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ABSTRACT 
 

For real-time management of power distribution systems, when rapid operational adjustments are 
required to cope with intermittent power generation which is typical of renewable-based units, it is 
imperative that the optimization of the overall power distribution system be addressed in a 
distributed fashion. Then, the power distribution system may be partitioned into clusters whose size 
is determined by the delay constraints induced by the regular operations and the required 
operational adjustments.  
In this paper, clusterization is considered as directly addressing the operational adjustment problem 
in the presence of operational changes. Then, such changes need to be identified timely and 
accurately before pertinent adjustments be performed. Clusterization may thus be dictated by the 
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accuracy and delay constraints imposed on the detection and identification of such changes. In 
particular, we first consider the initially non-clusterized power distribution network and determine 
the bus voltage and/or current variations perceived as considerable changes.  Then, we formulate 
a recursive maximum likelihood (ML) approach which naturally points to an initial network 
clusterization via incorporated sufficient identifiability conditions. We subsequently develop, analyze 
and evaluate a distributed sequential detection of change algorithm, implemented by the supporting 
data communication network, whose performance (including accuracy and decision delay) is 
controlled by a set of threshold parameters.  Required algorithmic performance constraints may 
dictate final cluster architecture and dimensionality. This performance monitoring and clusterization 
approach has never been considered in power systems before. 
 

 
Keywords: Smart grids; clusterization; distributed detection of changes; maximum likelihood; 

stochastic approximation.   
 
1. INTRODUCTION 
 
The Smart Grid concept evolved as a response 
to the ever increasing demand for highly reliable 
electric power, the increasing penetration of 
renewable sources and the need of a robust and 
resilient grid design for surmounting challenges 
of an aging infrastructure.  Modernizing the grid 
encompasses both the distribution and the 
transmission levels, where due to its less 
advanced state, the distribution level is 
currently receiving most of the design 
attention. At the distribution level, main 
objectives to be attained include improved 
efficiency, reliability and power quality, high 
penetration of renewables, active load control, 
self–healing, and vulnerability monitoring. 
These objectives could in principle be achieved 
through the fast control of hundreds of 
individual distributed generators (DGs) and 
other devices linked to the grid through a 
power electronic interface. However, this would 
require real time information on each DG unit 
and key loads, leading to a daunting control 
problem. The control complexity and reliability 
of such a system may be greatly reduced if the 
distribution system is broken down into smaller 
partitions, named clusters, with each cluster 
containing a data communications supporting 
infrastructure and resembling the concept of 
microgrids [1].  
 
The challenge addressed in this paper is the 
formalization of an optimization criterion for the 
appropriate formation of clusters at the 
distribution level.  Our formalization is based 
on the following idea: clusterization evolves 
from the necessity for fast response in the 
presence of significant power flow (PF) or 
power loss (PL) changes, reflected by 
measurable bus voltage and/or current 
changes. Thus, the pertinent optimization 

criterion adopted is accurate and timely 
detection of such changes. The adopted 
criterion leads to the development of a 
distributed stochastic sequential algorithm, 
implemented by the supporting data 
communication network, whose distributed 
characteristics are initially defined by sufficient 
identifiability conditions and whose accuracy 
and speed performances are controlled by a 
set of threshold parameters. The algorithm is 
additionally asymptotically optimal in a 
mathematically precise sense. 
 
In distribution networks, real-time monitoring is a 
critical issue, since the number of supervisory 
devices installed may be limited. To provide 
reasonable and meaningful estimates of the 
distribution network state from a very limited set 
of real measurements, State Estimation (SE) 
methods have been widely studied in the 
literature [2-12]. The network state is typically 
given by the voltages at all nodes [13], estimated 
from a few real measurements and 
complimented with pseudo-measurements, to 
ensure system observability; the pseudo-
measurements need to be accurately modeled to 
improve the estimation quality [2]. In [3], the 
network is first split into smaller sections, before 
an SE process is deployed to estimates voltage 
magnitudes via artificial neural networks. In [4], 
SE based on a statistical technique is utilized to 
estimate the level, location and impact of voltage 
unbalance. In [5] and [6], the status of the 
distribution network is estimated using a 
distributed measurement system in a multi-area 
framework. The work in [7] utilizes 
synchrophasor measurements to study dynamic 
SE techniques in distribution grids. The SE 
approach in [8] is proposed for identification of 
network topology changes. With the integration 
of distributed generation, the evolution of the 
distribution grids may involve enhanced complex 
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behavior. As mentioned in [9], in the evaluation 
of network status, traditional SE methods may be 
insufficient and inaccurate. Hence, while robust 
SE techniques are required to support the secure 
operation of the network, such approaches may 
require in some cases [10,11] a significant 
number of measurements yielding to complex 
computational processing. In addition, 
inaccuracies of the deployed SE methodologies 
may affect confidence in their results [12]. 
 
In the present work we depart from SE 
methods in monitoring. Instead, we propose a 
sequential distributed algorithm which monitors 
failure probabilities of distribution lines 
(including the equipment they incorporate), to 
detect effectively alarming dysfunctionalities, 
while simultaneously imposing network 
clusterization. The organization of the paper is 
as follows.  In Section 2, the system model and 
problem formulation are presented, while, in 
addition, a maximum likelihood (ML) estimation 
optimization criterion is formulated and 
identifiability analysis is performed.  In Section 
3, a stochastic approximation approach to the 
maximum likelihood solution is presented and 
analyzed. In Section 4, the distributed 
sequential detection of change algorithm is 
presented and analyzed. In Section 5, 
discussions on the structure of numerical 
evaluations and an example are included. In 
Section 6, conclusions are drawn. 
 

2. SYSTEM MODEL, PROBLEM 
FORMULATION AND ML 
IDENTIFIABILITY 

 
We view a power distribution network as a 
graph comprised of nodes (DGs and power 
consuming units) and lines. For each of the 
lines, we determine metrics of good condition 
or acceptable functionality which may be 
represented by acceptable ranges of bus 
voltages and currents. It is important to note 
here that the status of DGs and power 
consuming units may be incorporated into the 
acceptable line functionality concept; 
alternatively, dysfunctionality of lines may be 
caused by failing equipment at their ends.  
Thus, when a line is declared faulty, 
functionality investigation of all its components 
(including the equipment at its ends) should be 
next initiated. If a line meets the acceptable 
functionality conditions, it is given a success 
score 0; otherwise, it is given a failure score 1. 
Similarly, we determine acceptable 
functionality for power demands raised at 

some network node k and addressing another 
network node l, giving the same 0, 1 scores.  
The (kl) acceptable functionality is determined 
by metrics same as those for line functionality, 
only that the ordered pair (kl) is generally a 
route involving several lines, where a (kl) 
unacceptable functionality may be caused by 
the failure of any of the lines involved in the 
route.  We will assume that the metrics of 
acceptable functionality are well defined.  For 
given topology of the power distribution 
network, let us denote: 
 

(kl): Ordered power source-to- demand pair. 
i:  Line index, where 1 ≤ i ≤ M and M is the 

total number of lines in the  network. 
rkl: The relative load for (kl); equivalently, the 

probability that a random demand 
generated in the network is a (kl) 
demand, where ∑(kl)  rkl =1. 

qi , (kl): The probability that a (kl) demand 
uses line i. Equivalently, the fraction of a 
(kl) demand that is carried by line i. This 
represents a routing probability. 

vi: The probability that a demand going 
through line i fails. 

pi: The probability that a demand made 
somewhere in the network fails due to 
line i; 1 ≤ i ≤ M. 

p0: The probability that a random demand 
generated somewhere in the network 
does not fail. 

f(kl)(x): The probability that a random demand 
is generated in the network, it is a (kl) 
demand and the   outcome observed is x, 
where, 

 
1, if demand fails 

               x =     
0, if demand succeeds 

 
In our model, changes are reflected by the 
probabilities {vi} and {pi} of line failures, where 
failure actually means non conforming with a 
priori defined acceptable operational 
conditions; acceptable operational conditions 
translate then to these probabilities 
maintaining values below predetermined upper 
bounds. Our problem formalization thus 
consists of monitoring these probabilities and 
declaring changes when their values are 
estimated to be above the latter upper bounds.  
For given network topology, we assume that 
relative loads and routing probabilities are 
design quantities and remain unchanged 
during the monitoring process (before increase 
of their values above the upper bounds is 
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estimated). We use (kl) outcomes as 
observations. We first formulate a maximum 
likelihood (ML) estimation approach [14] for the 
probabilities {pi} which encompasses 
identifiability conditions. We then transform the 
result of the approach to a sequential 
stochastic approximation [15] format, which we 
finally use to develop a sequential detection of 
change algorithm for the set {pi}. Similar 
approach was first taken in [16] for the 
distributed monitoring of the telephone 
network, where in this paper, the delay 
characteristics induced by the distributed 
sequential detection of change algorithm are 
used as design guidelines for the clusterization 
of the power distribution network. 

To avoid formulating a cumbersome problem, 
we make the following simplified assumption: 
For each demand failure, there is a major 
contributor: a single line which is its initial or 
main cause. This assumption is consistent with 
our network maintenance objective: we wish to 
monitor possible deteriorating network 
conditions, characterized as “soft faults”, rather 
than recognize “obvious” catastrophic events.    
Under this assumption we have:              

 


 Mi0

ip  = 1   (1)                    

 
Without much effort, we can also derive the expression below, which expresses the probability 
f(kl)(x) as a function of load, routing and failure probabilities. 
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The overall failure probability for pairs (kl) is obtained by summing up the above expression over 
all the network lines. Finally, we consider a sequence of pair observations, where xj, kl  denotes 
the j-th outcome of a (kl) pair demand and Nkl is the number of (kl) pair demands made.  Then, 
assuming that demands are independent from each other and summing up over all (kl) pair 
demands, we form the following ML function  for the probabilities  {pi}: 
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We note that the independence assumption made in the formulation of the ML function in (4) 
represents a worst case scenario: in the presence of dependent demands, the probability of error 
induced by the then optimal ML function is bounded from above by that induced by the ML function in 
(4), [14].  
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If the ML function in (4) is strictly concave, the probabilities {pi} may be estimated as the unique 
values which set the gradient of f ({pi }) equal to zero.  That is, the ML estimates of the probabilities 
{pi} are then given by the unique solution of the following set of equations: 
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The existence of unique solutions of the system in (5) coins the term identifiable for the 
probabilities {pi}, where identifiability is guaranteed if and only if the matrix M({pi}) defined in (6) 
below is strictly negative definite.  By definition, M({pi}) is strictly negative definite if and only if , 
given any nonzero column vector A = {ai ; i = 1,…,M}, the quadratic scalar A

T 
 M({pi}) A is strictly 

negative. 
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Let us index all the power demand-to-power source ordered pairs in the network as (k l)j ; j = 1,…, K.  
Let us then define the column vectors in (9) below. 
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From the above derivations and discussions, we conclude then that {pi} identifiability is represented 
by the sign of the quadratic expression in (8), where this sign is negative if and only if the vectors 
in (9) are all linearly independent. Thus, the {pi} is identifiable if and only if the vectors in (9) are 
linearly independent. Alternatively, subsets of components in {pi} which are identifiable 
correspond to linearly independent routing vectors in (9). Such subsets determine an initial 
clusterization of the network, where the cluster sizes arising from them are generally larger than 
those which will arise from delay constraints imposed on the reliable detection of changes.   

 
Let us now assume that we have identified Ma linearly independent routing vectors and matching 
as ;s = 1,…,Ma  identifiable lines in the network.  For such vectors, let us define: 
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Then, the ML system in (5) can be written as: 
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Due to the relationships in (3), the ML estimates of the probabilities {vi} are given by the system 

of equations in (11), if  {pi} is substituted by {vi} and ))(,( ns klah  is substituted by the routing 

probability qs,(kl). The resulting ML system depends then only on observations and routing 
probabilities; not on relative loads. 
  
We will complete this section by stating a theorem whose proof is in the appendix. 
 
Theorem 1  

 
The ML estimate in (11) is asymptotically consistent and efficient if each true value of the 
identifiable components in {pi} is larger than some ej  > 0, where  
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Theorem 1 states an important algorithmic guideline.  It basically implies that perfectly operating or 
totally disconnected (kl) power demand-to-power source pairs should be excluded from the ML 
algorithm, because they may dominate the estimation scheme and lead to false overall estimates. 

 
3. A STOCHASTIC APPROXIMATION ESTIMATION ALGORITHM 
 
In this section, we are seeking sequential ML algorithms for the identifiable lines in the network.  
Drawing from the notation in Section 2 and using the vector notation p  for the set {pi} of probabilities, 

we first define a vector for given identifiable pair (kl)n and observed outcome x from the pair: 
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We then express the following recursive approximation algorithm, where x(t+1) is the outcome of the 
(t+1)th pair observation: 
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In (13), sequential estimates of all the identifiable components of the {pi} probabilities are computed at 
successive observation instances and the evolution of the scalar L( ) in time is termed gain sequence.  
If x(t+1) is a pair (kl) observation, then: 
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In the appendix, we prove that the error of the stochastic approximation estimate in (13) converges 
asymptotically to a Gaussian variable, if the gain sequence and its first order derivatives are all 
bounded in the region of probability values where the conditions in Theorem 1 are satisfied. The 
specific choice of the gain sequence fine-tunes the convergence rate. From the above, as well as 
from results in [17] and [18], as discussed in the appendix, we conclude the following refinement of 
the algorithm in (13): 
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where 
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for the two terms in (17) being the smallest and largest eigenvalues of the ML covariance matrix 
below.  
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The stochastic approximation algorithm for the set {vi} of probabilities is identical to that for the set 
{pi}, as presented in this section. 
 

4. THE DISTRIBUTED DETECTION OF 
CHANGE ALGORITHM (DDCA) 

 
In Section 2, we determined an initial network 
clusterization by isolating network lines which are 
identifiable by an ML estimation algorithm. In 
Section 3, we developed a sequential stochastic 
approximation format of the latter ML algorithm, 
as implemented within a set of identifiable 
network lines.  In this section, we develop a 
sequential Distributed Detection of Change 
Algorithm (DDCA), still maintaining operations 
within an identifiable set of lines. In particular, the 
algorithm uses the sequential steps in the 
stochastic approximation algorithm of Section 3, 
in conjunction with the sequential evolution of the 
algorithms in [19,20] and [21], to detect changes 
from a satisfactory to an unsatisfactory regions of 
{pi } values.   
 
The algorithm in [19,20] and [21] is developed to 
detect a change from one distribution to another 
in an optimal fashion and involves a threshold 
parameter δ > 0. In particular, the algorithm is 
asymptotically optimal in the sense that, for δ → 
∞, the expected time for detecting a correct 
change is of order log δ, while the expected time 
for an incorrect decision is of order δ, while there 
exists no algorithm attaining faster correct 
decision subject to order δ speed of incorrect 
decision. Here, we transfer the concept of 

sequential stochastic approximation estimation to 
the concept of asymptotically optimal sequential 
detection of change via the following logical 
steps: 
 

(i) Let us assume that a satisfactory 
functionality of each line i is reflected by a 
probability vi which is bounded from above 
by a given value ρi. Let us assume that 
unsatisfactory functionality is then reflected 
by a vi value which is bounded from below 
by ρi + ηi , where ηi > 0 and  ρi+ ηi < 1. 

(ii) Let us then require that we detect a ρi to ρi 

+ ηi change per vi by detecting rapidly a 
change from a likelihood function f({vi= ρi}) 
to a likelihood function f({vi=ρi+ ηi }), where 
f({vi}) is given by (4), when {pi} is 
substituted by {vi}. Via the logic presented 
in [20], this requirement may be 
transformed to performing a sequential 
stochastic approximation estimate of the 
probabilities {pi} using the difference 
likelihood function f({vi=ρi+ ηi }) - f({vi= ρi}) 
and applying a modified version of the 
algorithm in [20] to it. 

 

Considering the probability 
n)kl(,sq  let us define, 

 

))(},{( l nklρy 
 Mi1

iρ 
nkliq )(,    (20) 
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))(,,},{( nsssi klaρρy    =  
 Mi1

iρ 
nkliq )(,
  +  s nklsq )(,

        (21) 

                            

 ))(,,}, {( nsssi klaρρ  












))(,,,}{(1

))(},{(1
log

i

i

nsss

n

klaρρy

klρy


  / 

 

/ 












)])(,,,}({1[))(},{(

))(,,,}({)])(},{(1[
log

nsssini

nsssini

klaρρyklρy

klaρρyklρy




     (22) 

 
By substitution in the modified expression (4), as applying to the probabilities {vi}, we conclude that 
the likelihood difference f({vi=ρi}; i≠s, vs = ρs + ηs ) - f({vi= ρi}) equals a positive constant, times the 
expression below: 
 

)},({ s1 sF   =    
kl

nssklj klax ))(,,},{( si,                 (23) 

  
Equivalently, let us consider the case, where subject to {vi = ρi ;  i≠s, vs = ρs + ηs } versus {vi = ρi ; all i}, 
the stochastic approximation algorithms in (13) to (19), as modified for the probability set  {vi}, 
continue operating after they have converged to their { vi = ρi ;  i≠s, vs = ρs + ηs } versus {vi = ρi ; all i} 
values.  Then, via substitution of the pertinent variables in (12), we conclude without much effort that 
the difference between the two stochastic approximation estimates – each corresponding to { vi = ρi ; 
i≠s, vs = ρs + ηs } versus {vi = ρi; all i} true convergent values- is expressed as functions of x(kl)  -  γ ( 
{ρi}, ρs + ηs ,   as , (kl)n ), where γ ( {ρi},  ρs + ηs ,   as , (kl)n ) is given by (22).  Extending the logic 
explained in [20] and modifying the gain in the stochastic approximation algorithm, we thus define the 
following sequential detection of change algorithm: 
 

Algorithm (DDCA) 
 
Consider the identifiable lines.  Let us denote by m(s) the m-th observation involving line s and let this 
observation be a pair (kl) observation; let us denote this observation x m(s). Then, the sequential 
detection of change ρs  → ρs + ηs  algorithm { W ( m(s) ) } operates as follows: 
 
Given design threshold parameter δs  > 0: 

 
W (0) ≡   0 
 

 )))(,,},{())(m(,0(max)1)(m( ))(1( klsρρxsWsW ssiim       (24) 

 
Stop the first time n(s), such that W (n(s)) ≥ δs   and decide that the change ρs  → ρs + ηs   has occurred.   
  
The above algorithm uses only observations and routing probabilities and basically detects a change 
from a Bernoulli random variable with parameter ρs to another Bernoulli random variable with 
parameter ρs + ηs , where the Kullback-Leibler number between these two Bernoulli variables is: 
 

 ),( sss ρρI 






 


s

s
s

ρ

ηρ
ρ s

s log)(  






 


s

ss
s

ρ-1

ηρ-1
ρ log)1( s     (25) 
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Directly from [14], [20] and [21], we can express the following theorem: 
 
Theorem 2 

 
Let Ns denote the extended stopping variable induced by the algorithm in (24); that is, 

 ss :inf  (n) W nN .  Then, 

 
      (a)  Given that no ρs  → ρs + ηs change occurs throughout all observations,  
 

 2/}N, s ss δ { E  δ  As                                                                               (26) 

 

(b) Given that the ρs → ρs + ηs change occurred before the beginning of observations, 
                                     

sss
-1

s δ logρρ I { E     δ  As ),(}N, ss                               (27) 

 
 (c) Subject to the constraint in (a), there is no algorithm which attains asymptotic (for δs   → ∞)  

expected stopping time E { Ns } less than that in (27) when all observations originate from the 
Bernoulli variable, with parameter ρs + ηs. 

                                                                                                                                                              
Theorem 2 establishes the asymptotic optimality 
of the algorithm in (24), in terms of expected 
stopping time. Non-asymptotically, the 
performance of the algorithm is determined by 
the power and false alarm probabilities it 
induces, as functions of time. Given finite 
threshold value δs , the false alarm probability α 
(δs , n) is the probability that the algorithm 
crosses the threshold at the nth observation for 
the first time, given that no change ρs  → ρs + ηs   

has occurred. Given the same threshold, the 
power probability β (δs , n) is the probability that 
the algorithm crosses the threshold at the nth 
observation for the first time, given that the 
change ρs  → ρs + ηs   occurred before the 
collection of observations began. The 
methodology for the recursive in time 
computations of the probabilities α (δs , n) and β 
(δs , n) in the presence of the Bernoulli model 
represented by the algorithm in (24) is an 
extension of that found in [14] and [19]. The 
design decision regarding the operating 
threshold δs is based on the required power 
versus false alarm tradeoff. The specific 
requirement is then that at a given time n, the 
power probability exceeds a given lower bound, 
while the false alarm probability remains below 
another given upper bound. Extensive discussion 
on the selection of operating decision thresholds 
for the non-distributed simpler version of the 
algorithm can be found in [22]. 
 
 
 
 

5. NUMERICAL EVALUATIONS – AN 
EXAMPLE 

 

Given a power distribution system, the DDCA is 
implemented stepwise, as follows: 
 

(i) The global system matrix with columns as 
those in (9) is first formed and the Ma lines 
to be monitored are identified.  From this 
matrix, it is first investigated if the Ma lines 
are identifiable within the global system 
matrix: if yes, no further clusterization of 
the system is required; if not, appropriate 
clusterization is imposed, to warrant 
identifiability of all Ma lines. Each such 
cluster comprises then an identifiable 
system. 

(ii) Given a cluster/ identifiable system in (i), 
the probabilities {ρs } and {ρs + ηs}  are 
selected to reflect normal versus abnormal 
line conditions, where these probabilities 
may be reflected by the percentage of time 
during which abnormalities (current, 
voltage, power, etc.) may be tolerated 
versus non-tolerated. Subsequently, the 

quantities ))(,},{},{( ss nss kla   in 

(22) are computed, named updating steps. 
(iii) Thresholds {δi} are selected based on the 

power and false alarm curves they induce, 
as explained in Section 4 above and as 
studied in detail in [23]. 

(iv) The quantities in (ii) and (iii) are used to 
implement the DDCA in (24). 
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We note that in the case where ρs = ρ and  ηs = η; 
for all s, then the updating steps in (22) take the 
following simplified form: 
 

 ))(,,},{( si nss kla



















nklsq )(,1

1
log




  / 

 

/ 






















]1[

)1(][
log

)(,

)(,

n

n

kls

kls

q

q
                (28) 

 
In this section, we consider an example of a 
simple hypothetical 12.66 kV distribution system 
with 33 buses, 37 lines, and a looping (auxiliary) 
branch [23], exhibited in Fig. 1, where it is 
assumed that the power sources in the system 
are located at buses 1, 6 and 12 and the loads 
are located at buses 8, 14, 18, 19, 23 and 26.  
We also consider the possibility that the auxiliary 
line 35 may be utilized 20% of the time, when 
line 18 is disconnected (80% of the time), e.g. for 
minimizing real power losses and improving the 
voltage profile [24] or optimal day-ahead 
operational scheduling [25] via network topology 
reconfiguration.  Subsequently, two different 
scenarios arise: one referring to the above 
utilization of line 35 and one when line 35 is 
absent.  In Tables 1 and 5, we exhibit the routing 
probabilities induced by the two different 
scenarios, where we indicate in bold, the 
vulnerable lines which need to be monitored: 
lines 1, 4, 6, 17, 22, 25 and 35 (35 is absent in 
scenario 1).   In view of the later lines of interest, 
the matrix in Table 1 has a maximum of three 
independent columns; corresponding to lines 17, 
22 and 25, while Table 5  has  a maximum of 
four independent columns; corresponding to lines 
17, 22, 25 and 35.  Thus, without clusterization, 
not all lines of interest can be monitored via 
source- to- demand/load measurements, in both 
scenarios. Non unique, clusterization approaches 
are exhibited for each scenario, by Tables 2, 3, 
4; 6, 7, 8, where a final clusterization decision 
may be dictated by possible additional limiting 
physical factors of the network, such as line 
ratings.  We note that, in both scenarios, lines 
17, 22 and 25 may be monitored by the global 
non-clustered system, in which case 
measurements from all three sources, 1, 6 and 
12 contribute to their monitoring; then, as 
compared to the clusterized approaches, their 
monitoring is accelerated.  
 

 
 

Fig. 1  
 

An example of a power distribution system 
 
Scenario 1 
 

Sources:  Buses 1, 6, 12           
Loads:  Buses 8, 14, 18 19 23, 26 
Involved lines:  1, 2, 3 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13, 14, 15, 16, 17, 18, 22, 25. 
 

Auxiliary line absent. 
 

Lines to be monitored: 1, 4, 6, 17, 22, 25
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Table 1 
 

Global system matrix  
{ qi, (kl) } Identifiability probabilities for the power distribution system in Fig. 1 

 
Pair (kl) Source k 
Load l 

Line 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 22 25 

(1,8) 
(1,14) 
(1,18) 
(1,19) 
(1,23) 
(1,26) 
(6,8) 
(6,14) 
(6,18) 
(6,19) 
(6,23) 
(6,26) 
(12,8) 
(12,14) 
(12,18) 
(12,19) 
(12,23) 
(12,26) 

1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
0 
1 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 

1 
1 
1 
0 
0 
1 
0 
0 
0 
1 
1 
0 
0 
0 
0 
1 
1 
0 

1 
1 
1 
0 
0 
1 
0 
0 
0 
1 
1 
0 
0 
0 
0 
1 
1 
0 

1 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
0 
0 
1 
1 
0 

1 
1 
1 
0 
0 
0 
1 
1 
1 
0 
0 
0 
0 
0 
0 
1 
1 
1 

1 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
1 
1 
1 

0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
1 
0 
0 
1 
1 
1 

0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
1 
0 
0 
1 
1 
1 

0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
1 
0 
0 
1 
1 
1 

0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
1 
0 
0 
1 
1 
1 

0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 

0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 

0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 

0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 

0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 

0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 

0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 

0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 

0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 

Without clusterization, only lines 17, 22 and 25 can be monitored. A clusterization choice is shown below
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Table 2 

 

Cluster 1: Source 1 with loads 8, 14, 18, 19, 23, 26 

It monitors line 1. 

 

Pair (kl) Source k Load l Line 

1 

(1,8) 

(1,14) 

(1,18) 

(1,19) 

(1,23) 

(1,26) 

1 

1 

1 

1 

1 

1 

 

Table 3 

 

Cluster 2:  Source 6 with loads 8, 14, 18, 19, 23, 26 

It monitors lines 4, 6 and 25. 

 

Pair (kl) Source k  

Load l 

Line 

4 6 25 

(6,8) 

(6,14) 

(6,18) 

(6,19) 

(6,23) 

(6,26) 

0 

0 

0 

1 

1 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

 

Table 4 

 

Cluster 3:  Source 12 with loads 18, 23.  

It monitors lines 17 and 22. 

 

Pair (kl) Source k  

Load l 

Line 

17 22 

 (12,18) 

(12,23) 

1 

0 

0 

1 

 

Scenario 2 

 

Sources:  Buses 1, 6, 12           

Loads:  Busses 8, 14, 18 19 23, 26 

Involved lines: 1, 2, 3 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 35. 

Auxiliary line 35 is connected 20% of the time while line 18 is disconnected.  

Lines to be monitored: 1, 4, 6, 17, 22, 25, 35
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Table 5 
 

Global System Matrix 
{ qi, (kl) } Identifiability Probabilities for the Power Distribution System in Fig. 1 

 
Pair (kl) Source k 
Load l 

Line 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 25 35 

(1,8) 
(1,14) 
(1,18) 
(1,19) 
(1,23) 
(1,26) 
(6,8) 
(6,14) 
(6,18) 
(6,19) 
(6,23) 
(6,26) 
(12,8) 
(12,14) 
(12,18) 
(12,19) 
(12,23) 
(12,26) 

1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
.2 
1 
1 
0 
0 
0 
.8 
0 
0 
0 
0 
0 
.8 
0 
0 

1 
1 
1 
.2 
0 
1 
0 
0 
0 
.8 
1 
0 
0 
0 
0 
.8 
1 
0 

1 
1 
1 
.2 
0 
1 
0 
0 
0 
.8 
1 
0 
0 
0 
0 
.8 
1 
0 

1 
1 
1 
.2 
0 
1 
1 
0 
0 
.8 
1 
0 
0 
0 
0 
.8 
1 
0 

1 
1 
1 
.2 
0 
0 
1 
1 
1 
.2 
0 
0 
0 
0 
0 
.8 
1 
1 

1 
1 
1 
.2 
0 
0 
0 
1 
1 
.2 
0 
0 
0 
0 
0 
.8 
1 
1 

0 
1 
1 
.2 
0 
0 
0 
1 
1 
.2 
0 
0 
1 
0 
0 
.8 
1 
1 

0 
1 
1 
.2 
0 
0 
0 
1 
1 
.2 
0 
0 
1 
0 
0 
.8 
1 
1 

0 
1 
1 
.2 
0 
0 
0 
1 
1 
.2 
0 
0 
1 
0 
0 
.8 
1 
1 

0 
1 
1 
.2 
0 
0 
0 
1 
1 
.2 
0 
0 
1 
0 
0 
.8 
1 
1 

0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 

0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 

0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 

0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 

0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 

0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 

0 
0 
0 
.8 
0 
0 
0 
0 
0 
.8 
0 
0 
0 
0 
0 
.8 
0 
0 

0 
0 
0 
.2 
0 
0 
0 
0 
0 
.2 
0 
0 
0 
0 
0 
.2 
0 
0 

0 
0 
0 
.2 
0 
0 
0 
0 
0 
.2 
0 
0 
0 
0 
0 
.2 
0 
0 

0 
0 
0 
.2 
0 
0 
0 
0 
0 
.2 
0 
0 
0 
0 
0 
.2 
0 
0 

0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 

0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 

0 
0 
0 
.2 
0 
0 
0 
0 
0 
.2 
0 
0 
0 
0 
0 
.2 
0 
0 

Without clusterization, only lines 17, 22, 25 and 35 can be monitored. A clusterization choice is shown below
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Table 6 
 

Cluster 1: Source 1 with loads 8, 14, 18, 19, 23, 
26 

It monitors line 1. 
 

Pair (kl) Source k Load l Line 
1 

(1,8) 
(1,14) 
(1,18) 
(1,19) 
(1,23) 
(1,26) 

1 
1 
1 
1 
1 
1 

 

Table 7 
 

Cluster 2: Source 6 with loads 8, 14, 18, 23, 26 
It monitors lines 4, 6 and 25. 

 
Pair (kl) Source k Load l Line 

4 6 25 
(6,8) 
(6,14) 
(6,18) 
(6,23) 
(6,26) 

0 
0 
0 
1 
0 

1 
1 
1 
0 
0 

0 
0 
0 
0 
1 

 

Table 8 
 

Cluster 3: Source 12 with loads 18, 19, 23. 
It monitors lines 17, 22, and 35. 

 
Pair (kl) Source k Load l Line 

4 6 25 
(12,18) 
(12,19) 
(12,23) 

1 
0 
0 

0 
0 
1 

0 
.2 
0 

 

Regarding the monitoring of the vulnerable lines, 
let us also assume that ρs = ρ and  ηs = η; for all 
s, in which case the simplified form of the 
updating step in (28) is used in the 
implementation of the DDCA algorithm in (24).  
Finally, let us assume that the tolerable versus 
non-tolerable power system conditions are 
reflected by the choices ρ = 0.01 and η = 0.04; 
for non-auxiliary lines, while ρ = 0.01 and  η = 
0.2; for auxiliary lines.  The latter choices, in 
conjunction with the probabilities in Tables 2, 3, 
4; 6, 7, 8  induce then the following specific steps 
in the implementation of the monitoring algorithm 
in (24): 
 

(a) For line 1 
 
In both scenarios, update the algorithm each 
time a (1,8), (1,14), (1,18), (1,19), (1,23) or (1,26) 

source-to-demand/load pair measurement is 
collected. For each source-to-demand pair 
measurement, use the updating step in (29) 
below. 
 

 ))(,,},{( si nss kla
 














04.01

1
log

0.01

0.01   / 

 

/ 












0.010.01

0.010.01

]04.01[

)1(]04.0[
log              (29)                

 

(b) For line 4 

 

In scenario 1, update the algorithm each time a 
(6,19) or (6,23) source-to-demand/load pair 
measurement is collected. In scenario 2, update 
each time a (6,23) source-to-demand/load pair 
measurement is collected. For each source-to-
demand pair measurement, use the updating 
step in (29). 

 
(c) For line 6 

 

In both scenarios, update the algorithm each 
time a (6,8), (6,14) or (6,18) source-to-
demand/load pair measurement is collected. For 
each source-to-demand pair measurement, use 
the updating step in (29). 

 
(d) For line 25 

 

In both scenarios, update the algorithm each 
time a (6,26) source-to-demand/load pair 
measurement is collected.  For each source-to-
demand pair measurement, use the updating 
step in (29). 

 
(e) For line 17 

 

In all both scenarios, update the algorithm each 
time a (12,18) source-to-demand/load pair 
measurement is collected.  For each source-to-
demand pair measurement, use the updating 
step in (29). 

 
(f) For line 22 

 

In both scenarios, update the algorithm each 
time a (12,23) source-to-demand/load pair 
measurement is collected.  For each source-to-
demand pair measurement, use the updating 
step in (29). 
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(g) For line 35 

 

In scenario 2, update the algorithm each time a 
(12,19) source-to-demand/load pair 
measurement is collected.  For each source-to-
demand pair measurement, use the updating 
step in (29). 

 

Selecting a threshold value δs = 4.47 for the 
algorithm with updating step as in (29), we attain 
superior values of the false alarm and power 
probabilities, α (δs , n)  and β (δs , n).  
Specifically, in 100 measurements, the power 
equals then 0.98, while the false alarm is 
practically zero (see [14], Figure 8.5.1).   The 
specific tolerable upper limit on the number of 
measurements is determined by the time 
required for their collection, in conjunction with 
the time-limit demanded for the detection of 
substantial changes. 
 

6. CONCLUSIONS 
 
Our overall objective has been the 
performance monitoring of a power 
distribution system, for real-time dynamic 
operational adjustment in the presence of 
substantial operational changes. Then, such 
changes need to be identified timely and 
accurately before pertinent adjustments be 
performed, necessitating a distributed approach. 
This approach may be implemented by network 
clusterization whose design should be dictated 
by the accuracy and delay constraints imposed 
on the detection and identification of operational 
changes.  

 

The general approach taken in this paper 
involves the following steps: (i)  We first consider 
the initially non-clusterized power distribution 
system and determine the -current, voltage, 
power- variations perceived as considerable 
changes; we also determine the vulnerable lines 
which need monitoring.  (ii) We secondly 
formulate a recursive maximum likelihood (ML) 
approach which naturally points to an initial 
network clusterization via incorporated sufficient 
identifiability conditions. (iii) We subsequently 
develop, analyze and evaluate a distributed 
sequential detection of change algorithm, 
implemented by the supporting data computer- 
communication network, whose performance 
(including accuracy and decision delay) is 
controlled by a set of threshold parameters and 
the architecture and dimensionality of each 
cluster.   

Specifically, we have proposed a distributed 
algorithm for monitoring the quality of power lines 
(and their incorporated equipment) in power 
distribution systems.  The algorithm utilizes 
sequentially processed power source-to-demand 
measurements within an identifiable system, to 
generate alerts about faulting lines, rapidly and 
with a high level of accuracy.  System 
identifiability, in conjunction with constraints on 
the speed of correct decisions, provide system 
clusterization guidelines.   
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APPENDIX 
 

Proof of Theorem 1 
 
Define: 
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It is easy to verify that Cramer’s conditions [26] for asymptotic weak consistency and efficiency are 
satisfied. Specifically,  
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(because all 0
iap ), where the expectation is again over all 
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finite functions. 
 

i, j = 1, 2, 3;     k, q =  1, … Ma 
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is itself finite ( x = 0, 1) and this condition is trivially satisfied. 
 
The ML scheme described by the system in (11), being asymptotically efficient (as proved by 

Theorem 1) results in the asymptotic covariance matrix )( apD  of the estimate ap  satisfying the 

Cramer bound. That is : 
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Convergence of the Stochastic Approximation Algorithm in (11) 
 
Let us define the vector regression function below. 
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and we use Sacks’ conditions [17], as in [18]. The required conditions for convergence, as given by 
Sacks’ [17] are: 
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where )( apS  is a non-negative definite matrix. 

 

       5.  The vectors  ),)(( aptxZ


 are (for different  t’s) identically distributed when conditioned on 

ap .          

 

Now let   
aMbbb  21    be the ranked eigenvalues of the matrix B in condition 3, and let P be 

the matrix of the B eigenvectors (P is orthogonal). Define then:  
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where )( apS is the nonnegative definite matrix condition in 4. If )(*, aji ps is the i, j element of the 

matrix  )(* apS  , Sacks’s theorem is expressed as follows. 

 

Theorem (Sacks) : If conditions 1-5 are satisfied by the regression function )( apR
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 and if  
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matrix PWP-1. P is the eigenvector matrix of B (condition 3) and W is a matrix with i , j element equal 

to )(*)1( 1
ajiji psbb  , where )(* apS   is given by (A.2) and )( apS   is defined in condition 

4. 
 

In conditions 1-4 and theorem 2,  ap   is the true value of the vector consisting of the pi’s  of the 

identifiable lines. 
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We now prove that Sacks’ conditions are satisfied by the expression in (11). 

1.    The regression function )( apR
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 in (A.1) obviously satisfies )( apR
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       2.   Use a Taylor expansion and the middle value theorem to write : 
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Representing the whole expression in the brackets { } above (expression (A.4)) and applying 
Schwarz’s inequality on (A.4) we obtain 
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And summing (A.4) w.r.t J we have : 
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If aa pp


and are both such that for every aMk 1  there is some positive number ke  such that 
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  is bounded and condition 2 is satisfied.  

 
      3. Using again the mean value expansion, but including a second order term we can write 

(remembering that 0)( apR  ) : 
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where Wk  is an aa MM   matrix, such that  
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From (A.7) and (A.8) we see that we can write: 
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where B  is an aa MM   matrix, such that : 
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
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 aMJk ,,1,  .                                                                 (A.9) 

 
It can be easily seen that due to the identifiability of the system, B is positive definite. It is obviously 
also symmetric. 
 

We may further observe that if  ))(,()())(,( naana klpLpLklpL   independent of nkl)( , the 

matrix B is then equal to the covariance matrix )( apD  (in (18)) of the ML estimator, times )( apL . 
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As in condition 2, we can easily see that here )p,p( aa
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  is also bounded for aa pp
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      5. Obviously satisfied. Let us now calculate the matrix )( apS  as defined by condition 4 of Sacks. 
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We observe that )( apS is a weighted ( ))(,(2
ma klpL  weights) version of the ML covariance matrix 

in (18).  
 
From (A.9), ( A.2) and the fact that the P eigenvector matrix is orthogonal, we conclude [17] : 
 

),,( diag)()(* 1
2

aMaa ddpLpS   

 

where 
aMddd  21 are the ordered eigenvalues of the ML covariance matrix 
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The analysis in [18] for the proper )( apL  choice holds and we may choose : 
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