 0.1316 0.6737 0.1947

LogR 0.1358 0.1193 0.1263 0.1579 0.5579 0.2842

SVM 0.1081 0.0571 0.0788 0.1158 0.6263 0.2579

Out-of-sample

MCGAN 0.2000 0.3266 0.2691 0.0455 0.6364 0.3182

LR 0.4974 0.1222 0.2928 0.0909 0.5000 0.4091

BLR 0.3470 0.3129 0.3284 0.0000 0.5909 0.4091

KNN (5) 0.3000 0.5000 0.4091 0.0455 0.5000 0.4545

KNN (10) 0.2000 0.5000 0.3636 0.0000 0.6364 0.3636

RF (C) 0.0000 0.3333 0.1818 0.0455 0.7273 0.2273

RF (R) 0.2600 0.3583 0.3136 0.0000 0.7273 0.2727

LogR 0.6000 0.4167 0.5000 0.0000 0.5000 0.5000

SVM 0.3502 0.2823 0.3132 0.0000 0.5455 0.4545

TABLE 5 | K-L divergence between the distribution of ITEs using in-samples and

out-of-samples.

Methods Kullback–Leibler

divergence

MGANITE 0.00920

LR 0.04123

BLR 0.08201

KNN (5) 0.06024

KNN (10) 0.06293

RF (C) 0.02932

RF (R) 0.06407

LogR 0.09887

SVM 0.07913

0.611. Therefore, estimators of ATE for the treatment of HDAC
vs. other drugs using LR, LogR, SVM, RF (C), and RF (R)
are higher than the estimators of ATE for the HDAC + IDA
treatment. However, the individuals treated with HDAC+IDA
usually do not respond to HDAC treatment. Therefore, the
number of individuals with no response should be adjusted to
62. After adjustment, the response rate of HDAC is changed
to 0.319. Therefore, after adjustment, the ATE of HDAC vs.
other drugs is smaller than the ATE for HDAC +IDA. Then,
the estimators of the pair-wise treatments using MGANITE
are consistent with the treatment responses after the data are
adjusted. This example shows that these traditional methods

that are designed for single treatment effect estimation should
be modified when they are applied to multiple treatment
effect estimation.

Enrichment analysis to top ranking variables for explanation
of treatment effect variation is performed by the hypergeometric
test via the Reactome Pathway Database (RPD) (Jassal et al.,
2020) to assess whether the number of identified biomarkers
associated with the Reactome pathway is over-represented more
than expected. The original P-value from the hypergeometric test
is then adjusted by FDR for multiple test correction. We find
that top ranking biomarkers for the explanation of treatment
effect variation are enriched in multiple cancer related pathways
(Figure 7A), including the intrinsic pathway for apoptosis (R-
HSA-109606, P = 2.86 × 10−14), Signaling by Interleukins
(R-HSA-449147, P = 2.86 × 10−14), Programmed Cell Death
(R-HSA-5357801, P = 9.7 × 10−11), PIP3 activates AKT
signaling (R-HSA-1257604, P = 2.98 × 10−8), RUNX3 regulates
WNT signaling (R-HSA-8951430, P = 1.03 × 10−5), and RNA
Polymerase II Transcription (R-HSA-73857, P = 9.4 × 10−5). In
addition, we find that the drug target of idarubicin (TOP2A) and
Cytarabine (POLB) form a significant protein-protein interaction
network (P < 1.0 × 10−16) (Szklarczyk et al., 2019), indicating
that the predictive biomarkers work as the direct interactive
proteins of cancer drug targets (Figure 7B).

DISCUSSION

In this paper, we present MGANITE coupled with sparse
techniques as a framework to estimate the ITEs and select
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TABLE 6 | Top ranking variables for explanation of treatment effect variation.

Gene name R-square R-square Gene name R-square R-square

(single) (accumulated) (single) (accumulated)

GSK3 0.0440 0.0440 CD33 0.0134 0.1984

BILIRUBIN 0.0411 0.0790 TP53 0.0118 0.2376

DIABLO 0.0370 0.1266 STAT3 0.0085 0.2415

SRC 0.0333 0.1329 BIRC5 0.0071 0.2421

MEK 0.0282 0.1373 BAX 0.0070 0.2446

AKT.p308 0.0244 0.1405 DJI 0.0061 0.2591

Age_at_Dx 0.0226 0.1488 CREATININE 0.0057 0.2627

PRIOR_XRT 0.0202 0.1776 BAD 0.0052 0.2646

PSMC4 0.0196 0.1844 ACTB 0.0052 0.2816

PB_Blast 0.0181 0.1858 WBC 0.0045 0.2922

BM_Blast 0.0167 0.1878 PRIOR_MAL 0.0042 0.3190

CD20 0.0167 0.1883 FIBRINOGEN 0.0038 0.3213

NRP1 0.0147 0.1914 STAT6 0.0033 0.3383

TP38.p 0.0143 0.1954 CD13 0.0033 0.3409

PSMC4 0.0135 0.1971 PTEN 0.0030 0.3682

TABLE 7 | Multiple treatment effects estimated for AML dataset using nine methods.

ATE Number of individuals with treatment effect

Method HDAC vs. other HDAC No difference Other

MGANITE 0.1001 59 115 38

LR 0.1149 58 122 32

LogR 0.0896 54 123 35

SVM 0.1463 59 140 13

KNN (5) 0.1887 62 128 22

KNN (10) 0.3538 80 127 5

BLR 0.0860 45 138 29

RF (C) 0.2264 73 114 25

RF (R) 0.2127 58 145 9

Method HDAC+IDA vs. other HDAC+IDA No difference Other

MGANITE 0.2311 79 103 30

LR 0.0965 59 115 38

LogR 0.2123 56 115 41

SVM 0.2453 52 138 22

KNN (5) 0.1012 62 133 17

KNN (10) 0.1604 63 138 11

BLR 0.1307 49 137 26

RF (C) 0.0708 70 106 36

RF (R) 0.0835 43 155 14

Method HDAC+IDA vs. HDAC HDAC+IDA No difference HDAC

MGANITE 0.1310 52 136 24

LR −0.0184 36 130 46

LogR −0.0189 45 118 49

SVM −0.0628 9 181 22

KNN (5) 0.0236 34 149 29

KNN (10) −0.1085 11 167 34

BLR 0.0152 40 139 33

RF (C) −0.0660 31 136 45

RF (R) −0.0821 8 184 20
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FIGURE 7 | Reactome pathway analysis and protein-protein interaction (PPI) network analysis to top ranking biomarkers for explanation of treatment effect variation.

(A) Enrichment analysis to the top 44 ranking biomarkers for explanation of treatment effect variation with the Reactome pathway database by hypergeometric test to

assess whether the number of identified biomarkers associated with the Reactome pathway was over-represented more than expected. The original P-value from the

hypergeometric test was then adjusted by FDR for multiple test correction. The top 15 most significantly enriched pathways was shown. (B) PPI network analysis was

performed by String 11.0 to show the protein-protein interaction among top ranking biomarkers. We found that these proteins were highly interacted which was

consistent with pathway enrichment analysis (PPI enrichment P-value is 1.0e-16).

the optimal treatments. We demonstrate that the proposed
MGANITE has several remarkable features.

First, MGANITE extends GANITE from binary treatment
to all types of treatments: binary, categorical, and continuous
treatments. We show that MGANITE has a much higher
accuracy for estimation of ITE than other state-of-the-
art methods.

Second, in-sample and out-of-sample analysis show that the
K-L divergence between the distributions of ITE for in-sample
and out-of-samples for MGANITE is much smaller than that of
other methods, which implies that MGANITE is more robust
than other state-of-the art methods.

Third, unlike many popular methods that are usually used to
estimate the average effect of the single treatment, MGANITE
not only can estimate the ITE of a single treatment, but also can
accurately and jointly estimate the ITE of multiple treatments.
We also show that the results of the joint estimation of multiple
treatments using other classical methods are inconsistent and
might violate the biological interpretation.

Fourth, precision oncology is the identification of the right
treatment for the right patient. The essential aim is to discover
biomarkers that can accurately predict individual treatment effect
for each individual. Our results show that MGANITE with sparse
techniques can identify a set of biomarkers with significant
biological features. The following identified biomarkers are such
typical examples.

GSK3 is a kinase so adaptable that it has been recruited
evolutionarily to phosphorylate over 100 substrates, and can
regulate numerous cellular functions (Beurel et al., 2015). GSK3
phosphorylates HDAC3 and promotes its activity, including the

neurotoxic activity of HDAC3 (Bardai and D’Mello, 2011). GSK3
also phosphorylates HDAC6 to modify its activity and the link
between GSK3beta and HDAC6 involved in neurodegenerative
disorders (Chen et al., 2010).

Bilirubin is a reddish yellow pigment generated when the
normal red blood cells break. Normal levels range from 0.2 to
1.2 mg/dL (Davis, 2020). In adults, indirect hyperbilirubinemia
can be due to overproduction, impaired liver uptake or
abnormalities of conjugation (Gondal and Aronsohn, 2016).
For AML patients,[[Inline Image]][[Inline Image]] enasidenib
is an inhibitor of mutant IDH2 proteins used to treat
newly diagnosed mutant-IDH2 AML patients (Pollyea et al.,
2019). The most common treatment-related adverse events are
indirect hyperbilirubinemia (31%), nausea (23%), and fatigue
(Steinwascher et al., 2015). Therefore, bilirubin is an important
biomarker for monitoring adverse effect in AML patients who
receive treatment.

Preclinical studies have discovered that Smac mimetics can
directly cause cancer cell death, or make tumor cells become
more sensitive to various cytotoxic treatment agents, including
conventional chemotherapy, radiotherapy, or new drugs (Fulda,
2015). There is synergistic interaction of Smac mimetic and
HDAC inhibitors in AML cell lines, and Smac mimetic and
HDAC inhibitors can trigger necroptosis when caspase activation
is blocked (Meng et al., 2016).

AKT.p308 and Src.p527 are phosphorylated signal
transduction proteins. These two proteins are found to
have lower expression in M0, M1, M2, but they have higher
levels in the other AML French-American-British (FAB) types.
The expression of those two proteins, together with 22 other
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proteins, can be used to define distinct signatures for each FAB
type (Kornblau et al., 2009).

PTEN is a tumor suppressor protein. Promising anti-cancer
agents, HDAC inhibitors, particularly trichostatin A (TSA),
can promote PTEN membrane translocation. Meng et al.
(2016) reveals that non-selective HDAC inhibitors, such as TSA
or suberoylanilide hydroxamic acid (SAHA), induces PTEN
membrane translocation through PTEN acetylation at K163
by inhibiting HDAC67. Similarly, treatment with an HDAC6
inhibitor alone promoted PTEN membrane translocation and
correspondingly dephosphorylated AKT. The combination of
celecoxib and an HDAC6 inhibitor synergistically increases
PTEN membrane translocation and inactivated AKT (Zhang and
Gan, 2017).

Our results show that multiple treatments improve efficiency
of drugs for curing AML. This can be biologically explained.
HDAC inhibitors have emerged as a potent and promising
strategy for the treatment of leukemia via inducing differentiation
and apoptosis in tumor cells (Jin et al., 2016). A phase II
study with 37 refractory acute myelogenous leukemia (AML)
patients shows only minimal activity of Vorinostat (HDACi),
and Vorinostat fails to control the leukocyte count among most
AML patients (Schaefer et al., 2009). A preclinical study reveals
that the combination regimen of chidamide (a novel orally
active HDAC inhibitor) and IDA could rapidly diminish the
tumor burden in patients with refractory or relapsed AML (Li
et al., 2017). A Phase II trial of Vorinostat with idarubicin
(IDA) and Ara-C for patients with newly diagnosed AML or
myelodysplastic syndrome reveals good activity with overall
response rates of 85%. No excess toxicity due to Vorinostat is
observed (Garcia-Manero et al., 2012). Taken together, HDACs
in combination therapy with IDA or other chemotherapeutic
drugs show encouraging clinical activity in different hematologic
malignancies. This explains that the combination of HDAC and
IDA is the best treatment.

Although MGANITE shows remarkable features in ITE for
estimation and optimal treatment selection; the results in this
paper are very preliminary. Training stable GANs is a challenging
task. The training process is inherently unstable, resulting in
the inaccurate estimation of ITEs. In this study, we ignore
unobserved confounders, unmeasured variables that affect both
patients’ medical prescription and their outcome. Overlooking
the presence of unobserved confounders may lead to biased
results. The main purpose of this paper is to stimulate discussion
about how to use AI as a powerful tool to improve the estimation
of ITEs and optimal treatment selection.We hope that our results

will greatly increase the confidence in using AI as a driving force
to facilitate the development of precision oncology.
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