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Sound Event Detection System Based on VGGSKCCT Model 
Architecture with Knowledge Distillation
Sung-Jen Huang, Chia-Chuan Liu, and Chia-Ping Chen

Department of Computer Science and Engineering, National Sun Yat-sen University 70 Lian-Hai Road 
Kaohsiung, Taiwan, Republic of China

ABSTRACT
Sound event detection involves detecting acoustic events of 
multiple classes in audio recordings, along with the times of 
occurrence. Detection and Classification of Acoustic Scenes and 
Events (DCASE) Task 4 for sound event detection in domestic 
environments is a contest on this task. In this paper, we engi
neer sound event detection systems using the data provided 
and the performance metrics defined in this contest. Note the 
performance metrics of polyphonic sound detection scores 
(PSDS) in 2 scenarios are adopted recently to be practical and 
effective. Our system development started with a basic system 
through reference to various systems in the contests of previous 
years. We developed a system similar to that used by the win
ning team in DCASE Challenge 2021. A clip-level consistency 
branch is then added to the model architecture to increase the 
performance of the PSDS in scenario 2, which focuses on iden
tifying different event classes. In addition, we use knowledge 
distillation with the mean teacher model to improve system 
performance. In this way, the model can learn from the pre- 
trained model without being fully restricted by its performance. 
Finally, we further enhance the system robustness through 
consistency criteria in the second stage of training. On the 
official validation set of Domestic Environment Sound Event 
Detection (DESED) dataset, our final system achieves 0.418 and 
0.661 on the PSDS in the two scenarios. It outperforms the 2021 
baseline system with 0.341 and 0.546 on both scores quite 
significantly.
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Introduction

Sound event detection (SED) is focused on how to precisely identify an event 
and the time of occurrence from an audio recording. SED can be applied to 
a real-time system that responds to detected events. For instance, the system 
can remind the owner to turn off the faucet when it detects the water keeps 
running for a long time. It can also notify the owner that a thief may have 
broken into the house while detecting dog barking constantly.
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Detection and Classification of Acoustic Scenes and Events (DCASE) Task 4 
for sound event detection in domestic environments is a contest on SED task. 
The goal is not only to predict the occurrence of events but also to localize 
their start and end times. There are 10 classes of sound events defined in 
DCASE Task 4, namely alarm/bell/ringing, blender, cat, dishes, dogs, electric 
shaver/toothbrush, frying, running water, speech, and vacuum cleaner. The 
events of some of the classes are short while the others are long, so 
a comprehensive sound system is required to accommodate both short and 
long events. The baseline system (Turpault et al. 2019) used convolution 
blocks to extract feature maps from melspectrogram, and recurrent blocks to 
extract temporal features. As the majority of data are without labels, the 
baseline system employs the mean teacher (Tarvainen and Valpola 2017) 
model to enable effective training with unlabeled data. Many participants 
make the convolution blocks deeper or wider to improve performance in the 
contest. In DCASE Challenge 2020, the first-place team (Miyazaki et al. 2020) 
showed that the encoder-decoder structure such as transformer (Vaswani et al.  
2017) and conformer (Gulati et al. 2020) could work well on the task. On the 
other hand, the top 3 teams in DCASE Challenge 2021 used CRNN architec
tures. The first-place system (Zheng, Chen, and Song 2021) in 2021 DCASE 
Challenge Task 4 is composed of a convolution part of one VGG (Simonyan 
and Zisserman 2015) block and four selective kernel (Xiang et al. 2019) blocks 
with residual connections (Kaiming et al. 2015), and a recurrent part similar to 
the baseline system. It incorporates data augmentation methods such as 
frequency masking (Park et al. 2019) and time shifting (Chih-Yuan et al.  
2021). Furthermore, a temperature parameter is added to the prediction 
block which is made up of fully connected layers with sigmoid activation. 
This parameter is only active at the inference time and can be seen as a post- 
processing. Another system entry (Kim and Kook Kim 2021) also increases the 
depth of the convolution part. They construct an RCRNN system which 
consists of convolution blocks, residual connections, and recurrent units. 
Still another participating team (Nam et al. 2021) simply widens the network 
by doubling the CNN channels of the baseline system. They use another data 
augmentation method called FilterAugment.

Drawing conclusion from the above works, we can see that there are three 
main ways to improve the performance, namely adopting a model with more 
capacity compared to the baseline model, using data augmentation to increase 
data diversity and model robustness, and post-processing to tune the predic
tion. Thus, we use all of them in our system development for SED in this 
paper. Our system is similar to the first-place system. Furthermore, we add 
a branch for clip-level consistency training (Yang et al. 2020) to enhance the 
ability of convolution block. Moreover, we apply knowledge distillation 
(Hinton, Vinyals, and Dean 2015) in a novel way to further improve system 
performance. That is, we do not use a very complex model like an ensemble 
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model to distill knowledge. The mean teacher model is combined with knowl
edge distillation to overcome the limitation that the pre-trained teacher model 
(in knowledge distillation) is difficult to surpass. The teacher model (of the 
mean teacher model) can therefore be more effective than the pre-trained 
teacher model (of knowledge distillation). A similar work (Endo and Nishizaki  
2022) was published in ICASSP Endo and Nishizaki (2022) at the time we 
prepared this paper. They also combined the mean teacher model with knowl
edge distillation. The main difference is that they used knowledge distillation 
between an ensemble model and its component models, while we used a pre- 
trained model for distillation. They used distillation to improve component 
models and then further improve the ensemble model. We used a pre-trained 
model to enhance the prediction of a mean teacher model. Another difference 
is that the model used for distillation would be tuned while training in their 
approach, but would not be tuned in ours. Thus, their work is in line with 
a common knowledge distillation for model compression, while ours is in line 
with traditional training. Finally, we implement second-stage consistency 
training in our system.

The rest of this paper is organized as follows: We first introduce the data set 
and method used in our experiment in Section “Dataset” and “Materials and 
methods,” respectively. Then we describe the experiment setup and show the 
outcome in Section “Results and discussion.” Finally, concluding remarks are 
drawn in Section “Conclusion.”

Dataset

Training Data

Domestic Environment Sound Event Detection Dataset (DESED dataset) (Serizel 
et al. 2020) is an open dataset that we use in this work. The dataset contains data 
with strong labels, weak labels, and unlabeled data. A strong label for an acoustic 
clip provides the class of each sound event within the clip, along with the 
corresponding time stamps (start and end times). A weak label provides only 
the classes of the sound events, i.e. without any time stamps. The unlabeled data 
segment consists of acoustic clips without any labels. There are ten classes of 
domestic environment sound events: Alarm/bell/ringing, blender, cat, dishes, 
dogs, electric shaver/toothbrush, frying, running water, speech, and vacuum 
cleaner. As shown in Table 1, the data set used for system training consists of 
10,000 samples (sound clips) with strong labels, 1,578 sound clips with weak 
labels, and 14,412 unlabeled samples. Each model used in our experiment will 
first generate a strong prediction with a size of 10� f , where 10 is the ten classes 
of different sound events and f represents the frames. Afterward, a weak predic
tion is produced by weighting the strong prediction. Its size is 10� 1, indicating 
whether or not the ten classes occurred in the audio clips. Strongly labeled data is 
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used to calculate the loss between strong labels and strong predictions. Weakly 
labeled data is used to calculate the loss between weak labels and weak predic
tions. The consistency loss of the mean teacher model and knowledge distillation 
will take into account all of the data, including unlabeled data.

Test Data

Performance evaluation of our developed system is consistently based on 
a public evaluation set and a validation set in DESED dataset. They contain 
692 and 1,168 sound clips with the occurrences of sound events and their 
timestamps (start and end times), respectively.

Materials and Methods

Baseline System

A baseline system is provided by Detection and Classification of Acoustic Scenes 
and Events (DCASE) Task 4 for sound event detection in domestic environ
ments. The neural-network model in the baseline system consists of 7 convolu
tion blocks and 2 bi-directional gated recurrent units (GRUs) and a prediction 
block. Each convolution block is composed of a 2D convolution layer, a batch 
normalization layer and a pooling layer. The kernel size of convolution layer in 
each convolution block is 3� 3 everywhere. All of the seven convolution blocks 
use gated linear units (GLU) as activation functions. The bi-directional GRUs 
have 128 cells. The prediction block is divided into two parts. One part is for 
frame-level prediction and the other part generates clip-level prediction from 
frame-level prediction. The frame-level prediction part is a simple fully con
nected layer with sigmoid activation function. The clip-level prediction part uses 
a linear layer and softmax layer to obtain an attention score and then it calculates 
attention-weighted sum of the frame-level prediction to generate clip-level 
prediction. Figure 1 shows the architecture of baseline system.

VGGSKCCT System

The implemented VGGSKCCT system is a blend of different models. It 
is based on the description of the system that won first place in 2021 

Table 1. DESED dataset: “Strong label” indicates the occurence and timestamp 
of sound events, while “weak label” merely indicates occurrence.

Amount Annotation Usage

Synthesized data 10000clips Strong label Training
Weakly labeled data 1578clips Weak label Training
Unlabeled data 14412clips Unlabeled Training
Public evaluation set 692clips Strong label Evaluation
Validation set 1168clips Strong label Evaluation
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DCASE Challenge Task 4 (Zheng, Chen, and Song 2021). It contains one 
VGG block, four residual blocks with selective kernel (SK), two bidirec
tional gated recurrent units and a prediction block. In VGGSKCCT 
system, we construct the blocks with our own settings. In addition and 
in contrast, we also add a new branch for clip-level consistency training 
(CCT). The name “VGGSKCCT” is derived from the VGG block, selec
tive kernel and the clip level consistency training branch in this model. 
The system architecture is illustrated in Figure 2 and further implemen
tation details are described below.

VGG Block
The VGG block in this system is composed of two 3� 3 convolution layers, 
one batch normalization layer, one ReLU activation layer, one dropout layer 
with 0.5 dropout rate, and a 2� 4 average pooling layer.

Figure 1. Baseline system: a CRNN model provided by DCASE task4 challenge. Each CNN block 
consists of a 3 × 3 convolution layer, a batch normalization layer, a GLU activation function, 
a dropout layer with 50% dropout rate and an average pooling layer. In the RNN part, there are 
two bidirectional GRU layers with 128 gated recurrent units. The CRNN model uses a fully 
connected layer and a sigmoid function to generate frame-level (strong) predictions, and then 
computes the clip-level (weak) predictions based on the frame-level predictions.
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Residual Blocks with Selective Kernel
The residual blocks in our system consist of two branches. The main branch 
consists of a 3� 3 convolution layer, a batch normalization layer, a selective 
kernel layer with 3� 3 and 5� 5 kernels, a dropout layer, another 3� 3 
convolution layer, another batch normalization layer and an average pooling 
layer. The other branch is a residual/skip connection that connects the input 
feature map extracted by previous block to the output of the main branch. The 
output features of two branches are added and passed to a ReLU activation 
layer.

Bidirectional Gated Recurrent Units
In our system, the bi-directional gated recurrent units (GRUs) work in the 
same way as in the baseline system. This GRU-based recurrent neural network 
(RNN) is capable of extracting temporal features. There are 128 cells in an 
RNN layer with bi-directional GRUs.

Branch for Clip-Level Consistency Training
The branch for clip-level consistency training calculates the difference between 
clip-level outputs (which only predicts the occurrence of each event class). The 

Figure 2. VGGSKCCT system: The CNN part combines one VGG block and four selective kernel units. 
Afterward, the system is composed of two branches. One branch is two bidirectional GRU layers 
and the prediction block, as in the baseline system, and the other branch is a CCT classifier.
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idea is that the prediction of different networks should work well with a high- 
performance feature extractor. Furthermore, the clip-level prediction must 
remain the same regardless of whether more temporal features are extracted 
(by RNN) or not. This branch first downsamples the feature maps produced by 
the previous layer from {B, C, T, F} to {B, C � F, T}. Then, it uses an adaptive 
average pooling layer to combine the frame-level outputs. The shape of the 
feature maps is now {B, C � F}. Finally, the clip-level prediction is generated 
by two linear layers and a sigmoid layer. There is a loss associated with this 
branch to calculate the error between the main branch and CCT branch.

Prediction Block
In our system, the prediction block is exactly the same as that used in the 
baseline system. More details can be found in the previous section, which 
describes the baseline system.

Semi-Supervised Learning

The mean teacher framework used in the baseline system is a semi-supervised 
method of learning. A typical mean teacher model is composed of two 
identical structures called the student model and the teacher model. As 
usual, the training data adjust the network parameters of the student model. 
In contrast, the parameters of the teacher model are calculated via the para
meters of the student model using an exponential moving average. The 
following formula shows how a teacher model tunes its parameters 

θ
0

t ¼ αθ
0

t� 1 þ ð1 � αÞθt (1) 

where θ and θ
0

represent the parameters of the student model and teacher 
model, respectively, t represents the current batch, and α is a hyper-parameter 
with a value between 0 and 1.

Loss Function

Loss Function of the Baseline System
The loss function contains two terms, namely the supervised loss (target loss) 
and the consistency loss 

Ltotal ¼ Lsupervised þ Lconsistency (2) 

The supervised loss is the binary cross entropy (BCE) between the predicted 
result generated by the student model (θ) and the true answer on labeled data 

Lsupervised ¼ BCEðθsðXsÞ;YsÞ þ BCEðθwðXwÞ;YwÞ (3) 
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The consistency loss is the mean square error between the predictions of 
student and teacher models (θ0) to quantify the discrepancy 

Lconsistency ¼W � MSE½θsðXÞ; θ
0

sðXÞ� þMSE½θwðXÞ; θ
0

wðXÞ�
n o

(4) 

Again, θ and θ
0

represent the prediction of the teacher and student model, 
respectively. X and Y are the data and their corresponding labels. Subscripts w 
and s stand for clip-level and frame-level prediction, respectively.

Note the consistency loss is multiplied by an weight W in Equation (4). 
Initially W is set to a small number, so the model learns from the labeled data 
first and ignore the consistency between the student and teacher model. 
Specifically, the scheme of W is 

W ¼ 2� e� 5�phase2
(5) 

where 

phase ¼ 1 � ð current step= total number of steps in 50 epochsÞ (6) 

As the number of training steps increases, the weight also increases and the 
model begins to learn from the unlabeled data. The overall process is shown in 
Figure 3.

Loss Function of the VGGSKCCT System
An additional term in the loss function is proposed to maintain the consis
tency of clip-level prediction on the two different branches in the VGGSKCCT 
system 

LCCT ¼ MSE½θwðXÞ; θCCTðXÞ� þMSE½θ
0

wðXÞ; θ
0

CCTðXÞ� (7) 

This term is a mean square error which computes the error of weak prediction 
generated by the two different branches. The first and second part in 
Equation 7 means the clip-level consistency of the student and the teacher 
model, respectively, where θCCT and θ

0

CCT denote the predictions generated by 
the CCT branch of the student and teacher models. The other symbols are the 
same as in Equation 4. This CCT loss is added to the consistency loss with the 
same weight used in the previous consistency loss. Thus, the consistency loss 
becomes 

Lconsistency ¼W � MSE½θsðXÞ; θ
0

sðXÞ� þMSE½θwðXÞ; θ
0

wðXÞ� þ LCCT

n o
(8) 

Note the total loss still consists of supervised loss and consistency loss.

Loss Function of VGGSKCCT System with Knowledge Distillation
With knowledge distillation, the prediction of a pre-trained (often sophisti
cated) teacher model is used to guide a student (often simple) model. 
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Normally, there is only one student and one teacher when using knowledge 
distillation. However, as we apply both knowledge distillation and mean 
teacher method in our system, our system has one student model and two 
teacher models. To distinguish the teacher models, we call the teacher model 
in knowledge distillation the “pre-trained teacher model.” The teacher model 
in mean teacher method is stilled called “mean teacher model.”

To distill knowledge from the pre-trained teacher model, we add another 
term to the consistency loss 

LKD ¼ MSE½θwðXÞ; θKD
w ðXÞ� þMSE½θsðXÞ; θKD

s ðXÞ� (9) 

where the superscript KD denotes the prediction of the pre-trained teacher 
model. LKD is similar to the loss between the mean teacher and the student 
model. It is based on mean square error, but it compares the student model 
with the pre-trained teacher model, instead of the mean teacher model. With 
the addition of knowledge distillation loss, the updated consistency loss is 

Lconsistency ¼W � MSE½θsðXÞ; θ
0

sðXÞ� þMSE½θwðXÞ; θ
0

wðXÞ� þ LCCT þ LKD

n o

(10) 

Figure 3. Mean teacher: a structure with two identical models. One is called “Student model” and 
the other is called “Teacher model.” In the training step, the prediction of the student model needs 
to be consistent with the ground truth labels and the prediction of the teacher model. After 
updating the parameters of the student model, the parameters of the teacher model are adjusted 
via the parameters of the student model using an exponential moving average.
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Metric for System Performance

The polyphonic sound detection score (PSDS) (Bilen et al. 2019; Mesaros, 
Heittola, and Virtanen 2016) is an effective metric for sound event detection. 
PSDS counts the effective true positive rate under the effective false-positive 
rate. In the first step, it calculates the intersection between the prediction and 
the ground truth label from the aspect of each predicted event. It sets a hyper- 
parameter called detection tolerance criterion (DTC) to distinguish false 
positive samples by dividing the intersection by the length of prediction events 
and comparing if it is higher than DTC or not. In the second step, it does 
something similar. There is another hyper-parameter called ground truth 
intersection criterion (GTC). Unlike DTC, GTC is compared to the intersec
tion divided by the length of each ground truth event. After passing through 
the threshold of DTC, it will then filter by GTC from another aspect of each 
ground truth event. Only the samples that pass through both DTC and GTC 
thresholds will be considered true positives (TPs). The third hyper-parameter 
in this metric is the cross-trigger tolerance criterion (CTTC). It counts how 
many samples are classified to the wrong class. Finally, the effective true 
positive rate is calculated by interpolating the mean and standard error of 
true positive ratios in each class with αST . And the effective false-positive rate is 
calculated by interpolating false positive rate and cross trigger rate with αCT .

In 2021 DCASE Task 4, PSDS designed for different scenarios are adopted. 
PSDS1 sets hyper-parameters DTC to 0.7, GTC to 0.7, αST to 1, αCT to 0 to 
emphasize accurate detection times of the sound event. PSDS2 sets hyper- 
parameters DTC to 0.1, GTC to 0.1, αST to 1, αCT to 0.5, and CTTC to 0.3 to 
emphasize non-confusion between classes. We used the same metrics of 
PSDS1 and PSDS2 in this paper.

Data Augmentation

In order to further improve system performance, we use mixup (Hongyi et al.  
2017) as a data augmentation technique. In the mixup method, two data 
samples are linearly combined to obtain a new data sample. That is 

x̂ ¼ λxi þ ð1 � λÞxj; ŷ ¼ λyi þ ð1 � λÞyj (11) 

Here xi; xj are the feature vectors of two randomly selected samples and yi; yj 
represent the labels of these two samples. λ is a parameter with a value between 
0 and 1. x̂ and ŷ denote a newly generated sample and its corresponding label.

Post-Processing

The frame-level prediction is further post-processed to obtain the final output. 
We first convert each probability value into binary values with a threshold. 
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The binary output is then passed through a median filter to further smooth the 
result and avoid spurious predictions. Our system uses the same post- 
processing setting as the baseline system. Specifically, all thresholds of event 
classes are 0.5 and the median filter size is 7 frames (i.e. about 0.45 s).

A Different Way to Use Knowledge Distillation

Knowledge distillation is frequently used to compress a model (Canwen et al.  
2020; Sam and Rush 2020; Turc et al. 2019). It often exploits a pre-trained 
complex model with a better score to teach a simple model with a lower score. 
The two models are often referred to as the “teacher” and “student,” which is 
in line with the mean teacher framework. Similarly, there is a consistency loss 
to make the student model simulate the teacher model as well. In this way, we 
could transfer knowledge from teacher to student. The main difference 
between knowledge distillation and the mean teacher method is whether the 
teacher model will tune its parameters or not. Unlike the mean teacher 
method, the teacher model in knowledge distillation is pre-trained and will 
not tune its parameters in the training.

In this paper, we use knowledge distillation in a slightly different way. 
Specifically, the size of the pre-trained model to be learned from is not 
necessarily bigger than the model learning from the pre-trained model. 
Furthermore, we combine the mean teacher and knowledge distillation meth
ods in training, so there are 2 teacher models and one student model in total. 
Our experiments show interesting results, that a simple teacher model in 
knowledge distillation can also benefit system performance. We deduce that 
the pre-trained model provided another type of prediction on weakly labeled 
and unlabeled data that increased model robustness. Also, we argue that the 
unusual results are due to the regularization effect stemming from limited data 
and model combination.

Apply Data Consistency Training to Knowledge Distillation with Two-Phase 
Training

Data consistency training is a common strategy in semi-supervised learning. 
The main idea is that the prediction of linear combination should be consis
tent with linear combination of the prediction. Applying this concept to the 
mean teacher architecture, the relationship between the student model and the 
teacher model can be strengthened. With input data xi, we first generate the 
prediction yi with the teacher model in a mean teacher architecture. Then, we 
apply the same data augmentation (mixup) to both input data xi and the 
prediction yi to obtain x0i and y0i, respectively. Following that, we produce the 
prediction y? on x0i based on the student model in the mean teacher 
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architecture. Finally, we calculate binary cross-entropy between the labels y0i 
and y? to determine the loss of data consistency.

In our experiments, we use a special training scheme to incorporate con
sistency training in knowledge distillation and mean teacher method. We call 
it “two-phase training,” because the training process is split into two phases. In 
the first phase, we use the knowledge distillation as described above to develop 
a mean teacher model. In the next phase, we performed consistency training 
between the pre-trained model and the student model developed in the first 
phase. The prediction of the pre-trained model on the augmented sample 
should be in line with the prediction of the student model in the mean teacher 
architecture. Note this consistency training with the mixup method is also 
known as interpolating consistency training (ICT, Verma et al. 2019). In our 
consistency training scheme, the data of each batch have a 50% chance of being 
augmented using the mixup augmentation method. In addition, parameters of 
the pre-trained model will be updated during back-propagation, so the pre
diction of the pre-trained model could change slightly at each training epoch. 
With data consistency training, the student model could learn data diversity 
from the pre-trained model better, and improve its generalization ability. The 
training process is illustrated in Figure 4.

Results and Discussion

Experiment Setup

An input sound clip is converted to melspectrogram. We adjust the sampling 
rate of waveform to be identical (16 KHz) and pad all sound clips to the same 
length (12 s). In the conversion, we set the window size and hop length of 
short-time Fourier transform with 2,048 and 256 samples, respectively. The 
size of the fast Fourier transform is equal to 2,048 (same as the window size of 
STFT). The optimizer used in our experiment is Adam, and learning rate is 
updated by exponential warmup to reach maximum 0.001 after 50 epochs. 
Note that the scores shown in the tables are the higher value of the student or 
teacher model in the mean teacher framework.

The graphics processing unit (GPU) used in our experiment is GeForce 
GTX 1080 Ti 11 G. A training batch is composed of six clips with strong labels, 
six clips with weak labels and 12 clips without labels. The training process will 
last for 200 epochs without early stopping.

Comparison of Different Models

The first comparison is between the baseline system and the VGGSK system. 
From Tables 2 and 3, we can see the VGGSK system with a deeper and broader 
architecture outperforms the baseline system. A deep and broad architecture 
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often performs well if it can overcome the vanishing gradient problem. Similar 
results are observed in the technical reports of DCASE2021 Task 4. Next, we 
compare VGGSKCCT system and VGGSK system to see the effect of clip-level 
consistency training. The second and third rows show the difference between 
using CCT or not. We can see that adding the CCT branch to the VGGSK 
system only improves PSDS2 on the validation set. This is because CCT loss 
only exploits weak predictions, and PSDS2 put more emphasis on the correct 
class labels than on the accurate times of occurrence (in contrast to PSDS1). 
Furthermore, the domain of validation set is similar to weak label data in 
training data set. Note the validation set is larger than the public evaluation set, 
so evaluation on the validation set is statistically more robust than on the 

Figure 4. Second phase consistency training: the pre-trained model and (the student model in) the 
mean teacher model use consistency training with the mixup method. The input data in each 
batch has a 50% chance of being linearly combined. In addition, the parameters of the pre-trained 
model will be updated at the training step.

Table 2. Comparison of different models 
on the validation set: Comparison of dif
ferent models on the validation set: The 
terms “Baseline,” “VGGSK” and 
“VGGSKCCT” denote the three systems 
in our experiment. Details can be found 
in Section Materials and methods.

PSDS1 PSDS2

Baseline 0.341 0.546
VGGSK 0.409 0.618
VGGSKCCT 0.396 0.636
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public evaluation set. In subsequent system development, we keep the CCT 
branch in the system.

Comparison of Different Training Methods

We next disclose the effect of using knowledge distillation and incorporating 
both the mean teacher method and knowledge distillation. The pre-trained 
model in knowledge distillation is similar to the aforementioned VGGSK 
system. The difference is it replaces the SK blocks with RepVGG 
(Reparameterized VGG) blocks (Ding et al. 2021) in order to decrease the 
number of model parameters from 2.5 m to 943k. This pre-trained model is 
also trained on the same DESED data. The first two rows in Tables 4 and 5 list 
the PSDS scores of VGGSKCCT system and pre-trained system with mean 
teacher framework. The third row is the knowledge distillation model with 
VGGSKCCT as a student model. This is referred to as 2-pass approach, since 
mean-teacher method and knowledge distillation method are applied in sepa
rate passes. The last row is a result of the model that includes a mean teacher 
model of VGGSKCCT and a pre-trained teacher model. This is referred to as 
1-pass approach, since mean-teacher method and knowledge distillation 
method are applied simultaneously. The results in these tables indicate that 
when employing a pre-trained model to distill a VGGSKCCT model, there is 
no significant improvement. As we can see, the score of the student model and 
the pre-trained teacher model is roughly the same. The student model can only 
predict like a pre-trained teacher model if only knowledge distillation is used. 
However, the 1-pass approach, which incorporates both the mean teacher 
method and knowledge distillation, does improve performance. Here we also 
show the supervised losses of using 1-pass approach or not (mean teacher 
model with/without knowledge distillation) in Figure 5. The lighter line in the 
background is the true value of the supervised loss between strong labels and 
strong predictions. The darker line is the trend of the loss value. We can see 
that the pre-trained teacher model can assist the student model with the mean 
teacher structure in learning better, as the model that incorporates knowledge 

Table 3. Comparison of different models 
on the public evaluation set: Comparison 
of different models on the validation set: 
The terms “Baseline,” “VGGSK” and 
“VGGSKCCT” denote the three systems 
in our experiment. Details can be found 
in Section Materials and methods.

PSDS1 PSDS2

Baseline 0.353 0.577
VGGSK 0.413 0.664
VGGSKCCT 0.405 0.656
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distillation and the mean teacher method decreases the loss more rapidly. Our 
argument for the improvement is that the 1-pass approach of incorporating 
knowledge distillation and the mean teacher method can be seen as model 
combination, which often improves system robustness especially with test set 
with high-performance variance.

Results of Combining One-Pass and Two-Stage Training Methods

This section presents the effect of two-phase training and data consistency 
methods on incorporating knowledge distillation and mean teacher models. In 
Tables 6 and 7, the first row lists results of VGGSKCCT in mean teacher trained 
with knowledge distillation, as is described in Subsection “Comparison of different 
training methods.” The second row lists the results of applying two-phase training 
to the model in the first row. The results show that updating the parameters of the 
pre-trained model with the second-phase training improves system performance. 
In particular, the PSDS2 gets a small increase on the validation set, and 

Table 4. Comparison of different training meth
ods on the validation set: “Pre-trained” indi
cates a simple RepVGG model trained with 
the same data set. “VGGSKCCT_KD” indicates 
knowledge distillation with “Pre-trained” as 
a teacher model and the VGGSKCCT as 
a student model. “Vggskcct_kdmt” indicates 
incorporating knowledge distillation and the 
mean teacher method on the VGGSKCCT 
model.

PSDS1 PSDS2

VGGSKCCT 0.396 0.636
Pre-trained 0.391 0.615
VGGSKCCT_KD 0.391 0.614
VGGSKCCT_KDmt 0.413 0.642

Table 5. Comparison of different training meth
ods on the public evaluation set: “Pre-trained” 
indicates a simple RepVGG model trained with 
the same data set. “VGGSKCCT_KD” indicates 
knowledge distillation with “Pre-trained” as 
a teacher model and the VGGSKCCT as 
a student model. “Vggskcct_kdmt” indicates 
incorporating knowledge distillation and the 
mean teacher method on the VGGSKCCT 
model.

PSDS1 PSDS2

VGGSKCCT 0.405 0.656
Pre-trained 0.420 0.655
VGGSKCCT_KD 0.420 0.655
VGGSKCCT_KDmt 0.437 0.667
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a significant improvement on the public evaluation set. The pre-trained model 
uses the loss between the student model and itself to adjust the parameters and 
improve the accuracy. This two-stage method can further increase the effect of 

Figure 5. Supervised loss: A figure with loss value and training step (number of total training 
batches). The blue one is a mean teacher model of VGGSKCCT trained in knowledge distillation 
(with a pre-trained model), and the red one is the same mean teacher model trained in a normal 
way. The lighter line in the background is the true value of the supervised loss between strong 
labels and strong predictions. The darker one in the foreground represents the trend in loss.

Table 6. Comparison of two-phase training and data 
augmentation on the validation set: “Vggskcct_kdmt” is 
the same as that in Table 4 and 5. “Two-phase training” 
and “Two-phase training with ICT” indicate updating the 
parameters of the “Pre-trained” model and not only 
updating parameters but also using ICT, in the second 
phase, respectively.

PSDS1 PSDS2

VGGSKCCT_KDmt 0.413 0.642
Two-phase training 0.410 0.647
Two-phase training with ICT 0.418 0.661

Table 7. Comparison of two-phase training and data 
augmentation on the public evaluation set: 
“Vggskcct_kdmt” is the same as that in Table 4 and 5. 
“Two-phase training” and “Two-phase training with ICT” 
indicate updating the parameters of the “Pre-trained” 
model and not only updating parameters but also using 
ICT, in the second phase, respectively.

PSDS1 PSDS2

VGGSKCCT_KDmt 0.437 0.667
Two-phase training 0.436 0.683
Two-phase training with ICT 0.434 0.717
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knowledge distillation by providing labels with more accuracy. The third row in 
the tables lists the results of further using data consistency in the second phase of 
training. Compare to the second row, PSDS2 improves on both the validation set 
and the public evaluation set. From these results, we observe that the model can 
further benefit from data diversity with the mixup method.

Conclusion

In this paper, we develop computation systems for sound event detection in 
domestic environments with deep-learning neural network models. 
Deepening or widening the convolution model and overcoming the gradient 
vanishing problem at the same time can strengthen the capability of a model. 
As shown by the results of our experiments, the proposed VGGSKCCT 
system, with deeper and broader capabilities than the baseline system, achieves 
better performance. Combining knowledge distillation and the mean teacher 
method to transfer knowledge from pre-trained model to student model, 
which can be seen as model combination, we observe further improvement 
in system performance. Finally, we apply a two-phase training procedure with 
interpolating consistency training in the second phase. Overall, these incre
mental changes to system design make the final system achieve better poly
phonic sound detection scores for multiple sound event classes than state-of- 
the-art systems.

We will test the efficacy of the method by combining mean teacher and 
knowledge distillation on different datasets in future studies. It would also be 
worthwhile to test the method using the same model architecture (of mean 
teacher and pre-trained model) or using more pre-trained models to distill 
knowledge at the same time.
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