
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Convolutional Neural Networks Hyperparameter
Tunning for Classifying Firearms on Images

Isaac Cardoza, Juan P. García-Vázquez, Arnoldo Díaz-Ramírez & Verónica
Quintero-Rosas

To cite this article: Isaac Cardoza, Juan P. García-Vázquez, Arnoldo Díaz-Ramírez &
Verónica Quintero-Rosas (2022) Convolutional Neural Networks Hyperparameter Tunning
for Classifying Firearms on Images, Applied Artificial Intelligence, 36:1, 2058165, DOI:
10.1080/08839514.2022.2058165

To link to this article: https://doi.org/10.1080/08839514.2022.2058165

© 2022 The Author(s). Published with
license by Taylor & Francis Group, LLC.

Published online: 04 Apr 2022.

Submit your article to this journal

Article views: 1360

View related articles

View Crossmark data

Citing articles: 2 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2022.2058165
https://doi.org/10.1080/08839514.2022.2058165
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2022.2058165
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2022.2058165
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2022.2058165&domain=pdf&date_stamp=2022-04-04
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2022.2058165&domain=pdf&date_stamp=2022-04-04
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2022.2058165#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2022.2058165#tabModule

Convolutional Neural Networks Hyperparameter Tunning
for Classifying Firearms on Images
Isaac Cardoza a, Juan P. García-Vázquez b, Arnoldo Díaz-Ramírez a,
and Verónica Quintero-Rosas a

aDepartment of Computer Systems, Tecnológico Nacional de México/IT Mexicali, Mexicali, México;
bFacultad de Ingeniería, Universidad Autónoma de Baja California (UABC), MyDCI, Mexicali, México

ABSTRACT
In recent years, the rates of firearm-related violent acts world
wide have risen significantly. It is a severe social problem that
compromises the safety of every individual to some extent. This
situation has motivated researchers to find new ways to
improve the current state-of-the-art solutions, such as auto
matic surveillance systems, to detect and classify the presence
of firearms within a specific scene. These systems reduce the
drawbacks of using direct human supervision. Among the avail
able solutions for the classification task, the performance of
Deep Learning models stands out, especially those based on
Convolutional Neural Networks. Since they start learning
directly from raw data (e.g., images), their learning process can
be improved even further by using Transfer Learning techni
ques. However, the classification accuracy depends significantly
on choosing the optimum set of values for the different hyper
parameters composing them. Thus, this paper analyses the
improvement in the performance of an image-based handgun
classification algorithm when tuning its hypermeters values
instead of using its default values. In this work, we evaluated
the performance variation using two benchmarks Convolutional
Neural Networks architectures: AlexNet and Inception V3. We
obtained a maximum accuracy of 94.11% when using the
Inception V3 network and transfer learning. We employed
Nadam as the optimizer and a learning rate equal to 0.0001,
a batch size equal 256, and a total of 13 epochs. Experimental
results suggest an essential relationship between the perfor
mance of the classification model and the data set, the specific
combinations of values for the selected optimizer, the batch
size, and the learning rate. The obtained improvement in the
accuracy was up to 10.33% after the tuning process.

ARTICLE HISTORY
Received 11 October 2021
Revised 15 February 2022
Accepted 16 March 2022

Introduction

Firearms play an unquestionable role in the occurrence of numerous kinds of
violent crimes worldwide, including theft and homicide. According to the
Global Study on Homicide UNODC (2019), from the 464,000 estimated total
homicides in 2017, roughly 54% (238,804) of the cases involved the utilization

CONTACT Arnoldo Díaz-Ramírez. adiaz@itmexicali.edu.mx Tecnológico Nacional de México/IT Mexicali,
Department of Computer Systems, Mexicali, México, 21376

APPLIED ARTIFICIAL INTELLIGENCE
2022, VOL. 36, NO. 1, e2058165 (2784 pages)
https://doi.org/10.1080/08839514.2022.2058165

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

http://orcid.org/0000-0002-9776-2663
http://orcid.org/0000-0003-1787-7223
http://orcid.org/0000-0002-6188-0756
http://orcid.org/0000-0002-8508-7429
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2022.2058165&domain=pdf&date_stamp=2022-07-09

of firearms, as it can be seen in Figure 1. Particularly in the Americas, the rate
of firearm-related homicides raised to approximately 75%, which is higher
than anywhere else in the world UNODC (2019).

Another fundamental indicator of the magnitude of the firearm-related
violence problem is the number of firearm seizures by world region. From
the UNODC Global Study on Firearms Trafficking 2020 UNODC (2020), it
can be concluded that there is a relationship between the number of firearms
seized to the number of homicides committed using them. Higher rates of
firearm seizures can be observed in countries with low homicide rates, while
low rates of firearms seizures are observed in countries experiencing high
levels of homicide. This relationship suggests that tighter levels of vigilance
over firearms help low homicide levels. In contrast, an increase in the
possession rate of weapons corresponds to a rise in the homicide rate. The
study also shows that the main types of seized firearms in the Americas are
handguns (pistols and revolvers). Particularly in Mexico, violence has risen
dramatically over the past few years. In 2018, 36,685 homicides were com
mitted, according to the National Institute of Statistics and Geography
(INEGI) INEGI (2019b). It represents a growth of 161% compared to the
past decade. In addition, INEGI statistics showed that from the 18.9 million
estimated crimes where the victim was present at the moment of the crime,
the perpetrator(s) possessed some type of firearm in 32.2% of the cases. The
statistic is alarmingly high considering the threat level those artifacts repre
sent. Providing more significant control over firearm usage is a crucial factor
in keeping low crimes and homicide rates. Among the possible solutions to
address this problem, we may deploy surveillance systems, particularly in
urban areas with a high incidence of crimes. Firearms detection systems are
attractive for smart cities since statistics data show that metropolitan areas
are hot spots for gun violence INEGI (2019a). However, surveillance systems

Figure 1. Estimated breakdown of intentional homicide worldwide, by a mechanism of perpetra
tion in 2017 UNODC (2019)

APPLIED ARTIFICIAL INTELLIGENCE e2058165-2763

often have many limitations, including the need for constant human super
vision over vast volumes of data. Besides, these systems can be expensive and
unfeasible for large-scale deployment. An attractive alternative is the devel
opment of automated surveillance systems, where potential criminal activ
ities are detected using artificial intelligence techniques, such as machine
learning algorithms. In recent years, Convolutional Neural Networks (CNN)
have shown promising results in image classification tasks, outperforming
humans Galab et al. (2020). CNN have already been used to address hand
gun classification with good results Olmos, Tabik, and Herrera (2018a);
Kanehisa and Neto (2019); Redmon and Farhadi (2017); Galab et al.
(2020). Nevertheless, the existing models still can be improved since most
of the proposals for weapons classification based on CNN do not consider
one of their most fundamental aspects: their hyperparameters and their
tuning process. Different data sets often require different sets of values for
the CNN’s hyperparameters to yield a good accuracy when classifying
images. But the large number of hyperparameters to choose from makes it
difficult to decide which ones to prioritize when tuning a classification
model. In this process, we first need to select the most determinant hyper
parameters to develop a high-performance classifier. Next, we need to adjust
its values and evaluate how they behave and correlate with the other hyper
parameters. Since this process is exhaustive, time-consuming, and potentially
computationally expensive, many developers opt for using only the default
values for the training of their CNN. The main reason is that those values are
usually set for an ideal performance for general problems. However, for most
classification problems, there is no answer to how many network layers
provide a better performance, how many neurons per layer are the best, or
which optimizer suits the best for every data set and problem. That is why
the tuning process results crucial in finding the best possible sets of values
for hyperparameters to build an optimum model from a specific data set and
problem.

Machine learning algorithms have two kinds of hyperparameters: the model
parameters, which are learned directly from the data, and the model hyper
parameters, used to control the learning process. Determining the optimal
hyperparameters values is imperative to achieve a high ML model perfor
mance. It is known as hyperparameter tuning to the task to select the optimal
hyperparameters values. Several strategies for hyper-parameter tuning exist.
Some of them use automatic optimization techniques Victoria and
Maragatham (2021); Kolar et al. (2021), but they show different strengths
and drawbacks when applied to different types of problems, such as costly
objective function evaluations and complex search space, among others Yang
and Shami (2020). For instance, although Bayesian optimization is potentially
efficient, is not guaranteed to find better hyperparameters and can get stuck in
a local minimum of the objective function Albelwi and Mahmood (2017). We

e2058165-2764 I. CARDOZA ET AL.

decided to employ the most used grid-search strategy in this work, which
consists of selecting different hyperparameters values and trying all the possi
ble configurations.

Considering the complexity of determining the best values for hyperpara
meters in a CNN, in this paper, we present an analysis of the effect of the
hyperparameters on the performance of a CNN-based handgun classifier. The
main contribution of this work is that it explores the efficiency of firearms
image classifiers and provides a clue of which combinations of the values of the
hyperparameters offer better results. The obtained results give a guide for
configuring CNN-based image classifiers to get a greater accuracy using values
other than the default ones.

The rest of the document is organized as follows. Section 2 discusses the
related work. In section 3, we introduce the materials and methods used in this
work. Section 4 introduces the design of the experiments. In section 5, we
discuss the results of the analysis of the tuning process of the values of the
hyperparameters. Section 6 is for the discussion of the obtained results.
Finally, in section 7, the conclusions and future work are presented.

Related Work

The application of convolutional network architectures has been considered
by the scientific community to solve computational vision problems in various
fields, such as health Sarvamangala and Kulkarni (2021); agriculture Kamilaris
and Prenafeta-Boldú (2018); Pérez-Pérez, Pablo García Vázquez, and
Salomón-Torres (2021); biology Tang et al. (2019); transport Rao et al.
(2019). Regarding problems related to security in cities, in recent years,
computational models have been proposed that allow firearms to be detected
and classified in images or videos Kaya, Tuncer, and Baran (2021); Ağdaş,
Türkoğlu, and Gülseçen (2021); Dwivedi, Kumar Singh, and Singh Kushwaha
(2019); Veranyurt and Okan Sakar (2020); Olmos, Tabik, and Herrera (2018b);
Elmir, Ahmed Laouar, and Hamdaoui (2019); Ağdaş, Türkoğlu, and Gülseçen
(2021). The main goal is the development of intelligent systems that can
prevent the occurrence of violent events.

In Table 1, we present a comparison of the most recent studies that use
CNN architectures to detect firearms. It can be observed that those studies
considered the variation of one or two more hyperparameters in the evalua
tion of the performance of the CNN architectures; or applied the transfer of
learning as a feature extraction phase. They present models with good perfor
mance to classify firearms, some of them with accuracies greater than 95%
accuracy Ağdaş, Türkoğlu, and Gülseçen (2021) Dwivedi, Kumar Singh, and
Singh Kushwaha (2019) Veranyurt and Okan Sakar (2020). However, most of
the works focus on the VGG-16 architecture; so far, we have not identified
a study exploring the variation of architectures and hyperparameters related to

APPLIED ARTIFICIAL INTELLIGENCE e2058165-2765

Ta
bl

e
1.

 W
or

ks
 t

ha
t

pr
op

os
e

CN
N

 a
rc

hi
te

ct
ur

es
 fo

r
de

te
ct

in
g

fir
e

gu
ns

 in
 im

ag
es

.

Re
fe

re
nc

e
G

un
 T

yp
e

N
o.

 o
f I

m
ag

es
CN

N
 A

rc
h.

Tr
an

sf
er

Le

ar
ni

ng
H

yp
er

 p
ar

am
et

er
s

Ac
cu

ra
cy

Ka
ya

, T
un

ce
r,

an
d

Ba
ra

n
(2

02
1)

as
sa

ul
t

rifl
es

52
14

 w
ea

po
n

im
ag

es
VG

G
N

et
,

N
o

Re
LU

 a
ct

iv
at

io
n

fu
nc

tio
n

V
G

G
N

et
 9

8.
40

%
ba

zo
ok

as
,

gr
en

ad
es

fr
om

 t
he

 in
te

rn
et

Re
sN

et
-5

0
32

 m
in

i b
at

ch
 s

iz
e

VG
G

-1
6

hu
nt

in
g

rifl
es

, k
ni

ve
s,

Re
sN

et
-1

01
0.

25
 d

ro
po

ut
89

.7
5%

pi
st

ol
s

an
d

re

vo
lv

er
s

Ad
am

ax
 o

pt
im

iz
at

io
n

al
g.

Re
sN

et
-1

01
 8

3.
33

%

30
 e

po
ch

s
Ağ

da
ş,

 T
ür

ko
ğl

u,
 a

nd
 G

ül
se

çe
n

(2
02

1)
gu

n
an

d
kn

ife

im
ag

es
16

00
0

im
ag

es
 c

on
ta

in
in

g
Al

ex
N

et
Ye

s
M

in
i-b

at
ch

 s
iz

e
8–

16
Al

ex
ne

t
97

.7
4

95
00

 k
ni

ve
s,

 3
50

0
gu

ns
,

VG
G

16
,

fin
e

tu

ni
ng

M
ax

im
um

 e
po

ch
 n

um
be

r
5–

20

V
G

G
16

 9
9.

38

an
d

30
00

 o
rd

in
ar

y
pi

ct
ur

es
an

d
VG

G
19

W
ei

gh
t

de
ca

y
fa

ct
or

 0
.0

1
VG

G
19

 9
9.

27
Im

ag
es

 fr
om

 t
he

 In
te

rn
et

In
iti

al
 le

ar
ni

ng
 r

at
e

0.
00

01
O

pt
im

iz
at

io
n

m
et

ho
d

SG
D

M
(S

to
ch

as
tic

 G
ra

di
en

t
D

es
ce

nt
w

ith
 M

om
en

tu
m

)
D

w
iv

ed
i,

Ku
m

ar
 S

in
gh

, a
nd

 S
in

gh
 K

us
hw

ah
a

(2
01

9)
gu

n
an

d
kn

ife
Tr

ai
ni

ng
 s

et
 c

on
ta

in
s

VG
G

-1
6

Ye
s,

M
od

el
 A

 d
ro

po
ut

 0
.5

M
od

el
 A

15
20

, 1
80

0
an

d
11

76
fin

e tu
ni

ng
M

od
el

 B
 d

ro
po

ut
 0

.7
ob

ta
in

s

im
ag

es
 o

f k
ni

ve
s,

 g
un

s
Ba

tc
h

si
ze

 8
,

98
.4

1%
an

d
no

-w
ea

po
ns

, r
es

pe
ct

iv
el

y.
an

d
20

 e
po

ch
s

fo
r

ac
cu

ra
cy

Te
st

 s
et

 c
on

ta
in

s
34

4,
 3

68
bo

th
 m

od
el

s
(a

cc
.)

an
d

29
6

im
ag

es
 o

f s
am

e
cl

as
se

s
as

 t
he

 t
ra

in
 s

et
Ve

ra
ny

ur
t

an
d

O
ka

n
Sa

ka
r

(2
02

0)
im

ag
es

 w
ith

G
un

 D
at

a
Se

t
ha

s
Ba

si
c

CN
N

Ye
s,

O
pt

im
iz

at
io

n
m

et
ho

d
VG

G
16

 w
ith

an
d

w
ith

ou
t

30
00

 im
ag

es
fr

om
 s

cr
at

ch
fin

e tu
ni

ng
SG

D
M

.
tr

an
sf

er
 le

ar
ni

ng

a
ha

nd
-g

un
Fi

lm
 G

un
 D

at
a

Se
t

an
d

w
ith

12
 e

po
ch

s
88

%
 o

f
ac

cu
ra

cy
.

ha
s

33
3

im
ag

es
tr

an
sf

er

le
ar

ni
ng

VG
G

16
 w

ith

Co
co

 2
01

7
Va

lid
at

io
n

D
at

a
Se

t
VG

G
-1

6
fr

om
tr

an
sf

er
 le

ar
ni

ng

(C
on
tin
ue
d)

e2058165-2766 I. CARDOZA ET AL.

Ta
bl

e
1.

 (C
on

tin
ue

d)
.

Re
fe

re
nc

e
G

un
 T

yp
e

N
o.

 o
f I

m
ag

es
CN

N
 A

rc
h.

Tr
an

sf
er

Le

ar
ni

ng
H

yp
er

 p
ar

am
et

er
s

Ac
cu

ra
cy

ha
s

10
,0

00
 im

ag
es

sc
ra

tc
h

an
d

w
ith

95
%

 o
f a

cc
ur

ac
y

tr
an

sf
er

m

ea
ni

ng
w

ith
 1

2
ep

oc
hs

O
lm

os
, T

ab
ik

, a
nd

 H
er

re
ra

 (2
01

8a
)

pi
st

ol
s,

 m
ac

hi
ne

30
00

 im
ag

es
 o

f g
un

s
VG

G
-1

6
Ye

s,
O

pt
im

iz
at

io
n

Th
e

be
st

gu
ns

, r
ifl

e,
ta

ke
n

fr
om

 a
 v

ar
ie

ty
fin

e tu
ni

ng
m

et
ho

d
SG

D
ob

ta
in

ed
 a

cc
ur

ac
y

(S
to

ch
as

tic
 G

ra
di

en
t

D
es

ce
nt

)
gr

en
ad

e,
 r

oc
ke

t
of

 c
on

te
xt

s.
 A

ut
ho

rs
 c

re
at

ed
(S

to
ch

as
tic

 G
ra

di
en

t
D

es
ce

nt
)

w
as

 9
4.

44
%

la
un

ch
er

, t
an

k
fo

ur
 d

at
ab

as
es

w
ith

 b
ac

k-
pr

op
ag

at
io

n
Im

ag
eN

et
 fo

r
Tr

an
sf

er

Le
ar

ni
ng

El
m

ir,
 A

hm
ed

 L
ao

ua
r,

an
d

H
am

da
ou

i (
20

19
)

ha
nd

gu
n

G
un

 D
at

a
Se

t
co

ns
is

t
M

ob
ile

N
et

N
o

N
ot

 s
pe

ci
fie

d
M

ob
ile

N
et

 9
0%

 a
cc

.
of

 3
00

0
im

ag
es

CN
N

 b
as

ic
CN

N
 b

as
ic

 5
5%

 a
cc

.
Fa

st
 R

-C
N

N
Fa

st
 R

-C
N

N
 8

0%

ac
c.

APPLIED ARTIFICIAL INTELLIGENCE e2058165-2767

training, such as learning rate and the number of epochs batch size, and
optimizer. In addition, the generated models are trained using a few images
related to handguns, which according to the statistics of violent events during
the last 50 years, are those that are commonly used in crimes such as murders,
assaults, and kidnappings Zimring (2020). In contrast, we used a larger and
richer dataset in this work and evaluated more CNN architectures.

Materials and Methods

Convolutional Neural Networks

A CNN is a kind of Deep Neural Network specifically designed for image
recognition Zaccone and Karim (2018). In a CNN, every input image is
represented as a three-dimensional matrix of pixels, consisting of the red
(R), green (G) and blue (B) colors, respectively. Every pixel is represented by
a tuple of three 8-bit numbers, representing the R, G and B colors. Each image
used by the CNN is processed by hidden layers, consisting of convolutional
layers, rectified linear units, pooling layers, and fully connected layers. Figure 2
shows the basic architecture of a CNN and its components, which are
described as follows:

Convolution Layer
It is a special type of layer where each neuron connects to a certain region of
the input area called the receptive field Zaccone and Karim (2018).
Convolutional layers use several kernel filters of different dimensions on the
same receptive fields to recognize images from a different feature. The set of
neurons identifying the same feature defines a single feature map.

Pooling Layer
A pooling layer consolidates the features learned by the feature map from the
previous convolutional layer. It divides a convolutional region into subregions
and then selects a single representative value to reduce the computational time
of subsequent layers and increase the robustness of the feature concerning its
spatial position Zaccone and Karim (2018).

Figure 2. Basic architecture of a CNN.

e2058165-2768 I. CARDOZA ET AL.

ReLU
The Rectified Linear Unit is a non-linear function that returns 0 if it receives
a negative input, but it returns the same input value if it is positive Alzubaidi
et al. (2021). It is the default activation function for many neural networks
since its models are easier to train and often yield better performance.

Fully Connected Layers
The fully connected layers form the last few layers in a CNN Aghdam and
Heravi (2017). Their input is the output from the final pooling or convolu
tional layer, which is flattened and then fed into it to perform the mathema
tical operations, which once passed to the softmax layer will determine the
probability for each class.

Softmax Layer
The softmax layer is an output layer for multi-classification tasks operating in
conjunction with the cross-entropy loss function. It normalizes the outputs of
the previous layer, so they sum up to one. This way, the output could represent
the probability for every class Ketkar (2017).

Loss Function
It is the function utilized to evaluate a solution (model). Focused on
minimizing the error (loss) and denoted by the difference between the
output and the ground truth for a single input Zhao et al. (2017). The loss
function to use will depend on the nature of the problem, being the most
common mean squared error, binary, categorical, and sparse categorical
cross-entropy.

CNN Architectures Used in This Work

In this subsection, a description of the CNN used in this work are briefly
discussed.

AlexNet
Its architecture is composed of eight layers with trainable parameters Alex,
Sutskever, and Hinton (2017). Five of them are consecutive convolutional
layers at the start and three fully connected layers at the end. Every convolu
tional layer can include a ReLU function and max-pooling optionally. All
pooling layers have a 3 × 3 extension region and a step rate of 2. AlexNet
requires input images of size 227 × 227. Summarizing our implementation of
AlexNet, it has a total of 200,114,946 parameters, from which 200,112,194 are
trainable and 2,752 are non-trainable.

APPLIED ARTIFICIAL INTELLIGENCE e2058165-2769

GoogLeNet (Inception V3)
It is 42 layers deep, and instead of using the 5 × 5 filter, it uses two 3 × 3 in the
first inception module Szegedy et al. (2016). In the same way, the other two
inception modules also reduce its number of parameters, making it less likely
to face an overfitting scenario Smith (2018) and allowing the network to grow
deeper than its earlier versions while maintaining most of its features.
Inception V3 requires input images of size 229 × 229.

Transfer Learning

Transfer learning is an ML technique in which a pre-trained model is reused in
a new machine learning model Zaccone and Karim (2018). The advantage of
having two models performing similar tasks is that generalized knowledge can
be shared between them. Since training new machine learning models can be
resource-intensive, the use of transfer learning saves both resources and time,
allowing improved performance when modeling the second task. Transfer
learning is used in deep learning due to the huge amount of resources required
to train deep learning models or the big datasets on which deep learning
models are trained. For instance, because computer vision and natural lan
guage processing tasks, like image recognition and sentiment analysis, require
considerable computational resources, transfer learning is widely used to solve
those kinds of problems. It is important to note that transfer learning only
works in deep learning if the model features learned from the first task are
general. Transfer learning offers several advantages, such as reduced training
time, improved neural network performance, or not needing a large amount of
data. In this work, we employ transfer learning to speed the training time and
improve performance. The Inception V3 structure was modified with the
intention of applying transfer learning from the ImageNet data set. An extra
trainable layer with unfrozen weights before the last one was added. Thus,
summarizing our implementation of Inception V3, we used 43 layers and
a total of 23,851,784 parameters. From them, 23,817,352 are trainable and
34,432 are non-trainable.

Hyperparameters and Values

Hyperparameters are often defined as the configuration of a neural network
structure Bochinski, Senst, and Sikora (2017). Examples are the number of
layers in the network, the number of neurons in each layer, and the activation
function. However, the CNN structure is not the only configurable factor. We
can also consider as hyperparameters those configurable parameters which
define the learning algorithm as it is the case of the optimizer, learning rate,
batch size, and the number of epochs. In the same way, when working with
CNN, those configurable parameters, particularly of the convolution layers, as

e2058165-2770 I. CARDOZA ET AL.

well as stride and padding, can also be considered as hyperparameters. For our
experiments, it was necessary to define a priori which hyperparameters to
configure in order to measure the impact of every one of them in the
performance of the generated model. In order of importance, they are:

Optimizer
It is responsible for updating the weights of neurons within a neural network
in order to reach the minimum loss function Zewen et al. (2021).

Learning Rate
It represents the magnitude of the step taken on each iteration before updating
the weights of the network Alzubaidi et al. (2021). Defining a higher learning
rate makes the model learn faster than when using a lower learning rate, but it
may miss the minimum loss function and only reach the surroundings of it.
On the other hand, a lower learning rate gives a better chance of finding
a minimum loss function and therefore may result in a local optimum;
however, it needs a higher number of epochs as a trade-off, which ultimately
means more time and computational cost.

Batch Size
The batch size is the number of samples that are passed to the network at one
time, i.e., on each epoch Feurer and Hutter (2019). Depending on the available
computational resources, a larger batch size will speed up the training process.
For instance, the use of GPU will allow parallelism. However, larger batch sizes
lead to poor generalization, causing the model to not usually achieve high
accuracy Kandel and Castelli (2020). In contrast, a small batch size does not
guarantee that the model will converge to the global optima.

Number of Epochs
The number of times that the entire training data set is shown to the network
during the training process. One epoch means that the training dataset is
passed forward and backward through the neural network once Bochinski,
Senst, and Sikora (2017). A too-small number of epochs could result in an
underfitting model because the neural network has not learned enough to
solve the problem efficiently. However, specifying too many epochs could also
represent a problem due to the possibility of overfitting, where the model
learns from the noise and inaccurate data in the training data set.
Consequently, the model cannot generalize accurately on new data and cannot
classify new unseen data. That is why the number of epochs must be tuned to
gain the optimal result.

The default value for the hyperparameter learning rate is 0.001 for all the
available optimizers in Keras (2020b). The exception is the stochastic gradient
descent optimizer (SGD), which default value for the learning rate is 0.01. In

APPLIED ARTIFICIAL INTELLIGENCE e2058165-2771

the same way, Keras uses a default value for the batch size of 32 Keras (2020a).
However, since there is no default value concerning the number of epochs, we
defined a standard batch size value of 10 due to the large number of different
combinations to test. In our experiments, the ranges considered for each
hyperparameter were:

• Optimizers: Adadelta, Adagrad, Adam, Adamax, Follow the regularized
leader (Ftrl), Nadam, Root Mean Squared propagation (RMSprop), and
Stochastic Gradient Descent (SGD).

• Batch Sizes: 32, 64, 128 and 256.
• Learning Rate: 0.01, 0.001 and 0.0001.
• Number of Epochs: 10 and 200.

Design of Experiments

As mentioned previously, the goal of our experiments is to evaluate the
performance AlexNet and GoogLeNet (Inception V3) with transfer learning
by changing the hyperparameters associated with the structure and learning.
The methodology used in this work consisted of two phases. In the first one,
we used the default values for each optimizer on both networks. The goal
was to evaluate which hyperparameters have the more significant impact on
the performance of the classification model. To accomplish the goal, we
conducted a grid-search strategy selecting different hyperparameters values
and trying all the possible configurations to determine the hyperparameters
values that improve the performance of the model. Thus, we discarded the
optimizers whose performance was below the average (Adam, FTRL, and
RMSProp), to subsequently explore the impact of both the learning rate and
batch size values in the performance of the models. To this extent, we
increased the default learning rate tenth fold (0.01) and tested it in every
optimizer, each one with a batch size of values 32, 64, 128, and 256, in both
networks. Next, we did the same while decreasing the default learning rate
tenth fold as well (0.0001). It is important to mention that during this phase,
all values for epochs were equal to 10 since we tried to reduce the time spent
on each experiment.

In the second phase, we averaged the obtained results to discard every
hyperparameter configuration whose results were below the average perfor
mance by the learning rate used. Also, we discarded the hyperparameters when
the score obtained by the default optimizer values was below the average
performance. In this phase, we also tested the default hyperparameters with
an epoch value equals to 200 in all configurations to generate a new and more
accurate threshold, considering the number of epochs. With this approach, we
wanted to explore how the tuning of the hyperparameter values improves the
performance, and not that the improvement was obtained only by increasing
the number of epochs.

e2058165-2772 I. CARDOZA ET AL.

Finally, we discarded those values that caused a performance drop while
increasing the epochs and categorized the rest of the results by the best
combinations per optimizer. Upon obtaining the higher score of the overall
combinations, we tuned the number of epochs even further by running several
approximation tests until we reached the best performance.

Data Set and Experiment Setup

Another key aspect in constructing a highly accurate CNN-based classi
fication model is the image data set employed. For an efficient handgun
image classification model, it is important to consider not only images of
static weapons but also scenarios of real-life where those firearms were
being held by humans in different threatening stances. That is why,
looking for a balance between consistency and production environment
usefulness, we decided to form our own data set using only some images
from other existent data sets. For instance, we included the Internet
standard ”Gun-Detection” data set Annamraju (2019), from which we
took 3,000 images for the true class. Then, we added 2,973 more images
from Roboflow.com “Object-Detection/Pistols” data set Webpage (2020).
And once collected, the data set was verified image by the image taking
care to not include any image with watermarks, video game or animated
images, toy guns, photo filters, thick frames, or any other kind of visual
disturbance to keep it as clean and useful as possible. During this
curating process, more than 50% of the images collected were discarded.
As a consequence, to reach the desired quantity of images for the true
class (3,000), we filled the rest with the results of the istockphoto.com
images database using the search query ”gun pointed” iSstock webpage
(2021). As for the false class, we needed a variety of scenes to provide
the model with the ability to generalize the background. Also, we needed
large quantities of pictures of people holding different kinds of objects to
make sure that the model would not learn that people were the main
feature for the true class, but guns. Under that criterion, we selected
approximately 2,400 images from the Microsoft Common objects in
context (COCO) data set Lin et al. (2014), whereas the rest were
obtained while doing manual searches in Google Images. Examples of
the contents of both classes within our data set can be observed in
Figure 3.

Our data set consists of 6,000 total images. Three thousand of them belong
to the ”true” class, and the other 3,000 to the ”false” class. From the total set of
images, 70% of them were used as training data, 15% for validation, and 15%
for test purposes. The file format for all these images is .jpg, and they come in
a variety of sizes ranging from 15 Kb to 5,000 Kb.

APPLIED ARTIFICIAL INTELLIGENCE e2058165-2773

All of our experiments were performed using a Personal Computer using
a CPU: Intel(R) Core(TM) i7-10700 F CPU @ 2.90 GHz processor; a GPU
NVIDIA GeForce GTX 1660 SUPER GPU @ 1.785 GHz 6.00 GB card; RAM:
31.9 GB Utilizable and Hard disk: 476 GB Utilizable. As for the software
specifications, we employed: Windows 10 Home as Operative System;
NVIDIA CUDA version 11.0.2_451.48 with cuDNN 8.0.5 library as GPU-
accelerators; Anaconda 3 as environment and package manager; Jupyter as
frontend, with Keras 2.4.0 and Tensorflow 2.4.0 as backend. All of our code
was written in Python 3.8.8.

Results

After concluding with the experiments, we obtained enough proof to support
our hypothesis that the default hyperparameters values do not always provide
the optimum performance to a very specific classification problem. We also
found that some hyperparameters alone have an impact on the performance of
the classifier, whereas in some cases, the performance improvement is caused
by the relationship among the tuning of several hyperparameters.

In Table 2, we can observe the results obtained from the evaluation with the
default values for 200 epochs, and in Table 3 we can observe the results
obtained with tuned hyperparameters by optimizer and its respective accuracy
gain, where it applies.

Through the experiments, we were able to confirm that, for the handgun
classification problem, the hyperparameters tuning process is indeed critical.
Since the best result was not achieved by following the ”by the book” tuning
techniques and assumptions but through exhaustive experiments and testing.
Moreover, upon obtaining the values of the hyperparameters, which provided
the higher accuracy from all the experiments. From the important findings, we

Figure 3. Examples of the contents of our data set for both categories.

e2058165-2774 I. CARDOZA ET AL.

have that 1) the optimizer was not one of the most used in CNN’s literature, 2)
the learning rate was not the default and presumably best for the optimizer,
and 3) the number of epochs was way too low in comparison with the one
employed with other optimizers to get similar results. We can conclude that
the combination of the hyperparameters favors the optimum performance for
our case study. Thus, we cannot obviate a single ”winning formula” for a given
problem and data set. The optimum performance for the handgun classifica
tion model was obtained training Inception V3 with transfer learning using
ImageNet data set and the hyperparameters: Nadam optimizer, a learning rate
of 0.0001 (ten times less than its default value), a batch size of 256, and
a number of epochs equals to 13. The confusion matrix is presented as
shown in Table 4.

Table 3. Results using tuned hyperparameter values for Keras optimizers for both AlexNet and
Inception V3, with its accuracy gain respect to the default values.

CNN Optimizer
Batch

size
Learning

rate
Epochs
Epochs True pos True neg Accuracy Change

AlexNet Adadelta 32 0.01 200 235/450 421/450 72.89% −0.22%
” Adagrad 128 0.001 200 239/450 413/450 72.44% −1.34%
” Adamax 64 0.0001 200 276/450 409/450 76.11% +5.22%
” Nadam 64 0.0001 200 282/450 411/450 77.00% +5.89%
” SGD 128 0.01 200 272/450 409/450 75.67% +0.11
Inception Adadelta 64 0.01 200 386/450 443/450 92.11% +1.00%
V3 Adagrad 64 0.01 200 397/450 444/450 93.44% +2.44%
” Adamax 128 0.0001 200 394/450 444/450 93.11% +10.00%
” Nadam 256 0.0001 200 389/450 444/450 92.56% +13.23%
” SGD 128 0.01 200 383/450 441/450 91.56% −1.33%

Table 4. Confusion matrix for Inception V3 with
optimum parameters.

Actual/Predicted Positive Negative

Positive 406 44
Negative 9 441

Table 2. Results using default hyperparameter values for Keras optimizers for both AlexNet and
Inception V3.

CNN Optimizer Batch size Learning rate Epochs True pos True neg Accuracy

AlexNet Adadelta 32 0.001 200 240/450 418/450 73.11%
” Adagrad 32 0.001 200 255/450 409/450 73.78%
” Adamax 32 0.001 200 285/450 353/450 70.89%
” Nadam 32 0.001 200 238/450 402/450 71.11%
” SGD 32 0.01 200 278/450 402/450 75.56%
Inception Adadelta 32 0.001 200 377/450 443/450 91.11%
V3 Adagrad 32 0.001 200 375/450 444/450 91.00%
” Adamax 32 0.001 200 304/450 444/450 83.11%
” Nadam 32 0.001 200 299/450 415/450 79.33%
” SGD 32 0.01 200 394/450 442/450 92.89%

APPLIED ARTIFICIAL INTELLIGENCE e2058165-2775

The classifier with the best performance had an accuracy value of 94.11%
and a precision value of 92.22%. These results represent a 10.33% accuracy
improvement and a 9.34% precision improvement over the default values
when using the Nadam optimizer. Meanwhile, for the AlexNet network (with
out employing transfer learning techniques), using the Nadam optimizer with
a learning rate of 0.0001, a batch size equals 64 and 200 epochs, was the
configuration with which the best results were obtained, achieving a maximum
accuracy of 77% and precision of 71.33%. Compared to the results obtained
using the default values, these results represent an improvement of 5.89% in
accuracy and 7.78% in precision. Table 5 shows the confusion matrix for this
configuration of hyperparameters. Figure 4 shows some examples of images
that were classified as containing firearms incorrectly. It can be seen that those
images are hard to classify.

In Figures 5 and 6, we can see the drop in validation loss and rise in
accuracy across epochs during the training process, for the best performance
configurations of both AlexNet and Inception V3. Figures 7 and 8 show the
Receiver Operating Characteristic curves (ROC) for the training of both net
works, respectively.

Discussion

Hyperparameter tuning is a process of vital importance in the development of
a CNN-based classification model. For instance, choosing one optimizer over
another can be the difference between a high accuracy model and a dummy

Table 5. Confusion matrix for AlexNet with opti
mum hyperparameters.

Actual/Predicted Positive Negative

Positive 282 168
Negative 39 411

Figure 4. Validation loss and accuracy across epochs during the training process of AlexNet
network with tuned hyperparameters.

e2058165-2776 I. CARDOZA ET AL.

Figure 6. ROC curve for AlexNet network with tuned hyperparameters. Its area under the curve
value is 0.8709.

Figure 7. ROC curve for Inception V3 network with tuned hyperparameters. Its area under the
curve value is 0.9812.

Figure 5. Validation loss and accuracy across epochs during the training process of Inception V3
network with tuned hyperparameters.

APPLIED ARTIFICIAL INTELLIGENCE e2058165-2777

classifier, as was demonstrated by the experiments results. Additionally, we
found that optimizer default values do not always yield the best performance
for a particular classification problem. For instance, when we lowered tenth
fold the default learning rate for the Nadam optimizer we converted a below-
average performing model, which has a test accuracy equals 67.67%, into
a high-performance one, with a test accuracy of 94.11%.

For the particular data set used in our experiments, after selecting the
right optimizer, the most critical factor in building an optimum classifica
tion model was selecting the adequate CNN to use. In our case,
GoogLeNet (Inception V3) yielded much better results than AlexNet,
averaging 79.81% accuracy against the 64.88% accuracy obtained by
AlexNet, when using the default values from optimizers. The better
performance of GoogLeNet (Inception V3) is a consequence of two
facts: the use of transfer learning from the Imagenet database and the
larger number of layers used by GoogLeNet.

The next hyperparameters on our list of importance in the tuning process
are the learning rate and the batch size since a combination of a low value for
learning rate (0.0001), and a significant value for batch size (256) provided the
best results while running tests. However, it is essential to mention that the
lowest learning rate values tend to slow down the learning process, requiring
more processing time during the training process. In the same way, the largest
batch size values consume more memory, which makes the training process
computationally more expensive.

At the end of our list, we have the number of epochs because, from the
results of our experiments, we can conclude that specifying a large number of
epochs does not guarantee better results than a small one due to the possibility
of the overfitting scenario. This not significant impact of the number of epochs

Figure 8. Examples of misclassification.

e2058165-2778 I. CARDOZA ET AL.

usually happens because presenting the data set too many times to the network
can help to improve training accuracy. However, it makes it harder for the
model to classify correctly data it has never seen before.

Across the different phases of our experiments, we could discern some
patterns between the performance of the optimizers employed with one or
various specific hyperparameters. For example, Adadelta and Adagrad showed
positive effects when increasing the learning rate from 0.001 to 0.01 (ten times
its original value), disregarding the batch size employed. On the other hand,
the optimizers Adamax and Nadam yielded performance improvement when
reducing the learning rate from 0.001 to 0.0001, and this improvement kept
growing as the batch size increased. This performance improvement occurred
in both networks, so it would be safe to say that, for the most part, what
determines these correlations is the dataset. Another interesting finding was
that big batch sizes tend to go along quite well with small numbers of epochs.
The experiments demonstrated that the validation accuracy ceases to grow
before specifying large batch size values compared to small ones. Sometimes,
the validation accuracy drops after a certain number of epochs. Nevertheless,
again, this happened in both networks.

Improved accuracy in classifying firearms in images has been reported in
other works. For instance, in Olmos, Tabik, and Herrera (2018a), the author
uses a classifier trained under the VGG-16 architecture, specially designed to
minimize prediction loss. VGG-16 has more parameters than both AlexNet
and GoogLeNet standard networks, but it is considerably more computation
ally expensive. His work reaches a maximum precision of 84,21%. Moreover,
the final model is then analyzed as an automatic alarm system. In the same
way, in Kanehisa and Neto (2019) the authors employ a network architecture
based on Redmon and Farhadi (2017) as a classifier, reaching an accuracy of
96.26% and precision of 95.74%. They used the Internet benchmark IMFDb
data set for their experiments.

Another example is discussed in Galab et al. (2020), which proposes the
application of transfer learning techniques to the well-recognized CNN
GoogLeNet and AlexNet. Their approach successfully outperforms its prede
cessors, reaching an accuracy of 99.2% and precision of 99.5% while using
AlexNet for trained network, and a 97.7% accuracy and a 97.3% precision while
using GoogLeNet. All their tests were performed on the IMFDb data set as well.

Those results are quite encouraging, but there is always room for improve
ment when dealing with a subject as important as public safety. With this in
mind and looking for a way to understand and improve the actual methods, we
inquired deep into the fundamental aspects of CNN. It is important to note
that the mentioned related works do not discuss the hyperparameters used
while training their networks or their impact on the performance of the
classification model.

APPLIED ARTIFICIAL INTELLIGENCE e2058165-2779

In contrast to other works, we deeply explore the foundation of CNN. One
of the research goals was to evaluate the impact of the use or absence of
transfer learning techniques or the number of layers in the networks. For
instance, AlexNet has eight layers, while Inception V3 has 42 layers.

Among the limitations of our experiments, we must consider that the
inner processes of the CNN include employing randomness to a certain
extent, resulting in a slightly different model each time the network is
trained, even when using the same hyperparameter settings and data set.
This behavior affects the final prediction outcomes from one experiment
to another. The most effective solution to this issue would be to repeat the
experiments several times until we get a general behavior for each setting,
calculated by a statistic function. However, creating an optimum model
could require a considerable number of epochs, and we had to test
multiple times each combination of hyperparameter values for batch
size, optimizer and learning rate, thus, the time and computational cost
necessary for such a massive number of experiments would make the
attempt for normalization unfeasible.

Also, since the experiments showed that after around 50 epochs, the overall
model accuracy ceases to grow (and in some cases, principally for large batch
sizes, it diminishes), the epochs value beyond 200 was not explored.

Conclusions and Future Work

In this paper, we analyzed the benefits of tuning the values for a classification
algorithm hyperparameters compared to its default values on the perfor
mance of a handgun classification model. Particularly, we evaluated two
benchmark CNN architectures: AlexNet and Inception V3. We obtained
a 94.11% test accuracy after training our model in the Inception V3 network
while employing transfer learning from the ImageNet database. We used
Nadam as the optimizer with a custom learning rate of 0.0001, a batch size of
256, and a total of 13 epochs. Experimental results revealed an important
relationship between the data set, specific combinations of values for the
selected optimizer, batch size, learning rate, and the final performance of the
classification model since improvements yielded an accuracy of up to 10.33%
after the tuning process.

As future work, once successfully detecting the best optimizer for the
image-based firearm classification problem (Nadam), we are interested in
investigating the impact on the outcome of its configurable internal para
meters (epsilon value, dropout, and momentum). Also, we would evaluate
those hyperparameters that define the network’s structure, such as the number
of network layers, activation functions, and dropout, to determine if there is
also a correlation between the tuning process between them and the

e2058165-2780 I. CARDOZA ET AL.

performance of the CNN. The obtained results showed that using different
values for the hyperparameters of a CNN-based classification model, other
than the default values, yielded better performance.

The use of tools for automatic tuning of hyperparameters, such as Bayesian
optimization, is an interesting topic for future work. Comparing the obtained
results between using grid-search and automatic tuning of hyperparameters
using the same dataset of this project will give a clue of the advantages and
limitations of both approaches.

Additionally, we consider developing a data set considering specific scenar
ios, such as a school, college campus, or a particular city spot. This data set will
represent more accurately a target application. Once the data set is built, it will
be used to develop a classification model using the results obtained in this
paper and implement an Internet of Things-based system.

Finally, we consider converting the architecture of a CNN with transfer
learning which yields the best accuracy in classifying firearms in images, into
a firearms detector in images or video. The main idea is to compare our
transfer learning-based detector with traditional object detectors, such as
regions with CNN features (R-CNN) Girshick et al. (2014), Fast-R-CNN
Girshick et al. (2014), Faster-RCNN Ren et al. (2017), and YOLO Redmon
and Farhadi (2017), among others.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

ORCID

Isaac Cardoza http://orcid.org/0000-0002-9776-2663
Juan P. García-Vázquez http://orcid.org/0000-0003-1787-7223
Arnoldo Díaz-Ramírez http://orcid.org/0000-0002-6188-0756
Verónica Quintero-Rosas http://orcid.org/0000-0002-8508-7429

References

Ağdaş, M. T., M. Türkoğlu, and S. Gülseçen. 2021. Deep neural networks based on transfer
learning approaches to classification of gun and knife images. Sakarya University Journal of
Computer and Information Sciences 4 (1):131–41. doi:10.35377/saucis.04.01.891308.

Aghdam, H. H., and E. Jahani Heravi. 2017. Guide to Convolutional Neural Networks, 1st ed.
Switzerland: Springer. doi:10.1007/978-3-319-57550-6.

Albelwi, S., and A. Mahmood. 2017. A framework for designing the architectures of deep
convolutional neural networks. Entropy 19 (6):242. https://www.mdpi.com/1099-4300/19/6/
242 .

Alex, K., I. Sutskever, and G. E. Hinton. 2017. ImageNet classification with deep convolutional
neural networks. Commun. ACM 60 (6):84–90. doi:10.1145/3065386.

APPLIED ARTIFICIAL INTELLIGENCE e2058165-2781

https://doi.org/10.35377/saucis.04.01.891308
https://doi.org/10.1007/978-3-319-57550-6
https://www.mdpi.com/1099-4300/19/6/242
https://www.mdpi.com/1099-4300/19/6/242
https://doi.org/10.1145/3065386

Alzubaidi, L., J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, J. S. Omran Al- Shamma,
M. A. Fadhel, M. Al-Amidie, and L. Farhan. 2021. Review of deep learning: Concepts, CNN
architectures, challenges, applications, future directions. Journal of Big Data 8 (53):1–74.
doi:10.1186/s40537-021-00444-8.

Annamraju, A. 2019. “Weapon Detection Dataset.” Accessed 2 July 2021. https://www.kaggle.
com/abhishek4273/gun-detection-dataset .

Bochinski, E., T. Senst, and T. Sikora. 2017. “Hyper-parameter optimization for convolutional
neural network committees based on evolutionary algorithms.” In Proceedings of the IEEE
International Conference on Image Processing(ICIP), Beijing, China, September, pp.
3924–28. doi: 10.1109/ICIP.2017.8297018.

Dwivedi, N., D. Kumar Singh, and D. Singh Kushwaha. 2019 April. “Weapon Classification
using Deep Convolutional Neural Network.” In 2019 IEEE Conference on Information and
Communication Technology, pp.1–5. Manhattan, New York, U.S.: IEEE. doi: 10.1109/
CICT48419.2019.9066227.

Elmir, Y., S. Ahmed Laouar, and L. Hamdaoui. 2019. “Deep learning for automatic detection of
handguns in video sequences.” In JERI, April. http://ceur-ws.org/Vol-2351/paper_69.pdf .

Feurer, M., and F. Hutter. 2019. Hyperparameter optimization. Automated Machine Learning:
Methods, Systems, Challenges The Springer Series on Challenges in Machine Learning, pp.
3–33. Switzerland: Springer International Publishing. doi:10.1007/978-3-030-05318-5_1.

Galab, M., M. Mai, A. Taha, and H. Zayed. 2020. Automatic gun detection approach for video
surveillance.” International Journal of Sociotechnology and Knowledge Development
12 (1):49–66. doi:10.4018/IJSKD.2020010103.

Girshick, R., J. Donahue, T. Darrell, and J. Malik. 2014. “Rich feature hierarchies for accurate
object detection and semantic segmentation.” In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, June, pp. 580–87.
doi: 10.1109/CVPR.2014.81.

iSstock webpage. 2021.“Gun pointed images.” Accessed 2 July 2021.Getty images. https://www.
istockphoto.com/es/search/2/image?page=3&phrase=gun%20pointed

INEGI. 2019a September. “Encuesta Nacional de Victimización y Percepción sobre Seguridad
Pública (ENVIPE) ENVIPE 2019.” Available online: https://www.inegi.org.mx/programas/
envipe/2019/ .

INEGI. 2019b. “Mortalidad. Conjunto de datos: Defunciones por homicidios.” October.
https://www.inegi.org.mx/sistemas/olap/proyectos/bd/continuas/mortalidad/defuncione
shom.asp?s=est .

Kamilaris, A., and F. X. Prenafeta-Boldú. 2018. A review of the use of convolutional neural
networks in agriculture. The Journal of Agricultural Science 156 (3):312–22. doi:10.1017/
S0021859618000436.

Kandel, I., and M. Castelli. 2020. The effect of batch size on the generalizability of the
convolutional neural networks on a histopathology dataset. ICT Express 6 (4):312–15.
doi:10.1016/j.icte.2020.04.010.

Kanehisa, R., and A. Neto. February 2019. “Firearm detection using convolutional neural
networks.” In Proceedings of the 11th International Conference on Agents and Artificial
Intelligence (ICAART), 707–14. Prague, Czech Republic: 2019). Doi: 10.5220/
0007397707070714.

Kaya, V., S. Tuncer, and A. Baran. 2021. Detection and classification of different weapon types
using deep learning. Applied Sciences 11 (16):7535. doi:10.3390/app11167535.

Keras, A. P. I. 2020a. “Keras Image data preprocessing.” Accessed 2 July 2021. https://keras.io/
api/preprocessing/image/ .

Keras, A. P. I. 2020b. “Keras Optimizers.” Accessed 2 July 2021. https://keras.io/api/optimizers/
.

e2058165-2782 I. CARDOZA ET AL.

https://doi.org/10.1186/s40537-021-00444-8
https://www.kaggle.com/abhishek4273/gun-detection-dataset
https://www.kaggle.com/abhishek4273/gun-detection-dataset
https://doi.org/10.1109/ICIP.2017.8297018
https://doi.org/10.1109/CICT48419.2019.9066227
https://doi.org/10.1109/CICT48419.2019.9066227
http://ceur-ws.org/Vol-2351/paper_69.pdf
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.4018/IJSKD.2020010103
https://doi.org/10.1109/CVPR.2014.81
https://www.istockphoto.com/es/search/2/image?page=3%26phrase=gun%20pointed
https://www.istockphoto.com/es/search/2/image?page=3%26phrase=gun%20pointed
https://www.inegi.org.mx/programas/envipe/2019/
https://www.inegi.org.mx/programas/envipe/2019/
https://www.inegi.org.mx/sistemas/olap/proyectos/bd/continuas/mortalidad/defuncioneshom.asp?s=est
https://www.inegi.org.mx/sistemas/olap/proyectos/bd/continuas/mortalidad/defuncioneshom.asp?s=est
https://doi.org/10.1017/S0021859618000436
https://doi.org/10.1017/S0021859618000436
https://doi.org/10.1016/j.icte.2020.04.010
https://doi.org/10.3390/app11167535
https://keras.io/api/preprocessing/image/
https://keras.io/api/preprocessing/image/
https://keras.io/api/optimizers/

Ketkar, Nikhil. 2017. . In Deep learning with python, a hands-on introduction, 1st ed. Berkeley,
CA: Apress. doi:10.1007/978-1-4842-2766-4.

Kolar, D., D. Lisjak, M. Pajak, and M. Gudlin. 2021. Intelligent fault diagnosis of rotary
machinery by convolutional neural network with automatic hyper-parameters tuning
using bayesian optimization. Sensors 21 (7):2411. https://www.mdpi.com/1424-8220/21/7/
2411 .

Lin, T.-Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. Lawrence
Zitnick. 2014. Microsoft COCO: Common Objects in Context. In Lecture Notes in Computer
Science.- European conference on computer vision 8693: 740–55. doi:10.1007/978-3-319-
10602-1_48.

Olmos, R., S. Tabik, and F. Herrera. 2018a. Automatic handgun detection alarm in videos using
deep learning. Neurocomputing 275:66–72. 2017.05.012. doi:10.1016/j.neucom.

Olmos, R., S. Tabik, and F. Herrera. 2018b. Automatic handgun detection alarm in videos using
deep learning. Neurocomputing 275:66–72. 2017.05.012. doi:10.1016/j.neucom.

Pérez-Pérez, B. D., J. Pablo García Vázquez, and R. Salomón-Torres. 2021. Evaluation of
convolutional neural networks’ hyperparameters with transfer learning to determine sorting
of ripe medjool dates. Agriculture Doi: 10.3390/ agriculture11020115. 11 (2):115.
doi:10.3390/agriculture11020115.

Rao, Y., G. Zhang, W. Zhou, C. Wang, and Y. Lv. 2019 April. “Deep convolutional neural
network based traffic vehicle detection and recognition. International Conference on Internet
of Things as a Service Xian, China, pp. 427–38. Switzerland: Springer. doi: 10.1007/978-
3-030-44751-9_36.

Redmon, J., and A. Farhadi. 2017. “YOLO9000: Better, faster, stronger.” InProceedings of the
IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, July,
7263–71. Doi: 10.1109/CVPR.2017.690.

Ren, S., H. Kaiming, R. Girshick, and J. Sun. 2017. Faster R-CNN: Towards real- time object
detection with region proposal networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence 39 (6):1137–49. doi:10.1109/TPAMI.2016.2577031.

Sarvamangala, D. R., and R. V. Kulkarni. 2021. Convolutional neural networks in medical
image understanding: A survey. Evolutionary Intelligence 1–22. doi:10.1007/s12065-020-
00540-3.

Smith, L. N. 2018. A disciplined approach to neural network hyper-parameters: Part 1– Learning
rate, batch size, momentum, and weight decay. Technical Report US Naval Research
Laboratory Technical Report 5510-026. Cornell University.

Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. 2016. “Rethinking the inception
architecture for computer vision.” In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NV, USA, June, pp. 2812–2816. doi: 10.1109/
CVPR.2016.308.

Tang, B., Z. Pan, K. Yin, and A. Khateeb. 2019. Recent advances of deep learning in bioinfor
matics and computational biology. Frontiers in Genetics 10:214. doi:10.3389/
fgene.2019.00214.

UNODC. 2019. “Global study on homicide 2019.” July. Accessed 2019. https://www.unodc.org/
unodc/en/data-and-analysis/global-study-on-homicide.html .

UNODC. 2020. “Global study on firearms trafficking 2020.” Mar. Accessed 2020. https://www.
unodc.org/unodc/en/firearms-protocol/firearms-study.html .

Veranyurt, O., and C. Okan Sakar. 2020. “Hand-Gun detection in images with transfer
learning-based convolutional neural networks.” In 28th Signal Processing and
Communications Applications Conference (SIU), Gaziantep, Turkey, January, pp. 1–4.
Manhattan, New York, U.S.: IEEE. doi: 10.1109/SIU49456.2020.9302394.

APPLIED ARTIFICIAL INTELLIGENCE e2058165-2783

https://doi.org/10.1007/978-1-4842-2766-4
https://www.mdpi.com/1424-8220/21/7/2411
https://www.mdpi.com/1424-8220/21/7/2411
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1016/j.neucom
https://doi.org/10.1016/j.neucom
https://doi.org/10.3390/agriculture11020115
https://doi.org/10.1007/978-3-030-44751-9_36
https://doi.org/10.1007/978-3-030-44751-9_36
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1007/s12065-020-00540-3
https://doi.org/10.1007/s12065-020-00540-3
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.3389/fgene.2019.00214
https://doi.org/10.3389/fgene.2019.00214
https://www.unodc.org/unodc/en/data-and-analysis/global-study-on-homicide.html
https://www.unodc.org/unodc/en/data-and-analysis/global-study-on-homicide.html
https://www.unodc.org/unodc/en/firearms-protocol/firearms-study.html
https://www.unodc.org/unodc/en/firearms-protocol/firearms-study.html
https://doi.org/10.1109/SIU49456.2020.9302394

Victoria, A. H., and G. Maragatham. 2021. Automatic tuning of hyperparameters using
Bayesian optimization. Evolving Systems 12 (1):271–223. doi:10.1007/s12530-020-09345-2.

Webpage, R. 2020. “Pistols Dataset.” Accessed 2 July 2021. https://public.roboflow.com/object-
detection/pistols/1 .

Yang, L., and A. Shami. 2020. On hyperparameter optimization of machine learning algo
rithms: Theory and practice. Neurocomputing 415 (4):295–316. doi:10.1016/j.
neucom.2020.07.061.

Zaccone, G., and M. R. Karim. 2018. Deep learning with tensorflow: Explore neural networks
and build intelligent systems with python. 2nd ed. Birmingham, United Kingdom: Packt
Publishing. https://books.google.com.mx/books?id=zZlUDwAAQBAJ .

Zewen, L., F. Liu, W. Yang, S. Peng, and J. Zhou. 2021. A survey of convolutional neural
networks: analysis, applications, and prospects.” IEEE Transactions on Neural Networks and
Learning Systems:1–21. doi:10.1109/TNNLS.2021.3084827.

Zhao, H., O. Gallo, I. Frosio, and J. Kautz. 2017. Loss functions for image restoration with
neural networks. IEEE Transactions on Computational Imaging 3 (1):47–57. doi:10.1109/
TCI.2016.2644865.

Zimring, F. E. 2020. Firearms and violence in American life—50 years later. Criminology &
Public Policy 19 (4):1359–69. doi:10.1111/1745-9133.12523.

e2058165-2784 I. CARDOZA ET AL.

https://doi.org/10.1007/s12530-020-09345-2
https://public.roboflow.com/object-detection/pistols/1
https://public.roboflow.com/object-detection/pistols/1
https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.1016/j.neucom.2020.07.061
https://books.google.com.mx/books?id=zZlUDwAAQBAJ
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/TCI.2016.2644865
https://doi.org/10.1109/TCI.2016.2644865
https://doi.org/10.1111/1745-9133.12523

	Abstract
	Introduction
	Related Work
	Materials and Methods
	Convolutional Neural Networks
	Convolution Layer
	Pooling Layer
	ReLU
	Fully Connected Layers
	Softmax Layer
	Loss Function

	CNN Architectures Used in This Work
	AlexNet
	GoogLeNet (Inception V3)

	Transfer Learning
	Hyperparameters and Values
	Optimizer
	Learning Rate
	Batch Size
	Number of Epochs

	Design of Experiments
	Data Set and Experiment Setup

	Results
	Discussion
	Conclusions and Future Work
	Disclosure Statement
	ORCID
	References

