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Deep Learning Based Object Attitude Estimation for a Laser 
Beam Control Research Testbed
Leonardo Herrera a, Kim Jae Juna, Jeffrey Bakerb, and Brij N. Agrawala

aDepartment of Mechanical and Aerospace Engineering, Naval Postgraduate School, 1 University Circle, 
Monterey, CA, USA; bBaker Adaptive Optics, Albuquerque, USA

ABSTRACT
This paper presents an object attitude estimation method using 
a 2D object image for a Laser Beam Control Research Testbed 
(LBCRT). Motivated by emerging Deep Learning (DL) techniques, 
a DL model that can estimate the attitude of a rotating object 
represented by Euler angles is developed. Instead of synthetic 
data for training and validation of the model, customized data is 
experimentally created using the laboratory testbed developed 
at the Naval Postgraduate School. The data consists of Short 
Wave Infra-Red (SWIR) images of a 3D-printed Unmanned Aerial 
Vehicle (UAV) model with varying attitudes and associated Euler 
angle labels. In the testbed, the estimated attitude is used to 
aim a laser beam to a specific point of the rotating model UAV 
object. The attitude estimation model is trained with 1684 UAV 
images and validated with 421 UAV images not used in the 
model training. The validation results show the Root-Mean- 
Square (RMS) angle estimation errors of 6.51 degrees in pitch, 
2.74 degrees in roll, and 2.51 degrees in yaw. The Extended 
Kalman Filter (EKF) is also integrated to show the reduced RMS 
estimation errors of 1.36 degrees in pitch, 1.20 degrees in roll, 
and 1.52 degrees in yaw.
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Introduction

Attitude estimation of a rotating object from a 2D object image eliminates the 
need for a dedicated attitude estimation sensor and allows remote determina-
tion of object attitude. Image-based attitude estimation has been studied in 
many different applications. Pose (position and attitude) estimation based on 
DL has been considered for airplanes in airports to prevent collisions (Fu et al.  
2019). DL Image-based attitude estimation can be used in spacecraft to achieve 
on-orbit proximity operations such as rendezvous, docking, orbital debris 
removal, and close-proximity formation flying missions (Phisannupawong 
et al. 2020; Proenc¸a 2020; Sharma, Beierle, and D’Amico 2018). For high- 
energy laser systems, precision laser beam pointing is a crucial technology 
where a laser beam control system is employed to steer the laser beam at 
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a certain point of a maneuvering object and maintain the aim-point until the 
object is incapacitated.

Conventional methods of aim-point selection and maintenance require an 
operator to identify the object aim-point using joysticks or other instruments, 
steer the laser beam to this aim-point, and maintain it. This method is not 
practical for fast-moving objects, as every second counts when one or many 
objects are inbound. DL algorithms can improve reaction time to simulta-
neously engage fast-moving objects and multiple objects. To this end, the 
object’s attitude is critical information as it allows us to remotely and instan-
taneously determine an aim-point.

Pose estimation using DL approaches is usually divided into direct pose 
estimation (Mahendran et al. 2018) and geometry-based pose estimation 
(Chen et al. 2022; Pavlakos et al. 2017). In the former, a Convolutional 
Neural Network (CNN) is typically trained under a supervised learning envir-
onment to minimize the object’s pose error and predict additional unknown 
object poses. In the latter, two steps are employed 1) key-points predictions in 
the 2D image plane by architectures such as Key-points R-CNN (He et al.  
2017), Hourglass (Newell, Yang, and Deng 2016), and HRNET (Sun et al.  
2019), 2) optimal pose solution from the 3D and 2D objects key-points 
complying with the projection rules among the two sets of points. In this 
step, the Perspective-n-Points (PnP) algorithm is a standard solution for the 
optimal pose. However, new techniques such as End-to-End probabilistic pose 
estimation (Chen et al. 2022) have also been applied.

Motivated by the promising results of DL methods, the present investiga-
tion uses direct pose estimation approach to develop an accurate image-based 
attitude estimation model of a laser beam control system. The presented work 
focuses on several areas. As DL does not come without limitations, one of the 
main challenges is the limited amount of data for the training and validation 
process of the model development. In this paper, we first present an experi-
mental generation of data for the training and validation of a DL model. Next, 
the development and performance of the DL attitude estimation model using 
Euler angles are presented. We also show that including extended Kalman 
Filter techniques in the DL model can improve the attitude estimation per-
formance for the laser beam control application.

Experimental Data Generation

The Naval Postgraduate School has LBCRT, as shown in Figure 1. The LBCRT 
employs a video tracking system that uses a gimballed telescope to image a far- 
field target using a SWIR sensor. The SWIR track sensor and a fast steering 
mirror in the optical beam path are used to maintain the line-of-sight to the 
center of the target in a high-speed closed-loop control setting. The LBCRT 
requires additional operator input to steer the laser beam to a specific aim- 
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point of a target within the tracker screen as the target undergoes pose 
changes.

The laboratory target range is developed as shown in Figure 1 to provide 
image data generation capabilities. The rotational motion of the target is 
recreated to be as realistic as possible with a 3D-printed titanium UAV 
model attached to a rotational stage. The scaled UAV model has a painted 
surface with a wingspan of 3 inches (see Figure 2). The gimbal stepper motor’s 
positions are controlled to create different UAV rotational configurations, and 
the SWIR sensor is used to grab all the different attitude configurations of the 
UAV. Every data generated corresponds to an image of a UAV object with 
a particular attitude and corresponding labels represented by Euler angles. The 
procedure for generating the data is as follows: • From MATLAB, the angular 
positions of the three stepper motors in the gimbal are controlled. Arduino 
UNO and two Adafruit Motor Shield V2 interfaces between MATLAB and 

Figure 1. Data generation experimental setup.

Figure 2. 3D-printed and painted titanium UAV model.
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motors, Arduino UNO is the controller, and Adafruit Motor Shield V2 is the 
driver. Figure 3 shows a detailed view of the gimbal. The stepper motors are set 
to micro-stepping to have a smoother motion and higher resolution, M1 to 
88.88 steps per degree, M2 to 35 steps per degree, and M3 to 44.44 steps per 
degree. 

• The motors respond to specific position commands, and consequently, the 
UAV acquires a new attitude. The UAV should generate rotational motion by 
placing its geometrical center at the intersection of the three motors’ rotation 
axes. However, as the UAV is placed by hand in the gimbal, a slight UAV offset 
is unavoidable. The offset creates small displacements in the UAV for each 
acquired attitude. The offset can be estimated by analyzing a reasonable 
amount of data collected and therefore compensated.

• The UAV, with the newly acquired attitude, is the input of an optical 
system. This system outputs a realistic UAV-size image some kilometers from 
the LBCRT system.

Figure 3. UAV attached to the gimbal.
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• The output of the optical system, the UAV image, is captured by the 
LBCRT telescope and measured by an IR camera. As the data collection 
process is carried out without light but light illuminating the UAV, the IR 
camera can measure the UAV reflectively. The black velvet background in the 
gimbal is to absorb any remaining light around the UAV.

• Finally, the UAV image measured by the IR camera is saved in the 
computer in PNG format.

Repeating the previous steps is how the data set is generated. So far, the 
angular reference positions are the labels, and the images are the inputs for the 
DL model. However, our interest is in object attitude labels instead of the 
motor’s angular positions.

To determine the UAV attitude from the angular reference positions, an 
inertial frame (Xi;Yi;Zi) is defined, and also additional frames attached to the 
three motors and the UAV, see Figure 3. Note that Z1;Z2;Z3 are respectively 
the rotation axes of the motors M1;M2;M3. Ideally, the axes intersect the 
geometrical center of the UAV. First, the rotation matrix describing the 
attitude of the frame (X1;Y1;Z1) with respect to the inertial frame is calculated 
as (1). The rotation matrix describing the attitude of the frame (X2;Y2;Z2) 
with respect the frame (X1;Y1;Z1) is calculated as (2). The rotation matrix 
describing the attitude of the frame (X3;Y3;Z3) with respect the frame 
(X2;Y2;Z2) is calculated as (3). Finally, the rotation matrix describing the 
attitude of the frame (Xa;Ya;Za) attached to the UAV with respect to the 
inertial frame (X3;Y3;Z3) is calculated as (4). These matrices are defined 
below, where α1; α2; α3 are the motors’ angular positions about Z1;Z2;Z3 
respectively. These positions are positive when the motors are rotated accord-
ing to the right-hand rule. 

F1 ¼

0 cosð90þ α1Þ cosðα1Þ

0 cosð180þ α1Þ cosð90þ α1Þ

1 0 0

2

4

3

5 (1) 

F2 ¼

cosðα2Þ 0 cosð90 � α2Þ

cosð90þ α2Þ 0 cosðα2Þ

0 � 1 0

2

4

3

5 (2) 

F3 ¼

cosð90 � α3Þ 0 cosð180 � α3Þ

cosðα3Þ 0 cosð90 � α3Þ

0 � 1 0

2

4

3

5 (3) 

Fa ¼

0 0 � 1
� 1 0 0
0 1 0

2

4

3

5 (4) 

e2151191-24 L. HERRERA ET AL.



The rotation matrix describing the UAV attitude with respect to the inertial 
frame is easily computed as the matrix product 

F ¼ FaF3F2F1 (5) 

To obtain Euler angles describing the UAV attitude with respect to the inertial 
frame, the previous matrix is matched to the rotation matrix dependent on 
Euler angles (sequence pitch (p), roll (r), and yaw(y)), i.e. 

F ¼
cycr cysrsp þ sycp � cysrcp þ sysp
� sycr � sysrsp þ cycp � sysrcp þ cysp

sr � crsp crcp

2

4

3

5 (6) 

where cp ¼ cosðpÞ, cy ¼ cosðyÞ, cr ¼ cosðrÞ, sp ¼ sinðpÞ, sy ¼ sinðyÞ, 
sr ¼ sinðrÞ. The Euler angles can be straightforward calculated from the 
previous matrices through the next relations 

F32

F33
¼
� crsp

crcp
¼ � tanðpÞ;

F21

F11
¼
� sycr

cycr
¼ � tanðyÞ; F31 ¼ sr (7) 

Where finally, these angles result as pitch, roll, and yaw respectively 

p ¼ � tan� 1ð
F32

F33
Þ; r ¼ sin� 1ðF31Þ; y ¼ � tan� 1ð

F21

F11
Þ (8) 

They describe the object’s attitude with respect to the inertial frame, following 
the sequence pitch, roll, and yaw. We refer the reader to Kim (2013) for rigid 
body attitude parametrizations and transformations among them.

A sample of the data generated is shown on the right side of Figure 4. It 
consists of Euler angles labeled according to the defined sequence and of 
a UAV image attitude. The Euler angles label is obtained from the motors 
reference positions α1¼ 10o; α2¼ 35o; α3¼ 50o through relations (6)-(8). On 
the left side, this Figure also shows the reference configuration for all the 
generated data. The Euler angles sequence to go from the reference config-
uration to the sample configuration is shown in Figure 5. Starting from the 
reference configuration, the UAV is first rotated � 45o about Xa axis (is 
pitching), then it is rotated 21:63o about Ya axis (is rolling), and finally, it is 
rotated 28:20o about Za axis (yawing).

The final objective of DL attitude estimation is automatic aim-point selec-
tion. Let us assume that the point of interest is the UAV nose. From object 
attitude information, the aim-point can be calculated through the following 
relation 

Xni
Yni
Zni

2

4

3

5 ¼

cycr cysrsp þ sycp � cysrcp þ sysp
� sycr � sysrsp þ cycp � sysrcp þ cysp

sr � crsp crcp

2

4

3

5

T 0
n
0

2

4

3

5 (9) 
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where ½0 n 0�T are the UAV nose coordinates in the UAV frame (Xa;Ya;Za), 
and ½Xni Yni Zni�

T are the UAV nose coordinates in the inertial frame 
(Xi;Yi;Zi). Here, attitude information is of paramount interest as it makes 
the relation (9) feasible. The matrix in 9 is the transpose of F in 6 and depends 
on Euler angle information. The nose coordinates are in pixels. Two samples 
showing an aim-point selection from UAV attitude are in Figure 6.

Object Attitude Estimation via Deep Learning

An attitude estimation model for the present application can be developed 
with the data generated from the experiment shown in the previous section. As 
attitude is represented in terms of Euler angles, three coefficients describing 

Figure 4. Reference configuration with nose pointing to the reader (left). Example of one image 
collected with label p ¼ � 45o; r¼ 21:63o; y¼ 28:2o (right).

Figure 5. Euler angle sequence.
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attitude, the DL problem becomes a regression problem where the output of 
the DL model is a set of coefficients for the corresponding attitude. Deep 
neural networks using CNN architecture are commonly used for imagery data 
analysis applications such as object detection, classification, and the regression 
problem considered in this paper. CNN includes the feature learning network 
employing three main types of operation on the input data: convolution, 
rectified linear unit (ReLU) as an activation function, and pooling. The 
extracted feature maps are used in the regression network to predict the 
output, which is the estimated attitude. Figure 7 shows a typical CNN archi-
tecture, where the components of the feature learning and classification 
(regression in our case) are detailed.

To handle the degradation of the training and validation accuracy asso-
ciated with deep neural networks with a large number of layers, Resnet 
architecture (He et al. 2016) is employed as a DL model, which includes 
a shortcut through every two or more layers to allow the optimal solution to 
pass down through. This prevents the degrading of training and validation, 

Figure 6. Automatic aim-point selection from attitude information.

Figure 7. CNN generic architecture, (MathWorks n.d.).
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where an increase of layers causes degrading in training and, consequently, in 
validation. Instead of training Resnet from scratch for the attitude sensing 
problem, pre-trained Resnet 18 architecture from the Deep Network Designer 
app of MATLAB software, which allows for the powerful transfer learning 
technique’s advantages, is used as a backbone of the DL attitude sensing 
model.

Resnet 18, pre-trained on the ImageNet data set, was selected to subse-
quently apply for the transfer learning technique on our data set. As the pre- 
trained architecture was trained on 1000 classes for a classification task, we 
replaced the last fully connected layer with 1000 neurons with a fully con-
nected layer with just three neurons associated with the three Euler angles. In 
addition, the softmax and classification layers were also replaced by 
a regression layer to adapt the classification task to regression. Once the 
adaptations were made, transfer learning was applied, where the weights in 
the backbone were frozen. In contrast, the ones connected to the three nodes 
of the fully connected layer were trained on our data set to build the attitude 
estimation DL model.

The data set consists of 1684 training images of 224� 224� 3 pixels with 
their associated attitude labels, and 421 validation images of the same size 
224� 224� 3 pixels with their associated attitude labels as well. 80% of the 
data are for training and 20% for validation. Two samples of the data set are 
shown in Figure 8; every data consists of a UAV image and attitude label.

After training, the model’s performance is verified through the validation data 
set. Estimated attitudes produced by the CNN are compared with the real valida-
tion data. Figures 9a, 10a and 11a show both the estimated Euler angles produced 
by the CNN and the real Euler validation angles. Figures 9b, 10b and 11b show the 
CNN estimation errors defined as real minus estimated. For a good graphical 
illustration, just 100 data out of the 421 are considered in the Figures. The 

Figure 8. Two samples from the data set.
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Figure 9. Pitch angle estimation.

Figure 10. Roll angle estimation.

Figure 11. Yaw angle estimation.
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estimation error RMSEs over all the 421 validation data are 6.51 in pitch, 2.74 in 
roll, and 2.51 in yaw. We argue that the estimation performance can be improved 
by training the CNN with more than the 1684 data employed in this experiment; 
however, it is left for future investigation. An additional tool that is strongly 
effective in improving the estimation is the EKF; it is motivated because the 
estimation errors in Figures 9b, 10b and 11b are close to Gaussian distributions, 
Figure 12. The following section presents the EKF to improve the attitude 
estimation.

EKF as a Tool for Improving CNN Attitude Estimation

To define the EKF, a system model and a measurement are first defined; the 
model is defined as the Euler angles kinematics discretized by the Euler 
method (respecting the sequence pitch, roll, and yaw). This model defines 
the Euler angles evolution and is given as follows (see (Kim 2013) for details) 

pk
rk
yk

2

4

3

5

|fflffl{zfflffl}
xk

¼

pk� 1
rk� 1
yk� 1

2

4

3

5þ
1

crk� 1

cyk� 1 � syk� 1 0
syk� 1 crk� 1 cyk� 1 crk� 1 0
� srk� 1 cyk� 1 syk� 1 srk� 1 crk� 1

2

4

3

5
ωxk� 1

ωyk� 1

ωzk� 1

2

4

3

5Δt

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f ðxx� 1;ωk� 1Þ

þ

W1k� 1

W2k� 1

W3k� 1

2

4

3

5

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Wk� 1

; (10) 

where cyk� 1 ¼ cosðyk� 1Þ, crk� 1 ¼ cosðrk� 1Þ, syk� 1 ¼ sinðyk� 1Þ, srk� 1 ¼ sinðrk� 1Þ, 
xk ¼ ½pk rk yk�

T is the state vector, ωk� 1 ¼ ½ωxk� 1 ωyk� 1 ωzk� 1 �
T the vector of 

angular velocity produced by the UAV, Wk� 1 ¼ ½W1k� 1 W2k� 1 W3k� 1 �
T the 

vector of white Gaussian noise uncertainties, finally, the parameter Δt ¼
0:01 seconds is the time consumed from k to kþ 1. The measurement for 
the EKF is that coming from the CNN estimation described by 

yk ¼

pk
rk
yk

2

4

3

5

|fflffl{zfflffl}
hðxkÞ

þ

v1k

v2k

v3k

2

4

3

5

|fflfflffl{zfflfflffl}
vk

; (11) 

Figure 12. Attitude estimation errors distributions.

e2151191-30 L. HERRERA ET AL.



where vk ¼ ½v1k v2k v3k �
T is a vector of white Gaussian noise uncertainties 

affecting this measurement and representing the deviations shown in 
Figures 9b, 10b and 11b. In the above relations Wk� 1 and vk are assumed to 
be normally distributed as Nð0;Qk� 1Þ and Nð0;RkÞ respectively, where 
Qk� 1 ¼ 1� 10� 4I3�3 is the system model noise covariance matrix, and Rk ¼

diagð0:0129; 0:0019; 0:0019Þ the covariance matrix of the noise affecting the 
measurement.

The EKF is a recursive algorithm that estimates the state vector of 
a nonlinear system; it is a generalization of the well-known Kalman Filter 
(KF) (Kalman 1960) but is dedicated to nonlinear systems. It is due to Stanley 
F. Schmidt and his staff (McGee et al. 1985). It keeps, although locally, the 
optimality property of the KF, which is the minimization of the trace of the 
estimation error covariance (traceðE½ðxk � x̂u

kÞðxk � x̂u
kÞ

T
�Þ) during the estima-

tion process. To estimate the state vector, the EKF employs the knowledge of 
the nonlinear system model (10) and the measurement (11). This algorithm 
can be found in many works of literature, see (Grewal & Andrews, 2014; Kim  
2011; Simon 2006) to name a few, and is given by the following relations 

x̂ p
k ¼ f ðx̂ u

k� 1;ωk� 1Þ; (12) 

P p
k ¼ Ak� 1Pu

k� 1AT
k� 1 þ Qk� 1; (13) 

Kk ¼ P p
kCT

k ðCkPp
kCT

k þ RkÞ
� 1
; (14) 

x̂u
k ¼ x̂ p

k þ Kkðyk � hðx̂ p
kÞÞ; (15) 

Pu
k ¼ ðI � KkCkÞP

p
k; (16) 

where, x̂ p
k is the estimation of the true state before yk comes into play, P p

k is the 
predicted covariance matrix of the estimation error, Kk is the Kalman gain, x̂u

k 
is the optimal estimation of the true state once yk is available, and Pu

k is the 
updated covariance matrix of the estimation error. The matrices 

Ak� 1 ¼
@f ðxk� 1;ωk� 1Þ

@xk� 1
jx̂ u

k� 1
; Ck ¼

@hðxkÞ

@xk
jx̂ p

k
(17) 

come from the Taylor’s linear approximations of (10) and (11) around the 
nominal values xk� 1 ¼ x̂u

k� 1, xk ¼ x̂p
k, and Wk� 1 ¼ vk ¼ 0 (see (Simon 2006)). 

The initial conditions employed for the EKF are Pu
0 ¼ 0:01I3�3, 

and x̂u
0 ¼ ½� 85 � 50 90�T.

Figures 13a, 14a and 15a show the real Euler validation angles vs. the 
filtered, whereas Figures 13b, 14b and 15b show the EKF estimation errors 
vs. the CNN estimation errors. For illustrative purposes, only 100 of 421 data 
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are plotted; however, the RMSEs are calculated over the 421 validation data. 
From Figures 13b, 14b and 15b is concluded that the EKF improves the 
attitude estimation performance.

Discussion

Image-based attitude estimation is critical in LBCRT-like systems for 
automatic aim-point selection. Such information solves for the aim-point 
selection in fast-moving objects and multiple simultaneous objects, 
a problem complex to solve by a human operator. In this paper, the 
attitude was estimated by a DL model trained on the experimental data 
set created in the laboratory.

Unlike many works where synthetic data are employed for the training and 
validation of DL models, experimental data representative for our project were 
created with the presented testbed. The SWIR UAV images were labeled with 

Figure 13. Pitch angle estimation.

Figure 14. Roll angle estimation.
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Euler angles for a supervised learning environment. This procedure is not 
straightforward as such labels are not directly available in the current testbed 
and were deduced from the gimbal’s motor positions via a transformation 
matrix. A procedure similar to forward-kinematics from robotics was applied 
to deduce such information. In this context, the motors played the role of 
joints and the UAV of the end effector.

Our DL model was trained and validated with the created data under the 
supervised learning environment. In the validation stage, 421 unseen data 
were used to deduce the quantitative and qualitative results reported in 
Figures 9b, 10b. Such results are reasonable for our application as they are 
close to the ground truth. In addition, the EKF was integrated for an improve-
ment in the estimations. Different from traditional techniques, where training 
and/or CNN parameters are adjusted until a good model is yielded (e.g. 
(Cardoza et al. 2022; Liao et al. 2022)), the EKF was integrated as an extrinsic 
algorithm to improve for the estimations. The EKF combines the information 
predicted by the CNN with the prediction from the rotational kinematics 
defined in this algorithm. Such a filter generates an optimal attitude estimation 
outperforming CNN estimation. Figures 13b, 14b and 15b confirm the 
improvement.

The results are based on our current laboratory setup and require general-
ization and cross-validation with a more representative dataset. The paper 
intends to provide the general framework for collecting laboratory datasets 
and use a DL attitude estimation model for target tracking of a laser beam 
control system. An augmented data set where UAV images are corrupted with 
optical turbulence is considered for future work to generalize the DL models 
against this uncertain condition.

Figure 15. Yaw angle estimation.
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Conclusions

Object attitude estimation through a DL model was presented for the accurate 
laser object aim-pointing problem. Training and validation data were experi-
mentally generated in the laboratory. Experimental results showed that esti-
mated attitude in terms of Euler angles produces better performance for yaw, 
then for roll, and finally for pitch. Due to the Gaussian distribution of the CNN 
attitude estimation error, the EKF was motivated and integrated to improve 
the estimation performance. Training with synthetic data and validation with 
real LBCRT data, as well as the extension to multi-object attitude estimation, 
are considered for future work.
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Appendix

The training of our DL model was carried out in an Nvidia DGX machine with training 
parameters shown in Table A1. Figures A1, A2, and A3 show the architecture of the model 
Resnet 18 trained on our UAVs data set. Name, Type, Activation, and Learnable columns 
indicate the name given to each component, the type of each component, the activation means 
the output size of each component, and learnables the number of parameters to train at each 
component, respectively. It is shown that the first layer (row 1) consists of the input with size 
224� 224� 3 pixel, which is the size of our imagery data set. The last fully connected layer 
(row 69) corresponds to the 3 Euler angles with size 1� 1� 3.

Table A1. Training parameters.
Description Value

Learning Rate 0:0001
Mini Batch Size 128
Optimizer SGDM
Epochs 600
L2 Regularization 0:01
Momentum 0:9
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Figure A1. 
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Figure A2. 
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Figure A3. 
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