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Abstract 
Kinematic Fourier (KF) structures, exponential kinematic Fourier (KEF) structures, dynamic ex-
ponential (DEF) Fourier structures, and KEF-DEF structures with constant and space-dependent 
structural coefficients are developed in the current paper to treat kinematic and dynamic prob-
lems for nonlinear interaction of N conservative waves in the two-dimensional theory of the New-
tonian flows with harmonic velocity. The computational method of solving partial differential eq-
uations (PDEs) by decomposition in invariant structures, which continues the analytical methods 
of undetermined coefficients and separation of variables, is extended by using an experimental 
and theoretical computation in Maple™. For internal waves vanishing at infinity, the Dirichlet 
problem is formulated for kinematic and dynamics systems of the vorticity, continuity, Helmholtz, 
Lamb-Helmholtz, and Bernoulli equations in the upper and lower domains. Exact solutions for 
upper and lower cumulative flows are discovered by the experimental computing, proved by the 
theoretical computing, and verified by the system of Navier-Stokes PDEs. The KEF and KEF-DEF 
structures of the cumulative flows are visualized by instantaneous surface plots with isocurves. 
Modeling of a deterministic wave chaos by aperiodic flows in the KEF, DEF, and KEF-DEF struc-
tures with 5N parameters is considered. 
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1. Introduction 
The two-dimensional (2d) Navier-Stokes system of partial differential equations (PDEs) for a Newtonian fluid 
with a constant density ρ  and a constant kinematic viscosity ν  in a gravity field g  is 
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∂
v v v v g , 0,∇⋅ =v                           (1-2) 

where ( ),0,u w=v  is a vector field of the flow velocity, ( )0,0, zg= −g  is a vector field of the gravitational 
acceleration, tp  is a scalar field of the total pressure, ( ),0,x z∇ = ∂ ∂ ∂ ∂  and 2 2 2 2x z∆ = ∂ ∂ +∂ ∂  are the 
gradient and the Laplacian in the 2d Cartesian coordinate system ( ),0,x z=x  of the three-dimensional (3d) 
space with unit vectors ( ), ,i j k , respectively, and t  is time. 

By a flow vorticity ( )0, ,0υ=ω  of the velocity field 
,∇× =v ω                                                (3) 

Equation (1) may be written into the Lamb-Pozrikidis form [1] [2] 

1 ,
2

tp
t

ν
ρ

 ∂
+∇ ⋅ + − ⋅ + × + ∇× = ∂  

v v v g x v 0ω ω                           (4) 

which sets a dynamic balance of inertial, potential, vortical, and viscous forces, respectively. 
Using a dynamic pressure per unit mass [3] 

0 ,t
d

p p
p

ρ
−

= − ⋅g x                                     (5) 

where 0p  is a reference pressure, a kinetic energy per unit mass 2,ek = ⋅v v  the 2d Helmholtz decomposi-
tion [4] of the velocity field 

φ= ∇ +∇×v ψ                                       (6) 

and the vortex force 
,d× = ∇ +∇×v aω                                     (7) 

Equation (4) is reduced to the Lamb-Helmholtz PDE 
0e eb∇ +∇× =h                                      (8) 

for a scalar Bernoulli potential  

e d eb p k d
t
φ∂

= + + +
∂

                                  (9) 

and a vector Helmholtz potential  

,e t
ν∂

= + +
∂

h aψ ω                                   (10) 

where φ  and d  are scalar potentials, ( )0, ,0η=ψ  and ( )0, ,0b=a  are vector potentials, η  and b  are 
pseudovector potentials of v  and ,×vω  respectively. The Lamb-Helmholtz PDE (8) means a dynamic bal-
ance between potential and vortical forces of the Navier-Stokes PDE (1), which are separated completely. 

A linear part of the kinematic problem for free-surface waves of the theory of the ideal fluid with 0ν =  im-
plies the exponential Fourier eigenfunctions [5], which are obtained by the classical method of separation of va-
riables of the 2d Laplace Equation in [4] and [1]. This analytical method was recently developed into the com-
putational method of solving PDEs by decomposition into invariant structures. In [3], the Boussinesq-Rayleigh- 
Taylor structures were developed for topological flows away from boundaries. The trigonometric Taylor struc-
tures and the trigonometric-hyperbolic structures [6] were used to describe spatiotemporal cascades of exposed 
and hidden perturbations of the Couette flow, respectively. In [7], the theory of the invariant trigonometric, 
hyperbolic, and elliptic structures was constructed and applied for modeling dual perturbations of the Poi-
seuille-Hagen flow.  

To treat linear and nonlinear parts of kinematic and dynamic problems for 2d internal waves in the theory of 
Newtonian flows with harmonic velocity, kinematic Fourier (KF) structures, exponential kinematic Fourier 
(KEF) structures, dynamic exponential Fourier (DEF) structures, and KEF-DEF structures with constant struc-
tural coefficients are developed in the current paper. The structure of this paper is as follows. In section 2, the 
kinematic problems for velocity components and dual potentials of the velocity field are formulated in upper and 
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lower domains and treated in the KF and KEF structures. To compute and explore Jacobian determinants (JDs) 
of the velocity field, the DEF structure is also constructed in this section. In section 3, the dynamic problems for 
the Bernoulli potential and the total pressure are formulated and computed in the KF, KEF, and KEF-DEF 
structures. The Navier-Stokes system of PDEs is employed for verification of experimental and theoretical solu-
tions for cumulative upper and lower flows in this section, as well. Visualization and discussion of the devel-
oped structures and fluid-dynamic variables is given in section 4, which is followed by a summary of main re-
sults in Section 5. 

2. Kinematic Problems for Conservative Flows 
The following solutions and admissible boundary conditions for the kinematic problems of section 2 in the KF 
and DEF structures were primarily computed experimentally in Maple™ by programming with lists of equations 
and expressions in the virtual environment of a global variable Eqs with 29 procedures of 670 code lines. 

2.1. Formulation of Theoretical Kinematic Problems for Velocity Components 
Theoretical kinematic problems for harmonic velocity components ( ), ,u u x z t=  and ( ), ,w w x z t=  of a cu-
mulative flow u w= +v i k  of a Newtonian fluid are given by vanishing the -y component of the vorticity Equa-
tion (3) and the continuity Equation (2), respectively, 

0,u w
z x
∂ ∂

− =
∂ ∂

 0.u w
x z
∂ ∂

+ =
∂ ∂

                              (11-12) 

To consider nonlinear interaction of N  internal, conservative waves with a harmonic velocity field, the cu-
mulative flow is decomposed into a superposition of local flows 

( ) ( )
1 1

, , , , , ,
N N

n n
n n

u u x z t w w x z t
= =

= =∑ ∑                              (13) 

such that the local vorticity and continuity equations are 

0, 0,n n n nu w u w
z x x z

∂ ∂ ∂ ∂
− = + =

∂ ∂ ∂ ∂
                            (14-15) 

where 1, 2, , .n N=   If Equations (14)-(15) for the local flows are fulfilled, then substitution of superpositions 
(13) into (11)-(12) and changing order of summation and differentiation yield that Equations (11)-(12) for the 
cumulative flow are also satisfied. 

Upper flows are specified by the Dirichlet condition in the KF structure on a lower boundary 0z =  of an 
upper domain ( ),x∈ −∞ ∞  and [ )0,z∈ ∞  (see Figure 1) 

0n n n n nzw Fw ca Gw sa
=
= +                                   (16) 

and a vanishing condition as z →∞  
0.n zw

=∞
=                                        (17) 

Lower flows are identified by the Dirichlet condition on a lower boundary 0z =  of a lower domain 
( ),x∈ −∞ ∞  and ( ],0z∈ −∞  (see Figure 1) 

0n n n n nzw Fw ca Gw sa
=
= +                                   (18) 

and a vanishing condition as z → −∞  

0.n zw
=−∞

=                                       (19) 

Thus, an effect of surface waves on the internal waves is described by the Dirichlet conditions (16) and (18). 
Here, a structural notation  

( ) ( )cos , sin ,n n n nca saα α= =                                 (20) 

is used for kinematic structural functions nca  and ,nsa  where nFw  and nGw  are boundary coefficients, 
n n nXα ρ=  is an argument of the kinematic and dynamic structural functions, n n nX x Cx t Xa= − −  is a propa- 
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Figure 1. Configuration of upper and lower domains for internal, conserva-
tive waves.                                                      

 
gation coordinate, nρ  is a wavenumber, nCx  is a celerity, and nXa  is an initial coordinate for all .n  

As we will see later, boundary conditions for nu  are then redundant since boundary parameters of nu  

0
,n n n n nzu Gw ca Fw sa

=
= − +  0n n n n nzu Gw ca Fw sa

=
= −                     (21-22) 

for the upper and lower flows, respectively, depend on boundary parameters of nw . Similarly to ,nw  nu  va-
nishes as z → ±∞  

0,n zu
=∞

=  0,n zu
=−∞

=                               (23-24) 

for the upper and lower flows, respectively. 
Thus, the -x and -z components of the velocity field of the cumulative flows are expanded in the KF structures 

with constant structural coefficients  

( ) ( )
1 1

0 0, ,
N N

n n
n n n n n n n nz zu Gw ca Fw sa Fw ca w aw G s

= =
= =

= − + = +∑ ∑                   (25) 

( ) ( )0
1 1

0 , ,n n n n n n n nz z

N N

n n
u wGw ca Fw sa Fw ca Gw sa

= =
= =
= = +−∑ ∑                    (26) 

and the velocity components vanish as z → ±∞  

0, 0,z zu w
=∞ =∞

= =                                   (27) 

0, 0,z zu w
=−∞ =−∞

= =                                  (28) 

for the upper and lower cumulative flows, respectively. 

2.2. Theoretical Solutions for the Velocity Field 
Theoretical solutions of kinematic problems (11)-(28) are constructed in the KF structure ( ), ,p x z t  of two 
spatial variables , ,x z  and time t  with a general term ,np  which in the structural notation may be written as 

( ) ( ) ( ) ( )( )
11

, , , , ,
N

n n n n
n

N

n
np x z t x z t fp z ca gp z sp a

==

= = +∑∑                       (29) 
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where first letters f  and g  of structural coefficients ( )nfp z  and ( )ngp z  refer to the kinematic structural 
functions ,n nca sa  and a second letter to the expanded variable .p  Thus, general terms of the velocity compo-
nents of the local flows in the structural notation become 

( ) ( ) ,n n nnnu fu ca guz z sa= +  ( ) ( ) .n n n n nw fw ca gwz z sa= +                (30-31) 

It may be shown that spatial derivatives of np  are  

( ) ( )( ) ,n
n n nn n

p
gp ca fpz z sa

x
ρ

∂
= −

∂
 

d d
d

.
d

n n n
n n

p fp gp
ca sa

z z z
∂

= +
∂

             (32-33) 

Application of (32)-(33) to (30)-(31), substitution in (14)-(15), and collection of the structural functions re-
duce the vorticity and continuity PDEs to the following system of two vorticity and continuity ordinary differen-
tial equations (ODEs) in the KF structures: 

d d
0,

d d
n n

n n nn nn
fu gu

gw ca fw sa
z z

ρ ρ   − + =   
  

+


 d d
0.

d d
n n

n n n n n n
fw gw

gu ca fu sa
z z

ρ ρ   + + − + =   
   

 (34-35) 

For Equations (34)-(35) to be satisfied exactly for all variables, parameters, and functions of the local flows: 
,x  ,z  ,t  ,nα  ,nρ  ,nfu  ,ngu  ,nfw  and ,ngw  all coefficients of two kinematic structural functions must 

vanish. Thus, two ODEs (34)-(35) are reduced to two systems of ODEs for ,nfu  ngw  and ,nfw  ,ngu  re-
spectively: 

d
0,

d
n

n n
fu

gw
z

ρ− =  
d

0,
d

n
n n

gw
fu

z
ρ− + =                       (36-37) 

d
0,

d
n

n n
gu

fw
z

ρ + =  
d

0.
d

n
nn

fw
gu

z
ρ+ =                        (38-39) 

Since boundary conditions (25)-(26) are expanded in the KF structure exactly, remainders of structural ap-
proximations (34)-(35) vanish, and exact solutions of ODEs (36)-(39) produce exact solutions of vorticity and 
continuity PDEs (14)-(15). If (25)-(26) are replaced with series approximations, then their remainders constitute 
errors of the series approximations.  

Solutions of ODEs for structural coefficients (36)-(39) are constructed in an exponential structure 

( ) ( ), , , , , , e ,nc z
n n n n n n n nfu gu fw gw Fu Gu Fw Gw=                     (40) 

where , , , ,n n n nFu Gu Fw Gw  and nc  are structural coefficients. Substitution of exponential structure (40) in 
Equations (36) and (38) reduces these ODEs to algebraic equations (AEs) for structural parameters: 

, .n n n n
n n

n n

Gw Fw
Fu Gu

c c
ρ ρ

= = −                               (41) 

Substitution of (40) and (41) in (37) and (39) reduces these ODEs to AEs for admissible values of the struc-
tural coefficient nc  with the following solutions for the upper and lower flows, respectively: 

, .n n n nc cρ ρ= − =                                   (42) 

Since the admissible values of nc  coincide for Equations (37) and (39), ODEs for structural coefficients 
(36)-(39) are compatible both for the upper and lower flows.  

Finally, substitutions of (40)-(42) in (30)-(31) and (13) yield the velocity components in the KEF structures 
for the upper cumulative flow 

( ) ( )
1

, , e ,n
N

z
n n n n

n
u x z t Gw ca Fw sa ρ−

=

= − +∑  ( ) ( )
1

, , e ,n
N

z
n n n n

n
w x z t Fw ca Gw sa ρ−

=

= +∑      (43-44) 

and the lower cumulative flow 

( ) ( )
1

, , e ,n
N

z
n n n n

n
u x z t Gw ca Fw sa ρ

=

= −∑  ( ) ( )
1

, , e ,n
N

z
n n n n

n
w x z t Fw ca Gw sa ρ

=

= +∑      (45-46) 

while boundary conditions (16)-(19) and (21)-(28) are obviously satisfied.  
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2.3. The DEF structure and Theoretical Jacobian Determinants of the Velocity  
Components 

Define two KEF structures ( ), ,l x z t  and ( ), ,h x z t  with general terms nl  and mh  by using a generalized 
Einstein notation for summation, which is extended for exponents, 

( ) ( ) ( ) ( )
1 1

, , e , , , e .n m
N N

z z
n n n n n m m m m m

n m
l x z t l Fl ca Gl sa h x z t h Fh ca Gl saρ ρ

= =

= = + = = +∑ ∑       (47) 

Computation of a general term ,n n n np l h= by summation of diagonal terms yields  

( )( ( ) ) 2
, e 2.n z

n n n,n n n n n n,n n n n nn n n nFl Fh Gl Gh Fl Fh Gl Gh Cas Fl Gh Fh Gl Sap s ρ= + − ++ +       (48) 

Trigonometric structural functions , ,n mCas  , ,n mCad  , ,n mSas  and ,n mSad  of the DEF structure are defined 
by the following expressions: 

( ) ( ) ( ) ( ),cos cos , sin sin ,, ,n,m m n,m n m n,m m n m n mn nCad Sad SasCasα α α α α α α α= = =− +=+ −    (49) 

where capital letters C  and S  stand for dynamic structural functions cosine and sine, letter a  for arguments 
, ,n mα α  and letters s  and d  for sum and difference of arguments nα  and .mα  
A general term ,n m n mp l h=  computed by rectangular summation of non-diagonal terms becomes 

( ) ( )( ( )
( ) ) ( )

,

.e 2mn

n m m n m n m nn n,m n,m n,m

z
n,m

m n m m n

n m m n

Fl Fh Gl Gh Cad Fl Gh Cas Fl Fh Sad

Fl Gh Fh Gl

p Fh Gl Gh Gl

Sas ρ ρ+

= +

+

− − +

+

+ +


 (50) 

By triangular summation, ,n mp  is reduced to 
( ) ( )(
( )
( )
( ) )

, e 2

.

n m
n m n m m n n m m n

n m m n n m m n

n m n m m n

n m m n

z
n,m

n,m

m n n,

n

m

,m n mm n

Fl Fh Fl Fh Gl Gh Gl Gh Cad

Fl Fh Fl Fh Gl Gh Gl Gh Ca

p

s

Fl Gh Fl Gh Fh Gl Fh Gl Sad

Fl Gh Fl Gh Fh Gl Fh Gl Sas

ρ ρ+= × + + +

+ + − −

+ − − +

+ + + +

+



              (51) 

Using general terms (48) and (51), summation formula for the product of the KEF structures is written as the 
DEF structure 

( ) ( ) ( ) ( )

( ) ( )

2

1
1

, , ,
1 1

1, , , , , , e
2

1 e
2

n

mn

z
n,n n,n n,n n,n n,n

n
N N

z
n m n,m n m n,m n m n,m n,m n,m

n m n

N

p x z t l x z t h x z t Fdp Fsp Cas Gsp Sas

Fdp Cad Fsp Cas Gdp Sad Gsp Sas

ρ

ρ ρ

=

−
+

= = +

= = +

+ + + +

+∑

∑ ∑





           (52) 

with the following structural coefficients: 

, ,

, ,

, ,

, , ,
, ,

,

n m n,n n n n n n n n n

n

n n n n n n

n m m n n m m n n m m n n m m n

n m n m m n n m m n

m n m

n m m n mn n m m

Fdp Fl Fh Gl Gh Fsp Fl Fh Gl Gh Gsp Fl Gh Fh Gl
Fdp Fl Fh Fl Fh Gl Gh Gl Gh Fsp Fl Fh Fl Fh Gl Gh Gl Gh
Gdp Fl Gh Fl Gh Fh Gl Fh Gl Gsp Fl Gh Fl Gh Fh Gl Fh

= + = − = +

= + + + = + − −

= − − + + + ++ = ,nGl
   (53) 

where first two letters ,Fd  ,Fs  ,Gd  and Gs  of structural coefficients , ,n mFdp  , ,n mFsp  , ,n mGdp  and
,n mGsp  stand for dynamic structural functions ,nCad  ,nCas  ,nSad  and nSas , respectively, and a third letter 

for variable .p  
Computation of local JDs for the velocity components of the upper and lower flow, respectively, yields 

( ) 22 2 2e .n zn n n n
n n n

u w u w
Fw Gw

x z z x
ρρ

∂ ∂ ∂ ∂
− = − +

∂ ∂ ∂ ∂
                          (54) 

Thus, velocity components nu  and nw  are independent for non-trivial structural coefficients nFw  and 
nGw since the local JDs vanish when 2 2 0.n nFw Gw+ =  

Computation of a global JD by using (52)-(53) for velocity components of the upper and lower cumulative 
flows (43)-(46) with slant internal waves gives 
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( )

( )(

( ) ) ( )

1

,
1 1

2

,

22 2

1

2

e .

e

n

n

m

N N

n m n m n m
n m n

n m m n n m

N
z

g n n n
n

z
n m

Fw Fw Gw Gw Cad

Fw Gw Fw Gw Sa

u w u wJ Fw Gw
x z z x

d

ρ

ρ ρ

ρ

ρ ρ

−

= = +

=

+

+

∂ ∂ ∂ ∂
= − = − +
∂ ∂ ∂ ∂

− +

+ −

∑ ∑

∑ 



                      (55) 

So, gJ  is a superposition of a propagation JD with general term ,n nJc  proportional to , 1,n nCad ≡  an in-
teraction JD with ,n mJc  proportional to , ,n mCad  and an interaction JD with ,n mJs  proportional to , ,n mSad  
which describe interaction between parallel and orthogonal internal waves, respectively. 

,n nJc  coincides with (54). They describe propagation of internal waves and vanish only for internal waves 
with 2 2 0.n nFw Gw+ =  ,n mJs  vanishes for parallel waves with 

, .m m
n m

n n

Fw Gw
A

Fw Gw
= =                                   (56) 

Global JD (55) then becomes  

( ) ( ) ( )
1

22 2 2 2 2
, ,

1 1 1
e 2 e .nn m

N N N
z

p n n n n m n n n m n m
n n m n

zJ Fw Gw A Fw Gw Cadρ ρ ρρ ρ ρ
−

+

= = = +

= − + − +∑ ∑ ∑ 

     (57) 

Thus, the global JD does not vanish for parallel waves with non-vanishing 2 2.n nFw Gw+  
,n mJc  vanishes for orthogonal waves with 

, .m m
n m

n n

Fw Gw
B

Gw Fw
= − =                                   (58) 

In this case, global JD (55) is reduced to  

( ) ( ) ( )
1

22 2 2 2 2
, ,

1 1 1
e 2 e .mnn

N N N
z

o n n n n m n n n m n m
n n m n

zJ Fw Gw B Fw Gw Sadρ ρ ρρ ρ ρ
−

+

= = = +

= − + − +∑ ∑ ∑ 

   (59) 

Thus, the global JD does not vanish also for orthogonal waves with non-vanishing 2 2.n nFw Gw+  In the gener-
al case (55) of slant internal waves, both ,n mJs  and ,n mJc  are non-vanishing. So, both propagating and inte-
racting waves are independent for structural coefficients with 2 2 0n nFw Gw+ ≠  for all .n  

2.4. Theoretical Solutions for the Pseudovector and Scalar Potentials in the KEF  
Structures 

Theoretical kinematic problems for cumulative pseudo-vector potential ( ), ,x z tη  and cumulative scalar 
potential ( ), ,x z tφ  of v  are set by the global Helmholtz PDEs (6) 

0, 0,u w
z x
η η∂ ∂
+ = − =

∂ ∂
                                (60) 

0, 0,u w
x z
φ φ∂ ∂
− = − =

∂ ∂
                                (61) 

since the potential-vortical duality the velocity field admits two presentations: φ= ∇v  for = 0ψ  and
= ∇×v ψ  for 0.φ =  The cumulative kinematic potentials are decomposed into a superposition of local kine-

matic potentials 

( ) ( )
1 1

, , , , , ,
N N

n n
n n

x z t x z tη η φ φ
= =

= =∑ ∑                              (62) 

such that the local Helmholtz PDEs are 

0, 0,n n
n nu w

z x
η η∂ ∂

+ = − =
∂ ∂

                               (63) 

0, 0,n n
n nu w

x z
φ φ∂ ∂

− = − =
∂ ∂

                               (64) 
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where 1, 2, , .n N=   The boundary conditions for nη  and nϕ  and redundant when the problem is formu-
lated in the KF structures. 

Construct general terms of the kinematic potentials of the local flows in the KF structure with space-depen- 
dent coefficients 

( ) ( ) ,n n nnn fe ca gz e az sη = +  ( ) ( ) .n n n n nfp ca gz p az sφ = +             (65-66) 

Application of (32)-(33) to (65)-(66), substitution in (63)-(64), and collection of the structural functions re-
duce four Helmholtz PDEs to the following system of two Helmholtz ODEs and two Helmholtz AEs for the up-
per flows  

( ) ( )d d
0, 0e ,

d d
e e en n n nz z z zn n

n n n n n nn n n n n n
fe ge

Gw ca w sa geF Fw ca fe Gw sa
z z

ρ ρ ρ ρρ ρ− − − −   − + − + =    = −
 

+
 

 (67-68) 

( ) ( )e e e e
d d

0, 0,
d d

n n n nz z z
n n n n

zn n
n n n n n nn n

fp gp
gp Gw ca fp Fw sa Fw ca Gw sa

z z
ρ ρ ρ ρρ ρ− − − −   + + − + − =   

   
− =  (69-70) 

and the lower flows 

( ) ( )e e
d d

0, 0,
d

e e
d

n n n nz z z zn n
n n n n nn nn n n n nF

fe ge
Gw ca w sa ge Fw ca fe Gw sa

z z
ρ ρ ρ ρρ ρ   + + − = − + =    −

   
 (71-72) 

( ) ( ) d d
0, e .e

d d
e 0en n n nz z z zn n

n nn n n n n nn n n n
fp gp

gp Gw ca fp Fw sa Fw ca Gw sa
z z

ρ ρ ρ ρρ ρ    − − = − + − =   
  

−


 (73-74) 

For Equations (67)-(74) to be satisfied exactly for all variables, parameters, and functions of the upper and 
lower flows: , , , , , , , , , ,n n n n n n nx z t fe ge fp gp Fwα ρ  and ,nGw  all coefficients of structural functions nca  and

nsa  must vanish. Thus, two Helmholtz ODEs and two Helmholtz AEs are reduced to the following four AEs 
and four ODEs with respect to ,nfe  ,nge  ,nfp  and ngp  for the upper flows 

0, 0, 0, 0,e e e en n n nz z z z
n nn n n n n n n nnnfe Gw ge Fw fp Fw gp Gwρ ρ ρ ρρ ρ ρ ρ− − − −+ = − = + = + =       (75) 

d d d d
0, 0, 0, 0,e

d d d
e e

d
en n n nz z z zn n

n n n n
n nfe ge fp gp

Gw Fw Fw Gw
z z z z

ρ ρ ρ ρ− − − −− = + = − = − =         (76) 

and the lower flows  

0, 0,e e 0e e0, ,n n n n
n

z z
n n n n n n

z
n n n nn

zfe Gw ge Fw fp Fw gp Gwρ ρ ρ ρρ ρ ρ ρ+ = − = − = − =       (77) 

d d d d
0, 0, 0, 0.

d d
e e e e

d d
n n n n

n
z z z zn n

n
n

n
n

n
fe ge fp gp

Gw Fw Fw Gw
z z z z

ρ ρ ρ ρ+ = − = − = − =          (78) 

Since general terms of remainders of structural approximations (67)-(74) vanish, exact solutions of AEs and 
ODEs (75)-(78) produce exact solutions of the Helmholtz PDEs (63)-(64). 
Solving AEs (75) and (77) with respect to ,nfe  ,nge  ,nfp  and ngp  gives for the upper flows 

e , e , e , e ,n n n nz z z zn n n n
n n n n

n n n n

Gw Fw Fw Gw
fe ge fp gpρ ρ ρ ρ

ρ ρ ρ ρ
− − − −= − = = − = −           (79) 

and the lower flows  

e , e , e , e .n n n nz z z zn n n n
n n n n

n n n n

Gw Fw Fw Gw
fe ge fp gpρ ρ ρ ρ

ρ ρ ρ ρ
= − = = =              (80) 

Substitution of solutions (79)-(80) in ODEs (76) and (78) reduces them to identities. 
Substitution of structural coefficients (79)-(80) in the KF structures (65)-(66) and super positions (62) re-

turns the cumulative pseudo vector and scalar potentials in the KEF structures for the upper cumulative flow 

( ) ( )
1

1, , e ,n
N

z
n n n n

n n

x z t Gw ca Fw sa ρη
ρ

−

=

= − +∑  ( ) ( )
1

1, , e ,n
N

z
n n n n

n n

x z t Fw ca Gw sa ρφ
ρ

−

=

= − +∑  (81-82) 
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and the lower cumulative flow 

( ) ( )
1

1, , e ,n
N

z
n n n n

n n

x z t Gw ca Fw sa ρη
ρ=

= − +∑  ( ) ( )
1

1, , e .n
N

z
n n n n

n n

x z t Fw ca Gw sa ρφ
ρ=

= +∑  (83-84) 

2.5. Harmonic Relationships for the Velocity Components and the Kinematic Potentials 
Comparison of solutions for nu  and nw  with spatial derivatives in x  of nw  and nu  shows that they are 
directly proportional to each other, respectively, for the upper flows  

1 1, ,n n
n n

n n

w u
u w

x xρ ρ
∂ ∂

= − =
∂ ∂

                               (85) 

and the lower flows 

1 1, .n n
n n

n n

w u
u w

x xρ ρ
∂ ∂

= = −
∂ ∂

                               (86) 

In fluid dynamics, these connections mean that a non-uniform vertical flow generates a horizontal flow and a 
non-uniform horizontal flow produces a vertical flow.  

Similarly, comparison of solutions for nη  and nφ  with solutions for nu  and nw  shows that they are also 
directly proportional, respectively, for the upper flows  

, ,n n
n n

n n

u w
η φ

ρ ρ
= = −                                   (87) 

and the lower flows 

, .n n
n n

n n

u w
η φ

ρ ρ
= − =                                   (88) 

Finally, comparison of solutions for nη  and nφ  with spatial derivatives in x  of nφ  and nη  shows that 
they are proportional to each other, respectively, for the upper flows 

1 1, ,n n
n n

n nx x
φ η

η φ
ρ ρ

∂ ∂
= = −

∂ ∂
                               (89) 

and the lower flows 
1 1, .n n

n n
n nx x

φ η
η φ

ρ ρ
∂ ∂

= − =
∂ ∂

                               (90) 

Connections (85)-(90) between solutions in the KEF structures are available since there are only two inde-
pendent combinations of trigonometric structural functions n n n nFw ca Gw sa+  and .n n n nGw ca Fw sa−  

Computation of n nη φ∇ ⋅∇  by using (81)-(84) both for the upper and lower flows gives 

0.n n n n

x x z z
η φ η φ∂ ∂ ∂ ∂

+ =
∂ ∂ ∂ ∂

                                 (91) 

Thus, local isocurves of nη  and nφ  remain orthogonal for all times in agreement with the Helmholtz Equa-
tions (63)-(64). Similarly, local isocurves of nu and nw remain orthogonal since both for the upper and lower 
flows 

0,n n n nu w u w
x x z z

∂ ∂ ∂ ∂
+ =

∂ ∂ ∂ ∂
                                 (92) 

in agreement with the local vorticity and continuity Equations (14)-(15).  
Computation of η φ∇ ⋅∇  by (52)-53) and (81)-(84) both for the upper and lower cumulative flows gives 

0.
x x z z
η φ η φ∂ ∂ ∂ ∂

+ =
∂ ∂ ∂ ∂

                                  (93) 

Thus, global isocurves of η  and φ  also remain orthogonal for all times in agreement with the cumulative 
Helmholtz Equations (60)-(61). Finally, global isocurves of u  and w  remain orthogonal since both for the 
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upper and lower cumulative flows  

0,u w u w
x x z z
∂ ∂ ∂ ∂

+ =
∂ ∂ ∂ ∂

                                    (94) 

in agreement with the cumulative vorticity and continuity Equations (11)-(12).  
It is a straightforward matter to show that for the KEF structure ( ), ,p x z t  with a general term np  

( ) ( )
1

, , e ,n
N

z
n n n n n

n
p x z t p Fp ca Gp sa ρ

=

= = +∑                               (95) 

spatial derivatives of second order in the -x  and -z directions are 

( )
2

2
2 e ,n zn

n n n n n
p

Fp ca Gp sa
x

ρρ
∂

= − +
∂

  ( )
2

2
2 e ,n zn

n n n n n
p

Fp ca Gp sa
z

ρρ
∂

= +
∂

         (96-97) 

and the Laplacian of np  vanishes. Thus, the KEF structure is an invariant, harmonic structure both for the up-
per and lower flows.  

Application of (96)-(97) to (43)-(46) shows that nu  and nw  are conjugate harmonic functions since 
2 2 2 2

2 2 2 20, 0n n n nu u w w
x z x z

∂ ∂ ∂ ∂
+ = + =

∂ ∂ ∂ ∂
                               (98) 

both for the upper and lower flows, in agreement with vector identity ( ) 0.n n n∆ = −∇× +∇ ∇⋅ =v ω ω  By Equ-
ations (13), u  and w  are also conjugate harmonic functions 

2 2 2 2

2 2 2 20, 0,u u u u
x z x z
∂ ∂ ∂ ∂

+ = + =
∂ ∂ ∂ ∂

                                (99) 

both for the upper and lower cumulative flows, in agreement with vector identity ( ) 0.∆ = −∇× +∇ ∇⋅ =v ω ω  
Similarly, applying (96)-(97) to (81)-(84) shows that nη  and nφ  are conjugate harmonic functions as 

2 2 2 2

2 2 2 20, 0n n n n

x z x z
η η φ φ∂ ∂ ∂ ∂

+ = + =
∂ ∂ ∂ ∂

                            (100) 

both for the upper and lower flows, in agreement with 0n n nφ φ∇ ⋅ = ∇ ⋅∇ = ∆ =v  and 
( ) ( ) 0.n n n n n∇× = ∇× ∇× = ∇ ∇⋅ − ∆ = −∆ =v ψ ψ ψ ψ  By Equation (62), η  and φ  are also conjugate har-

monic functions 
2 2 2 2

2 2 2 20, 0
x z x z
η η φ φ∂ ∂ ∂ ∂
+ = + =

∂ ∂ ∂ ∂
                              (101) 

both for the upper and lower cumulative flows, in agreement with vector identities 0φ φ∇ ⋅ = ∇ ⋅∇ = ∆ =v  and 

( ) ( ) 0.∇× = ∇× ∇× = ∇ ∇⋅ − ∆ = −∆ =v ψ ψ ψ ψ  

The theoretical solutions in the KEF and DEF structures for the kinematic problems of section 2 were com-
puted theoretically in Maple™ by programming with symbolic general terms in the virtual environment of a 
global variable Equation with 26 procedures of 591 code lines. The theoretical solutions for velocity compo-
nents (43)-(46), the products of the KEF structures (52)-(53), and the kinematic potentials (81)-(84) of the upper 
and lower cumulative flows were justified by the correspondent experimental solutions for 1,3,10.N =  

3. Dynamic Problems for Conservative Flows 
The following solutions for the dynamic problems of section 3 in the KF, DEF, and KEF-DEF structures were 
primarily computed experimentally by programming with lists of equations and expressions in the virtual envi-
ronment of the global variable Equations with 19 procedures of 472 code lines. 

3.1. Theoretical Solutions for the Helmholtz and Bernoulli Potentials in the KEF  
Structures 

Theoretical dynamic problems in the KF structures for the Helmholtz and Bernoulli potentials of the cumu-
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lative flows are set by the Lamb-Helmholtz PDEs (8) 

0,e eb h
x z

∂ ∂
− =

∂ ∂
 0,e eb h

z x
∂ ∂

+ =
∂ ∂

                             (102-103) 

while (10) for the vortical presentation with 0φ =  is reduced to 

.eh
t
η∂

=
∂

                                          (104) 

Equations (102-104) are complemented by the local Lamb-Helmholtz PDEs 

0,n nbe he
x z

∂ ∂
− =

∂ ∂
 0,n nbe he

z x
∂ ∂

+ =
∂ ∂

                           (105-106) 

where 

,n
nhe

t
η∂

=
∂

                                        (107) 

since the cumulative dynamic potentials are again decomposed into the local dynamic potentials as follows: 

( ) ( )
1 1

, , , , , .
N N

e n e n
n n

h he x z t b be x z t
= =

= =∑ ∑                              (108) 

Boundary conditions are again redundant because the problem is formulated in the KF structures. 
Construct a general term of the Bernoulli potential of the local flows in the KF structure with space-dependent 

coefficients 

( ) ( ) .n nn n nb fb ca gz be z sa= +                               (109) 

Computation of the temporal derivative of ,nη  application of (32)-(33), substitution in (105)-(106), and 
collection of the structural functions reduce two Lamb-Helmholtz PDEs to the following system of the 
Lamb-Helmholtz AE and ODE for the upper flows 

( ) ( )e e

e e

0,

d d
0,

d d

n n

n n

n n n n n n n
z z

n n n

z zn n
n n nn n n n n

gb Cx Fw ca fb Cx Gw sa

fb gb
Cx Gw ca C Fx w sa

z z

ρ ρ

ρ ρ

ρ ρ

ρ ρ

− −

− −

− + =

   − + =   
  

+


−
               (110) 

and the lower flows 

( ) ( ) 0,

d d
0.

d d

e e

e e

n n

n n

z z
n n n

z z

n n n n n n n

n n n n n
n n

n n n

gb Cx Fw ca fb Cx Gw sa

fb gb
Cx Gw ca Cx w sa

z z
F

ρ ρ

ρ ρ

ρ ρ

ρ ρ

+ − =

   − + =   
 

−

 
+

                (111) 

For Equations (110)-(111) to be satisfied exactly for all , , , , , , , , ,n n n n n nx z t Cx fb gb Fwα ρ  and nGw  all coef-
ficients of structural functions nca  and nsa  must vanish. Thus, the Lamb-Helmholtz AE and ODE are re-
duced to the following two AEs and two ODEs for space-dependent structural coefficients nfb  and ngb  for 
the upper flows 

e 0, e 0,

e 0, e 0
d d

,
d d

n n

n n

n n n n
z z

n n

n n n
zn

n
zn

n n

fb Cx Gw gb Cx Fw
fb gb

Cx Gw Cx w
z

F
z

ρ ρ

ρ ρρ ρ

− −

− −

+ −=

= +

=

=−
              (112-113) 

and the lower flows  

e 0, e 0,

e 0, e 0.
d d
d d

n n

n n

z z
n n n n n

n n n n n

n

z zn n
n

fb Cx Gw gb Cx Fw
fb gb

Cx Gw Cx w
z z

F

ρ ρ

ρ ρρ ρ

= =+

− += =

−
               (114-115) 
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Since general terms of remainders of structural approximations (110)-(111) vanish, exact solutions of 
(112)-(115) produce exact solutions of (105)-(106). 

Solving AEs (112) and (114) for structural coefficients nfb  and ngb  yields for the upper flows 

e , e ,n nz z
n n n n n nfb Cx Gw gb Cx Fwρ ρ− −= − =                            (116) 

and the lower flows 

e , e .n nz z
n n n n n nfb Cx Gw gb Cx Fwρ ρ= = −                             (117) 

Substitution of solutions (116)-(117) in ODEs (113) and (115) reduced them to identities. 
Substitution of structural coefficients (116)-(117) in super positions (108) and the KF structure (109) 

gives the cumulative Helmholtz and Bernoulli potentials in the KEF structures for the upper cumulative flow 

( ) ( )
1

, , e ,n
N

z
e n n n n n

n
h x z t Cx Fw ca Gw sa ρ−

=

= − +∑  ( ) ( )
1

, , e ,n
N

z
e n n n n n

n
b x z t Cx Gw ca Fw sa ρ−

=

= − +∑  (118-119) 

and the lower cumulative flow 

( ) ( )
1

, , e ,n
N

z
e n n n n n

n
h x z t Cx Fw ca Gw sa ρ

=

= − +∑  ( ) ( )
1

, , e .n
N

z
e n n n n n

n
b x z t Cx Gw ca Fw sa ρ

=

= −∑  (120-121) 

Similar to the kinematic potentials (87)-(88), the dynamic potentials and the velocity components are di-
rectly proportional both for the upper and lower flows 

, .n n n n n nhe Cx w be Cx u= − =                                (122) 

Like in (89)-(90), the Helmholtz and Bernoulli potentials and derivatives of the Bernoulli and Helmholtz 
potentials in x are directly proportional to each other both for the upper flows 

1 1, ,n n
n n

n n

be he
he be

x xρ ρ
∂ ∂

= − =
∂ ∂

                              (123) 

and the lower flows 
1 1, .n n

n n
n n

be he
he be

x xρ ρ
∂ ∂

= = −
∂ ∂

                              (124) 

Analogous to (91)-(94), isocurves of ,n nhe be  and global isocurves of ,e eh b  are orthogonal for all times 

0,n n n nhe be he be
x x z z

∂ ∂ ∂ ∂
+ =

∂ ∂ ∂ ∂
 0.e e e eh b h b

x x z z
∂ ∂ ∂ ∂

+ =
∂ ∂ ∂ ∂

                   (125-126) 

in agreement with the Lamb-Helmholtz Equations (105)-(106) and (102)-(103). For the same reason, ,n nhe be
and ,e eh b  are local and global conjugate harmonic functions as 

2 2

2 2 0,n nhe he
x z

∂ ∂
+ =

∂ ∂
 

2 2

2 2 0,n nbe be
x z

∂ ∂
+ =

∂ ∂
 

2 2

2 2 0,e eh h
x z

∂ ∂
+ =

∂ ∂
 

2 2

2 2 0.e eb b
x z

∂ ∂
+ =

∂ ∂
      (127-128) 

3.2. Theoretical Solutions for the Total Pressure in the KEF-DEF Structures  
Theoretical dynamic problems in the KEF-DEF structures for the kinetic energy per unit mass ,ek  the dy-
namic pressure per unit mass ,dp  and the total pressure tp  of the cumulative flows are formulated by de-
finition 

( )2 21( , , ) ( , , ) ( , , ) ,
2ek x z t u x z t w x z t= +                            (129) 

the Bernoulli Equation (9) with 0φ =  

( ) ( ) ( ), , , , , , ,d e ep x z t b x z t k x z t= −                             (130) 

and the hydrostatic Equation (5) 

( ) ( )0, , , , ,t z dp x z t p g z p x z tρ ρ= − +                             (131) 
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where 0p  is the reference pressure at 0.z =  
Computation of ek  by (52)-(53) and (43)-(46) returns 

( ) ( ) ( )(

( ) ) ( )

1
22 2

,
1 1 1

,

1, , e
2

e

n

mn

N N N
z

e n n n m n m n m
n n m n

m n n m n
z

m

k x z t Fw Gw Fw Fw Gw Gw Cad

Fw Gw Fw Gw Sad ρ ρ

ρ
−

= = = +

+

= + + +

+ −

∑ ∑ ∑



            (132) 

for the upper and lower cumulative flows, respectively. Substitution of (119), (121), and (132) in (131) yields 

( ) ( ) ( )

( )( ( ) ) ( )

22 2
0

1 1

1

, ,
1 1

1, , e e
2

e

n n

n m

N N
z z

t z n n n n n n n
n n

N N

n m n m n m m n n m n m
n m

z

n

p x z t p g z Cx Gw ca Fw sa Fw Gw

Fw Fw Gw Gw Cad Fw Gw Fw Gw Sad ρ

ρ ρ

ρ

ρ ρ
= =

−
+

= = +

= − + − − +

− + + − 

∑ ∑

∑ ∑

 





   (133) 

for the upper and lower cumulative flows, respectively.  

3.3. Theoretical Verification by the System of Navier-Stokes PDEs 
The system of the Navier-Stokes PDEs (1)-(2) in the scalar notation becomes 

2 2

2 2

1 ,tpu u u u uu w
t x z x x z

ν
ρ

 ∂∂ ∂ ∂ ∂ ∂
+ + = − + + ∂ ∂ ∂ ∂ ∂ ∂ 

 
2 2

2 2

1 ,t
z

pw w w w wu w g
t x z z x z

ν
ρ

 ∂∂ ∂ ∂ ∂ ∂
+ + = − + + − ∂ ∂ ∂ ∂ ∂ ∂ 

 (134-135) 

0.u w
x z
∂ ∂

+ =
∂ ∂

                                     (136) 

Computation of spatial derivatives of (43)-(46) by (32)-(33) immediately reduces (136) to identity. Temporal 
derivatives of v  in the KEF structures for the upper and lower cumulative flows, respectively, are  

( )

( )

1

1

e ,

e .

n

n

N
z

n n n n n n
n

N
z

n n n n n n
n

u Cx Fw ca Gw sa
t
w Cx Gw ca Fw sa
t

ρ

ρ

ρ

ρ

=

=

∂
= +

∂
∂

= − +
∂

∑

∑







                      (137-138) 

The directional derivatives of (134)-(135) computed by (52)-(53) in the DEF structures for the upper and 
lower cumulative flows, respectively, become 

( ) ( )(

( ) )( ) ( )

1

,
1 1

, e ,n m

N N

n m m n n m
n m n

n m n m n m m n
z

u Fw Gw Fw Gw Cad

Fw Fw Gw Gw Sad ρ ρρ ρ

−

= = +

+

⋅∇ = −

+ + −

∑ ∑v



                    (139) 

( ) ( ) ( )(

( ) )( ) ( )

1
22 2

,
1 1 1

,

e

e .

n

n m

N N N
z

n n n n m n m n m
n n m n

m n n
z

m n m m n

w Fw Gw Fw Fw Gw Gw Cad

Fw Gw Fw Gw Sad

ρ

ρ ρ

ρ

ρ ρ

−

= = = +

+

⋅∇ = + +

+ − +

∑ ∑ ∑v 



 

             (140) 

By using (32) and (33), components of the gradient of (133) may be written in the KEF-DEF structures for 
the upper and lower cumulative flows, respectively, as 

( )

( )(

( ) )( ) ( )

1

1

,
1 1

,

e

e ,

n

n m

N
zt

n n n n n n
n

N N

n m m n n m
n m n

n m n m n m m n
z

p
Cx Fw ca Gw sa

x

Fw Gw Fw Gw Cad

Fw Fw Gw Gw Sad

ρ

ρ ρ

ρ ρ

ρ ρ

=

−

= = +

+

∂ = ± +∂ 

− −

+ + − 

∑

∑ ∑





                 (141) 
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( ) ( )

( )(

( ) )( ) ( )

22 2

1 1

1

,
1 1

,

e e

e .n m

n n
N N

z zt
z n n n n n n n n n

n n

N N

n m n m n m
n m n

m n n m n m
z

m n

p
g Cx Gw ca Fw sa Fw Gw

z

Fw Fw Gw Gw Cad

Fw Gw Fw Gw Sad

ρ ρ

ρ ρ

ρ ρ ρ

ρ ρ

= =

−

= = +

+

∂ = − + − ± +∂ 

± +

+ − + 

∑ ∑

∑ ∑

 



             (142) 

Substitution of Equations (137)-(142) and (99) in (134)-(135) reduces then to identities. Thus, Equations 
(43)-(46) and (133) constitute exact solutions in the KEF, DEF, and KEF-DEF structures for interaction of N  
internal waves both in the upper and lower domains.  

The theoretical solutions in the KEF, DEF, and KEF-DEF structures for the dynamic problems of section 3 
were computed theoretically by programming with symbolic general terms in the virtual environment of the 
global variable Equation with 15 procedures of 405 code lines. The theoretical solutions for the Helmholtz and 
Bernoulli potentials (118)-(121), the total pressure (133), the temporal derivatives (137)-(138), the directional 
derivatives (139)-(140), and the pressure gradient (141)-(142) of the upper and lower cumulative flows were 
justified by the correspondent experimental solutions for 1,3,10.N =  

4. Visualization and Discussion 
The Fourier series with eigenfunctions ( )cos n xλ  and ( )sin ,n xλ  where 1, 2, ,n N=   is an integer, model a 
periodic function with a constant period xP  and a wavenumber 2π xPλ =  [4]. The trigonometric structural 
functions nca  and nsa  of the KF, KEF, DEF, and KEF-DEF structures coincide with the Fourier eigenfunc-
tions if .n nρ λ=  When ,n npρ λ=  where 2,3,5,7,11,np =   is a prime number, nca  and nsa  model a 
function with a period approaching infinity as n →∞  [6]. For instance, if a sequence of nρ  is  

1 2, 1 3, 1 5, 1 7, 1/11, 1/13, 1/17,                                (143) 

local periods of the structural functions grow as 2π :nρ  
4π,  6π,  10π,  14π,  22π,  26π,  34π,                                (144) 

and a global period of the interaction solution (43)-(46) increases as 1

1
2π :

N

n
n

ρ−

=
∏  

4π,  12π,  60π,  420π,  4620π,  60060π,  1021020π.                               (145) 

The KEF structures of conjugate harmonic solutions are visualized in Figure 2 by instantaneous 3d surface plots 
with isocurves for ( )83η  and ( )84φ , for 3;N =  1 2,1 3,1 5;nρ =  1, 2,3;nCx =  3, 2,1;nXa =  

1.2,1.4,1.6;nFw =  and 1.1,1.3,1.5nGw =  at 114.2t = . In two dimensions, the pseudovector potential coin-
cides with the stream function and isocurves of η  coincides with streamlines [2]. 

The DEF and KEF-DEF structures are visualized in Figure 3 by instantaneous 3d surface plots with isocurves 
 

       
Figure 2. Pseudovector potential η  and scalar potential φ  of the lower cumulative flow.              
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Figure 3. Kinetic energy (left) and dynamic pressure (right) of the lower cumulative flow.                     

 
for ( )132ek  and ( )0 ,d z tp g z p p ρ= + −  where tp  is given by (133), for 3;N =  1 2,1 3,1 5;nρ =

1,2,3;nCx =  3, 2,1;nXa =  1.2,1.4,1.6;nFw =  and 1.1,1.3,1.5nGw =  at 114.2t = . In agreement with the 
Bernoulli Equation [1], local maximums of the DEF structure for ek  correspond to local minimums of the 
KEF-DEF structure for .dp  

The rate of vanishing of the DEF structure is larger than that of the KEF structure. Animations of , , ,ekη ϕ  
and dp  show a transitional behavior of these variables that approach a deterministic chaos, which is determined 
by 5N  parameters: , , , ,n n n nCx Xa Fwρ  and ,nGw  as N →∞ . 

5. Conclusions 
The analytical methods of undetermined coefficients and separation of variables are extended by the computa-
tional method of solving 2d PDEs by decomposition in invariant structures. The method is developed by the ex-
perimental computing with lists of equations and expressions and the theoretical computing with symbolic gen-
eral terms. The experimental computing of the kinematic and dynamic problems is implemented by 48 proce-
dures of 1142 code lines and the theoretical computing by 41 procedures of 996 code lines.  

To compute the upper and cumulative flows for nonlinear interaction of N  internal waves in the KF struc-
tures, the KEF, DEF, and KEF-DEF structures were treated both experimentally and theoretically. These struc-
tures with constant and space-dependent structural coefficients are invariant with respect to various differential 
and algebraic operations. The structures continue the Fourier series for linear and nonlinear problems with solu-
tions vanishing at infinity and model flows of a deterministic wave chaos with the period that approaches infini-
ty.  

The exact solutions of the Navier-Stokes PDEs for the nonlinear interaction of N  conservative waves are 
computed in the upper and lower domains by formulating and solving the Dirichlet problem for the vorticity, 
continuity, Helmholtz, Lamb-Helmholtz, and Bernoulli equations. The conservative waves are not affected by 
dissipation since they are derived in the class of flows with the harmonic velocity field. The harmonic relation-
ships between fluid-dynamic variables and their spatial derivatives with respect to x  both for upper and lower 
flows are obtained. 
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