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ABSTRACT
In recent years, the rates of firearm-related violent acts world
wide have risen significantly. It is a severe social problem that 
compromises the safety of every individual to some extent. This 
situation has motivated researchers to find new ways to 
improve the current state-of-the-art solutions, such as auto
matic surveillance systems, to detect and classify the presence 
of firearms within a specific scene. These systems reduce the 
drawbacks of using direct human supervision. Among the avail
able solutions for the classification task, the performance of 
Deep Learning models stands out, especially those based on 
Convolutional Neural Networks. Since they start learning 
directly from raw data (e.g., images), their learning process can 
be improved even further by using Transfer Learning techni
ques. However, the classification accuracy depends significantly 
on choosing the optimum set of values for the different hyper
parameters composing them. Thus, this paper analyses the 
improvement in the performance of an image-based handgun 
classification algorithm when tuning its hypermeters values 
instead of using its default values. In this work, we evaluated 
the performance variation using two benchmarks Convolutional 
Neural Networks architectures: AlexNet and Inception V3. We 
obtained a maximum accuracy of 94.11% when using the 
Inception V3 network and transfer learning. We employed 
Nadam as the optimizer and a learning rate equal to 0.0001, 
a batch size equal 256, and a total of 13 epochs. Experimental 
results suggest an essential relationship between the perfor
mance of the classification model and the data set, the specific 
combinations of values for the selected optimizer, the batch 
size, and the learning rate. The obtained improvement in the 
accuracy was up to 10.33% after the tuning process.
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Introduction

Firearms play an unquestionable role in the occurrence of numerous kinds of 
violent crimes worldwide, including theft and homicide. According to the 
Global Study on Homicide UNODC (2019), from the 464,000 estimated total 
homicides in 2017, roughly 54% (238,804) of the cases involved the utilization 
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of firearms, as it can be seen in Figure 1. Particularly in the Americas, the rate 
of firearm-related homicides raised to approximately 75%, which is higher 
than anywhere else in the world UNODC (2019).

Another fundamental indicator of the magnitude of the firearm-related 
violence problem is the number of firearm seizures by world region. From 
the UNODC Global Study on Firearms Trafficking 2020 UNODC (2020), it 
can be concluded that there is a relationship between the number of firearms 
seized to the number of homicides committed using them. Higher rates of 
firearm seizures can be observed in countries with low homicide rates, while 
low rates of firearms seizures are observed in countries experiencing high 
levels of homicide. This relationship suggests that tighter levels of vigilance 
over firearms help low homicide levels. In contrast, an increase in the 
possession rate of weapons corresponds to a rise in the homicide rate. The 
study also shows that the main types of seized firearms in the Americas are 
handguns (pistols and revolvers). Particularly in Mexico, violence has risen 
dramatically over the past few years. In 2018, 36,685 homicides were com
mitted, according to the National Institute of Statistics and Geography 
(INEGI) INEGI (2019b). It represents a growth of 161% compared to the 
past decade. In addition, INEGI statistics showed that from the 18.9 million 
estimated crimes where the victim was present at the moment of the crime, 
the perpetrator(s) possessed some type of firearm in 32.2% of the cases. The 
statistic is alarmingly high considering the threat level those artifacts repre
sent. Providing more significant control over firearm usage is a crucial factor 
in keeping low crimes and homicide rates. Among the possible solutions to 
address this problem, we may deploy surveillance systems, particularly in 
urban areas with a high incidence of crimes. Firearms detection systems are 
attractive for smart cities since statistics data show that metropolitan areas 
are hot spots for gun violence INEGI (2019a). However, surveillance systems 

Figure 1. Estimated breakdown of intentional homicide worldwide, by a mechanism of perpetra
tion in 2017 UNODC (2019)
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often have many limitations, including the need for constant human super
vision over vast volumes of data. Besides, these systems can be expensive and 
unfeasible for large-scale deployment. An attractive alternative is the devel
opment of automated surveillance systems, where potential criminal activ
ities are detected using artificial intelligence techniques, such as machine 
learning algorithms. In recent years, Convolutional Neural Networks (CNN) 
have shown promising results in image classification tasks, outperforming 
humans Galab et al. (2020). CNN have already been used to address hand
gun classification with good results Olmos, Tabik, and Herrera (2018a); 
Kanehisa and Neto (2019); Redmon and Farhadi (2017); Galab et al. 
(2020). Nevertheless, the existing models still can be improved since most 
of the proposals for weapons classification based on CNN do not consider 
one of their most fundamental aspects: their hyperparameters and their 
tuning process. Different data sets often require different sets of values for 
the CNN’s hyperparameters to yield a good accuracy when classifying 
images. But the large number of hyperparameters to choose from makes it 
difficult to decide which ones to prioritize when tuning a classification 
model. In this process, we first need to select the most determinant hyper
parameters to develop a high-performance classifier. Next, we need to adjust 
its values and evaluate how they behave and correlate with the other hyper
parameters. Since this process is exhaustive, time-consuming, and potentially 
computationally expensive, many developers opt for using only the default 
values for the training of their CNN. The main reason is that those values are 
usually set for an ideal performance for general problems. However, for most 
classification problems, there is no answer to how many network layers 
provide a better performance, how many neurons per layer are the best, or 
which optimizer suits the best for every data set and problem. That is why 
the tuning process results crucial in finding the best possible sets of values 
for hyperparameters to build an optimum model from a specific data set and 
problem.

Machine learning algorithms have two kinds of hyperparameters: the model 
parameters, which are learned directly from the data, and the model hyper
parameters, used to control the learning process. Determining the optimal 
hyperparameters values is imperative to achieve a high ML model perfor
mance. It is known as hyperparameter tuning to the task to select the optimal 
hyperparameters values. Several strategies for hyper-parameter tuning exist. 
Some of them use automatic optimization techniques Victoria and 
Maragatham (2021); Kolar et al. (2021), but they show different strengths 
and drawbacks when applied to different types of problems, such as costly 
objective function evaluations and complex search space, among others Yang 
and Shami (2020). For instance, although Bayesian optimization is potentially 
efficient, is not guaranteed to find better hyperparameters and can get stuck in 
a local minimum of the objective function Albelwi and Mahmood (2017). We 
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decided to employ the most used grid-search strategy in this work, which 
consists of selecting different hyperparameters values and trying all the possi
ble configurations.

Considering the complexity of determining the best values for hyperpara
meters in a CNN, in this paper, we present an analysis of the effect of the 
hyperparameters on the performance of a CNN-based handgun classifier. The 
main contribution of this work is that it explores the efficiency of firearms 
image classifiers and provides a clue of which combinations of the values of the 
hyperparameters offer better results. The obtained results give a guide for 
configuring CNN-based image classifiers to get a greater accuracy using values 
other than the default ones.

The rest of the document is organized as follows. Section 2 discusses the 
related work. In section 3, we introduce the materials and methods used in this 
work. Section 4 introduces the design of the experiments. In section 5, we 
discuss the results of the analysis of the tuning process of the values of the 
hyperparameters. Section 6 is for the discussion of the obtained results. 
Finally, in section 7, the conclusions and future work are presented.

Related Work

The application of convolutional network architectures has been considered 
by the scientific community to solve computational vision problems in various 
fields, such as health Sarvamangala and Kulkarni (2021); agriculture Kamilaris 
and Prenafeta-Boldú (2018); Pérez-Pérez, Pablo García Vázquez, and 
Salomón-Torres (2021); biology Tang et al. (2019); transport Rao et al. 
(2019). Regarding problems related to security in cities, in recent years, 
computational models have been proposed that allow firearms to be detected 
and classified in images or videos Kaya, Tuncer, and Baran (2021); Ağdaş, 
Türkoğlu, and Gülseçen (2021); Dwivedi, Kumar Singh, and Singh Kushwaha 
(2019); Veranyurt and Okan Sakar (2020); Olmos, Tabik, and Herrera (2018b); 
Elmir, Ahmed Laouar, and Hamdaoui (2019); Ağdaş, Türkoğlu, and Gülseçen 
(2021). The main goal is the development of intelligent systems that can 
prevent the occurrence of violent events.

In Table 1, we present a comparison of the most recent studies that use 
CNN architectures to detect firearms. It can be observed that those studies 
considered the variation of one or two more hyperparameters in the evalua
tion of the performance of the CNN architectures; or applied the transfer of 
learning as a feature extraction phase. They present models with good perfor
mance to classify firearms, some of them with accuracies greater than 95% 
accuracy Ağdaş, Türkoğlu, and Gülseçen (2021) Dwivedi, Kumar Singh, and 
Singh Kushwaha (2019) Veranyurt and Okan Sakar (2020). However, most of 
the works focus on the VGG-16 architecture; so far, we have not identified 
a study exploring the variation of architectures and hyperparameters related to 
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training, such as learning rate and the number of epochs batch size, and 
optimizer. In addition, the generated models are trained using a few images 
related to handguns, which according to the statistics of violent events during 
the last 50 years, are those that are commonly used in crimes such as murders, 
assaults, and kidnappings Zimring (2020). In contrast, we used a larger and 
richer dataset in this work and evaluated more CNN architectures.

Materials and Methods

Convolutional Neural Networks

A CNN is a kind of Deep Neural Network specifically designed for image 
recognition Zaccone and Karim (2018). In a CNN, every input image is 
represented as a three-dimensional matrix of pixels, consisting of the red 
(R), green (G) and blue (B) colors, respectively. Every pixel is represented by 
a tuple of three 8-bit numbers, representing the R, G and B colors. Each image 
used by the CNN is processed by hidden layers, consisting of convolutional 
layers, rectified linear units, pooling layers, and fully connected layers. Figure 2 
shows the basic architecture of a CNN and its components, which are 
described as follows:

Convolution Layer
It is a special type of layer where each neuron connects to a certain region of 
the input area called the receptive field Zaccone and Karim (2018). 
Convolutional layers use several kernel filters of different dimensions on the 
same receptive fields to recognize images from a different feature. The set of 
neurons identifying the same feature defines a single feature map.

Pooling Layer
A pooling layer consolidates the features learned by the feature map from the 
previous convolutional layer. It divides a convolutional region into subregions 
and then selects a single representative value to reduce the computational time 
of subsequent layers and increase the robustness of the feature concerning its 
spatial position Zaccone and Karim (2018).

Figure 2. Basic architecture of a CNN.
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ReLU
The Rectified Linear Unit is a non-linear function that returns 0 if it receives 
a negative input, but it returns the same input value if it is positive Alzubaidi 
et al. (2021). It is the default activation function for many neural networks 
since its models are easier to train and often yield better performance.

Fully Connected Layers
The fully connected layers form the last few layers in a CNN Aghdam and 
Heravi (2017). Their input is the output from the final pooling or convolu
tional layer, which is flattened and then fed into it to perform the mathema
tical operations, which once passed to the softmax layer will determine the 
probability for each class.

Softmax Layer
The softmax layer is an output layer for multi-classification tasks operating in 
conjunction with the cross-entropy loss function. It normalizes the outputs of 
the previous layer, so they sum up to one. This way, the output could represent 
the probability for every class Ketkar (2017).

Loss Function
It is the function utilized to evaluate a solution (model). Focused on 
minimizing the error (loss) and denoted by the difference between the 
output and the ground truth for a single input Zhao et al. (2017). The loss 
function to use will depend on the nature of the problem, being the most 
common mean squared error, binary, categorical, and sparse categorical 
cross-entropy.

CNN Architectures Used in This Work

In this subsection, a description of the CNN used in this work are briefly 
discussed.

AlexNet
Its architecture is composed of eight layers with trainable parameters Alex, 
Sutskever, and Hinton (2017). Five of them are consecutive convolutional 
layers at the start and three fully connected layers at the end. Every convolu
tional layer can include a ReLU function and max-pooling optionally. All 
pooling layers have a 3 × 3 extension region and a step rate of 2. AlexNet 
requires input images of size 227 × 227. Summarizing our implementation of 
AlexNet, it has a total of 200,114,946 parameters, from which 200,112,194 are 
trainable and 2,752 are non-trainable.

APPLIED ARTIFICIAL INTELLIGENCE e2058165-2769



GoogLeNet (Inception V3)
It is 42 layers deep, and instead of using the 5 × 5 filter, it uses two 3 × 3 in the 
first inception module Szegedy et al. (2016). In the same way, the other two 
inception modules also reduce its number of parameters, making it less likely 
to face an overfitting scenario Smith (2018) and allowing the network to grow 
deeper than its earlier versions while maintaining most of its features. 
Inception V3 requires input images of size 229 × 229.

Transfer Learning

Transfer learning is an ML technique in which a pre-trained model is reused in 
a new machine learning model Zaccone and Karim (2018). The advantage of 
having two models performing similar tasks is that generalized knowledge can 
be shared between them. Since training new machine learning models can be 
resource-intensive, the use of transfer learning saves both resources and time, 
allowing improved performance when modeling the second task. Transfer 
learning is used in deep learning due to the huge amount of resources required 
to train deep learning models or the big datasets on which deep learning 
models are trained. For instance, because computer vision and natural lan
guage processing tasks, like image recognition and sentiment analysis, require 
considerable computational resources, transfer learning is widely used to solve 
those kinds of problems. It is important to note that transfer learning only 
works in deep learning if the model features learned from the first task are 
general. Transfer learning offers several advantages, such as reduced training 
time, improved neural network performance, or not needing a large amount of 
data. In this work, we employ transfer learning to speed the training time and 
improve performance. The Inception V3 structure was modified with the 
intention of applying transfer learning from the ImageNet data set. An extra 
trainable layer with unfrozen weights before the last one was added. Thus, 
summarizing our implementation of Inception V3, we used 43 layers and 
a total of 23,851,784 parameters. From them, 23,817,352 are trainable and 
34,432 are non-trainable.

Hyperparameters and Values

Hyperparameters are often defined as the configuration of a neural network 
structure Bochinski, Senst, and Sikora (2017). Examples are the number of 
layers in the network, the number of neurons in each layer, and the activation 
function. However, the CNN structure is not the only configurable factor. We 
can also consider as hyperparameters those configurable parameters which 
define the learning algorithm as it is the case of the optimizer, learning rate, 
batch size, and the number of epochs. In the same way, when working with 
CNN, those configurable parameters, particularly of the convolution layers, as 
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well as stride and padding, can also be considered as hyperparameters. For our 
experiments, it was necessary to define a priori which hyperparameters to 
configure in order to measure the impact of every one of them in the 
performance of the generated model. In order of importance, they are:

Optimizer
It is responsible for updating the weights of neurons within a neural network 
in order to reach the minimum loss function Zewen et al. (2021).

Learning Rate
It represents the magnitude of the step taken on each iteration before updating 
the weights of the network Alzubaidi et al. (2021). Defining a higher learning 
rate makes the model learn faster than when using a lower learning rate, but it 
may miss the minimum loss function and only reach the surroundings of it. 
On the other hand, a lower learning rate gives a better chance of finding 
a minimum loss function and therefore may result in a local optimum; 
however, it needs a higher number of epochs as a trade-off, which ultimately 
means more time and computational cost.

Batch Size
The batch size is the number of samples that are passed to the network at one 
time, i.e., on each epoch Feurer and Hutter (2019). Depending on the available 
computational resources, a larger batch size will speed up the training process. 
For instance, the use of GPU will allow parallelism. However, larger batch sizes 
lead to poor generalization, causing the model to not usually achieve high 
accuracy Kandel and Castelli (2020). In contrast, a small batch size does not 
guarantee that the model will converge to the global optima.

Number of Epochs
The number of times that the entire training data set is shown to the network 
during the training process. One epoch means that the training dataset is 
passed forward and backward through the neural network once Bochinski, 
Senst, and Sikora (2017). A too-small number of epochs could result in an 
underfitting model because the neural network has not learned enough to 
solve the problem efficiently. However, specifying too many epochs could also 
represent a problem due to the possibility of overfitting, where the model 
learns from the noise and inaccurate data in the training data set. 
Consequently, the model cannot generalize accurately on new data and cannot 
classify new unseen data. That is why the number of epochs must be tuned to 
gain the optimal result.

The default value for the hyperparameter learning rate is 0.001 for all the 
available optimizers in Keras (2020b). The exception is the stochastic gradient 
descent optimizer (SGD), which default value for the learning rate is 0.01. In 

APPLIED ARTIFICIAL INTELLIGENCE e2058165-2771



the same way, Keras uses a default value for the batch size of 32 Keras (2020a). 
However, since there is no default value concerning the number of epochs, we 
defined a standard batch size value of 10 due to the large number of different 
combinations to test. In our experiments, the ranges considered for each 
hyperparameter were:

• Optimizers: Adadelta, Adagrad, Adam, Adamax, Follow the regularized 
leader (Ftrl), Nadam, Root Mean Squared propagation (RMSprop), and 
Stochastic Gradient Descent (SGD).

• Batch Sizes: 32, 64, 128 and 256.
• Learning Rate: 0.01, 0.001 and 0.0001.
• Number of Epochs: 10 and 200.

Design of Experiments

As mentioned previously, the goal of our experiments is to evaluate the 
performance AlexNet and GoogLeNet (Inception V3) with transfer learning 
by changing the hyperparameters associated with the structure and learning. 
The methodology used in this work consisted of two phases. In the first one, 
we used the default values for each optimizer on both networks. The goal 
was to evaluate which hyperparameters have the more significant impact on 
the performance of the classification model. To accomplish the goal, we 
conducted a grid-search strategy selecting different hyperparameters values 
and trying all the possible configurations to determine the hyperparameters 
values that improve the performance of the model. Thus, we discarded the 
optimizers whose performance was below the average (Adam, FTRL, and 
RMSProp), to subsequently explore the impact of both the learning rate and 
batch size values in the performance of the models. To this extent, we 
increased the default learning rate tenth fold (0.01) and tested it in every 
optimizer, each one with a batch size of values 32, 64, 128, and 256, in both 
networks. Next, we did the same while decreasing the default learning rate 
tenth fold as well (0.0001). It is important to mention that during this phase, 
all values for epochs were equal to 10 since we tried to reduce the time spent 
on each experiment.

In the second phase, we averaged the obtained results to discard every 
hyperparameter configuration whose results were below the average perfor
mance by the learning rate used. Also, we discarded the hyperparameters when 
the score obtained by the default optimizer values was below the average 
performance. In this phase, we also tested the default hyperparameters with 
an epoch value equals to 200 in all configurations to generate a new and more 
accurate threshold, considering the number of epochs. With this approach, we 
wanted to explore how the tuning of the hyperparameter values improves the 
performance, and not that the improvement was obtained only by increasing 
the number of epochs.
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Finally, we discarded those values that caused a performance drop while 
increasing the epochs and categorized the rest of the results by the best 
combinations per optimizer. Upon obtaining the higher score of the overall 
combinations, we tuned the number of epochs even further by running several 
approximation tests until we reached the best performance.

Data Set and Experiment Setup

Another key aspect in constructing a highly accurate CNN-based classi
fication model is the image data set employed. For an efficient handgun 
image classification model, it is important to consider not only images of 
static weapons but also scenarios of real-life where those firearms were 
being held by humans in different threatening stances. That is why, 
looking for a balance between consistency and production environment 
usefulness, we decided to form our own data set using only some images 
from other existent data sets. For instance, we included the Internet 
standard ”Gun-Detection” data set Annamraju (2019), from which we 
took 3,000 images for the true class. Then, we added 2,973 more images 
from Roboflow.com “Object-Detection/Pistols” data set Webpage (2020). 
And once collected, the data set was verified image by the image taking 
care to not include any image with watermarks, video game or animated 
images, toy guns, photo filters, thick frames, or any other kind of visual 
disturbance to keep it as clean and useful as possible. During this 
curating process, more than 50% of the images collected were discarded. 
As a consequence, to reach the desired quantity of images for the true 
class (3,000), we filled the rest with the results of the istockphoto.com 
images database using the search query ”gun pointed” iSstock webpage 
(2021). As for the false class, we needed a variety of scenes to provide 
the model with the ability to generalize the background. Also, we needed 
large quantities of pictures of people holding different kinds of objects to 
make sure that the model would not learn that people were the main 
feature for the true class, but guns. Under that criterion, we selected 
approximately 2,400 images from the Microsoft Common objects in 
context (COCO) data set Lin et al. (2014), whereas the rest were 
obtained while doing manual searches in Google Images. Examples of 
the contents of both classes within our data set can be observed in 
Figure 3.

Our data set consists of 6,000 total images. Three thousand of them belong 
to the ”true” class, and the other 3,000 to the ”false” class. From the total set of 
images, 70% of them were used as training data, 15% for validation, and 15% 
for test purposes. The file format for all these images is .jpg, and they come in 
a variety of sizes ranging from 15 Kb to 5,000 Kb.
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All of our experiments were performed using a Personal Computer using 
a CPU: Intel(R) Core(TM) i7-10700 F CPU @ 2.90 GHz processor; a GPU 
NVIDIA GeForce GTX 1660 SUPER GPU @ 1.785 GHz 6.00 GB card; RAM: 
31.9 GB Utilizable and Hard disk: 476 GB Utilizable. As for the software 
specifications, we employed: Windows 10 Home as Operative System; 
NVIDIA CUDA version 11.0.2_451.48 with cuDNN 8.0.5 library as GPU- 
accelerators; Anaconda 3 as environment and package manager; Jupyter as 
frontend, with Keras 2.4.0 and Tensorflow 2.4.0 as backend. All of our code 
was written in Python 3.8.8.

Results

After concluding with the experiments, we obtained enough proof to support 
our hypothesis that the default hyperparameters values do not always provide 
the optimum performance to a very specific classification problem. We also 
found that some hyperparameters alone have an impact on the performance of 
the classifier, whereas in some cases, the performance improvement is caused 
by the relationship among the tuning of several hyperparameters.

In Table 2, we can observe the results obtained from the evaluation with the 
default values for 200 epochs, and in Table 3 we can observe the results 
obtained with tuned hyperparameters by optimizer and its respective accuracy 
gain, where it applies.

Through the experiments, we were able to confirm that, for the handgun 
classification problem, the hyperparameters tuning process is indeed critical. 
Since the best result was not achieved by following the ”by the book” tuning 
techniques and assumptions but through exhaustive experiments and testing. 
Moreover, upon obtaining the values of the hyperparameters, which provided 
the higher accuracy from all the experiments. From the important findings, we 

Figure 3. Examples of the contents of our data set for both categories.
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have that 1) the optimizer was not one of the most used in CNN’s literature, 2) 
the learning rate was not the default and presumably best for the optimizer, 
and 3) the number of epochs was way too low in comparison with the one 
employed with other optimizers to get similar results. We can conclude that 
the combination of the hyperparameters favors the optimum performance for 
our case study. Thus, we cannot obviate a single ”winning formula” for a given 
problem and data set. The optimum performance for the handgun classifica
tion model was obtained training Inception V3 with transfer learning using 
ImageNet data set and the hyperparameters: Nadam optimizer, a learning rate 
of 0.0001 (ten times less than its default value), a batch size of 256, and 
a number of epochs equals to 13. The confusion matrix is presented as 
shown in Table 4.

Table 3. Results using tuned hyperparameter values for Keras optimizers for both AlexNet and 
Inception V3, with its accuracy gain respect to the default values.

CNN Optimizer
Batch 

size
Learning 

rate
Epochs 
Epochs True pos True neg Accuracy Change

AlexNet Adadelta 32 0.01 200 235/450 421/450 72.89% −0.22%
” Adagrad 128 0.001 200 239/450 413/450 72.44% −1.34%
” Adamax 64 0.0001 200 276/450 409/450 76.11% +5.22%
” Nadam 64 0.0001 200 282/450 411/450 77.00% +5.89%
” SGD 128 0.01 200 272/450 409/450 75.67% +0.11
Inception Adadelta 64 0.01 200 386/450 443/450 92.11% +1.00%
V3 Adagrad 64 0.01 200 397/450 444/450 93.44% +2.44%
” Adamax 128 0.0001 200 394/450 444/450 93.11% +10.00%
” Nadam 256 0.0001 200 389/450 444/450 92.56% +13.23%
” SGD 128 0.01 200 383/450 441/450 91.56% −1.33%

Table 4. Confusion matrix for Inception V3 with 
optimum parameters.

Actual/Predicted Positive Negative

Positive 406 44
Negative 9 441

Table 2. Results using default hyperparameter values for Keras optimizers for both AlexNet and 
Inception V3.

CNN Optimizer Batch size Learning rate Epochs True pos True neg Accuracy

AlexNet Adadelta 32 0.001 200 240/450 418/450 73.11%
” Adagrad 32 0.001 200 255/450 409/450 73.78%
” Adamax 32 0.001 200 285/450 353/450 70.89%
” Nadam 32 0.001 200 238/450 402/450 71.11%
” SGD 32 0.01 200 278/450 402/450 75.56%
Inception Adadelta 32 0.001 200 377/450 443/450 91.11%
V3 Adagrad 32 0.001 200 375/450 444/450 91.00%
” Adamax 32 0.001 200 304/450 444/450 83.11%
” Nadam 32 0.001 200 299/450 415/450 79.33%
” SGD 32 0.01 200 394/450 442/450 92.89%
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The classifier with the best performance had an accuracy value of 94.11% 
and a precision value of 92.22%. These results represent a 10.33% accuracy 
improvement and a 9.34% precision improvement over the default values 
when using the Nadam optimizer. Meanwhile, for the AlexNet network (with
out employing transfer learning techniques), using the Nadam optimizer with 
a learning rate of 0.0001, a batch size equals 64 and 200 epochs, was the 
configuration with which the best results were obtained, achieving a maximum 
accuracy of 77% and precision of 71.33%. Compared to the results obtained 
using the default values, these results represent an improvement of 5.89% in 
accuracy and 7.78% in precision. Table 5 shows the confusion matrix for this 
configuration of hyperparameters. Figure 4 shows some examples of images 
that were classified as containing firearms incorrectly. It can be seen that those 
images are hard to classify.

In Figures 5 and 6, we can see the drop in validation loss and rise in 
accuracy across epochs during the training process, for the best performance 
configurations of both AlexNet and Inception V3. Figures 7 and 8 show the 
Receiver Operating Characteristic curves (ROC) for the training of both net
works, respectively.

Discussion

Hyperparameter tuning is a process of vital importance in the development of 
a CNN-based classification model. For instance, choosing one optimizer over 
another can be the difference between a high accuracy model and a dummy 

Table 5. Confusion matrix for AlexNet with opti
mum hyperparameters.

Actual/Predicted Positive Negative

Positive 282 168
Negative 39 411

Figure 4. Validation loss and accuracy across epochs during the training process of AlexNet 
network with tuned hyperparameters.
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Figure 6. ROC curve for AlexNet network with tuned hyperparameters. Its area under the curve 
value is 0.8709.

Figure 7. ROC curve for Inception V3 network with tuned hyperparameters. Its area under the 
curve value is 0.9812.

Figure 5. Validation loss and accuracy across epochs during the training process of Inception V3 
network with tuned hyperparameters.
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classifier, as was demonstrated by the experiments results. Additionally, we 
found that optimizer default values do not always yield the best performance 
for a particular classification problem. For instance, when we lowered tenth 
fold the default learning rate for the Nadam optimizer we converted a below- 
average performing model, which has a test accuracy equals 67.67%, into 
a high-performance one, with a test accuracy of 94.11%.

For the particular data set used in our experiments, after selecting the 
right optimizer, the most critical factor in building an optimum classifica
tion model was selecting the adequate CNN to use. In our case, 
GoogLeNet (Inception V3) yielded much better results than AlexNet, 
averaging 79.81% accuracy against the 64.88% accuracy obtained by 
AlexNet, when using the default values from optimizers. The better 
performance of GoogLeNet (Inception V3) is a consequence of two 
facts: the use of transfer learning from the Imagenet database and the 
larger number of layers used by GoogLeNet.

The next hyperparameters on our list of importance in the tuning process 
are the learning rate and the batch size since a combination of a low value for 
learning rate (0.0001), and a significant value for batch size (256) provided the 
best results while running tests. However, it is essential to mention that the 
lowest learning rate values tend to slow down the learning process, requiring 
more processing time during the training process. In the same way, the largest 
batch size values consume more memory, which makes the training process 
computationally more expensive.

At the end of our list, we have the number of epochs because, from the 
results of our experiments, we can conclude that specifying a large number of 
epochs does not guarantee better results than a small one due to the possibility 
of the overfitting scenario. This not significant impact of the number of epochs 

Figure 8. Examples of misclassification.
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usually happens because presenting the data set too many times to the network 
can help to improve training accuracy. However, it makes it harder for the 
model to classify correctly data it has never seen before.

Across the different phases of our experiments, we could discern some 
patterns between the performance of the optimizers employed with one or 
various specific hyperparameters. For example, Adadelta and Adagrad showed 
positive effects when increasing the learning rate from 0.001 to 0.01 (ten times 
its original value), disregarding the batch size employed. On the other hand, 
the optimizers Adamax and Nadam yielded performance improvement when 
reducing the learning rate from 0.001 to 0.0001, and this improvement kept 
growing as the batch size increased. This performance improvement occurred 
in both networks, so it would be safe to say that, for the most part, what 
determines these correlations is the dataset. Another interesting finding was 
that big batch sizes tend to go along quite well with small numbers of epochs. 
The experiments demonstrated that the validation accuracy ceases to grow 
before specifying large batch size values compared to small ones. Sometimes, 
the validation accuracy drops after a certain number of epochs. Nevertheless, 
again, this happened in both networks.

Improved accuracy in classifying firearms in images has been reported in 
other works. For instance, in Olmos, Tabik, and Herrera (2018a), the author 
uses a classifier trained under the VGG-16 architecture, specially designed to 
minimize prediction loss. VGG-16 has more parameters than both AlexNet 
and GoogLeNet standard networks, but it is considerably more computation
ally expensive. His work reaches a maximum precision of 84,21%. Moreover, 
the final model is then analyzed as an automatic alarm system. In the same 
way, in Kanehisa and Neto (2019) the authors employ a network architecture 
based on Redmon and Farhadi (2017) as a classifier, reaching an accuracy of 
96.26% and precision of 95.74%. They used the Internet benchmark IMFDb 
data set for their experiments.

Another example is discussed in Galab et al. (2020), which proposes the 
application of transfer learning techniques to the well-recognized CNN 
GoogLeNet and AlexNet. Their approach successfully outperforms its prede
cessors, reaching an accuracy of 99.2% and precision of 99.5% while using 
AlexNet for trained network, and a 97.7% accuracy and a 97.3% precision while 
using GoogLeNet. All their tests were performed on the IMFDb data set as well.

Those results are quite encouraging, but there is always room for improve
ment when dealing with a subject as important as public safety. With this in 
mind and looking for a way to understand and improve the actual methods, we 
inquired deep into the fundamental aspects of CNN. It is important to note 
that the mentioned related works do not discuss the hyperparameters used 
while training their networks or their impact on the performance of the 
classification model.
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In contrast to other works, we deeply explore the foundation of CNN. One 
of the research goals was to evaluate the impact of the use or absence of 
transfer learning techniques or the number of layers in the networks. For 
instance, AlexNet has eight layers, while Inception V3 has 42 layers.

Among the limitations of our experiments, we must consider that the 
inner processes of the CNN include employing randomness to a certain 
extent, resulting in a slightly different model each time the network is 
trained, even when using the same hyperparameter settings and data set. 
This behavior affects the final prediction outcomes from one experiment 
to another. The most effective solution to this issue would be to repeat the 
experiments several times until we get a general behavior for each setting, 
calculated by a statistic function. However, creating an optimum model 
could require a considerable number of epochs, and we had to test 
multiple times each combination of hyperparameter values for batch 
size, optimizer and learning rate, thus, the time and computational cost 
necessary for such a massive number of experiments would make the 
attempt for normalization unfeasible.

Also, since the experiments showed that after around 50 epochs, the overall 
model accuracy ceases to grow (and in some cases, principally for large batch 
sizes, it diminishes), the epochs value beyond 200 was not explored.

Conclusions and Future Work

In this paper, we analyzed the benefits of tuning the values for a classification 
algorithm hyperparameters compared to its default values on the perfor
mance of a handgun classification model. Particularly, we evaluated two 
benchmark CNN architectures: AlexNet and Inception V3. We obtained 
a 94.11% test accuracy after training our model in the Inception V3 network 
while employing transfer learning from the ImageNet database. We used 
Nadam as the optimizer with a custom learning rate of 0.0001, a batch size of 
256, and a total of 13 epochs. Experimental results revealed an important 
relationship between the data set, specific combinations of values for the 
selected optimizer, batch size, learning rate, and the final performance of the 
classification model since improvements yielded an accuracy of up to 10.33% 
after the tuning process.

As future work, once successfully detecting the best optimizer for the 
image-based firearm classification problem (Nadam), we are interested in 
investigating the impact on the outcome of its configurable internal para
meters (epsilon value, dropout, and momentum). Also, we would evaluate 
those hyperparameters that define the network’s structure, such as the number 
of network layers, activation functions, and dropout, to determine if there is 
also a correlation between the tuning process between them and the 
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performance of the CNN. The obtained results showed that using different 
values for the hyperparameters of a CNN-based classification model, other 
than the default values, yielded better performance.

The use of tools for automatic tuning of hyperparameters, such as Bayesian 
optimization, is an interesting topic for future work. Comparing the obtained 
results between using grid-search and automatic tuning of hyperparameters 
using the same dataset of this project will give a clue of the advantages and 
limitations of both approaches.

Additionally, we consider developing a data set considering specific scenar
ios, such as a school, college campus, or a particular city spot. This data set will 
represent more accurately a target application. Once the data set is built, it will 
be used to develop a classification model using the results obtained in this 
paper and implement an Internet of Things-based system.

Finally, we consider converting the architecture of a CNN with transfer 
learning which yields the best accuracy in classifying firearms in images, into 
a firearms detector in images or video. The main idea is to compare our 
transfer learning-based detector with traditional object detectors, such as 
regions with CNN features (R-CNN) Girshick et al. (2014), Fast-R-CNN 
Girshick et al. (2014), Faster-RCNN Ren et al. (2017), and YOLO Redmon 
and Farhadi (2017), among others.
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