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Abstract

This paper discussed the derivation of two-stage expli@thastic Rational Runge-Kutta (SRRK)
methods for the solution of stochastic first order axdyndifferential equations. The derivation is based
on the use of Taylor series expansion for the determingsiit stochastic parts of the stochastic
differential equation. Efforts were made to analyse gtability of the methods and also applied the
methods to test some numerical problems to solve SticHaiéferential Equations (SDE). From the
results obtained it is obvious that the methods derived perfobatter than the ones with which we
compared our results.
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2010 AM S subject classification: 65L05, 65L06, 65D30.

1 Introduction

Many physical and biological systems are modelled bghststic differential equations (SDEs), which were
obtained by including random effects into the ordinary diffitial equations. Models of this type offer a
more realistic representation of the real physicateayps than the deterministic models. However, most of
the (SDEs) cannot usually be solved analytically, so nualemethods are needed [1]. Whereas there is a
rich theory for designing effective numerical methods dotving ordinary differential equations, the
stochastic counterpart are less well developed. Interestimggl, Runge-Kutta methods prove effective in
handling stochastic differential equation theories thatdi handle stochastic processes, over some of the
analytic methods, or even some numerical schemes [Rifdrefore, there is a high need to develop
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stochastic schemes for solving and implementationuofgle-Kutta numerical methods for solving stochastic
differential equations [4].

In this paper, two-stage explicit Stochastic Rational Riig¢a method is derived based on the modified

approach of stochastic Runge-Kutta methods to solve stocbaditnary differential equation. Consider the
non-autonomous, one Wiener SDE of Stratonovich type:

dy(t) = f (t, y(t))dt+g(t, y(t)) - dW (6]

The general form of an s-stages explicit StochaséitoRal Runge-Kutta (SRRK) methods is given by [5]
as.

yn+hz ClKl S
ol

Yoa = 2. SKs
1+hY yVH, =1
= )
— 1:n+1 _tn : e : — —
where h= N N is a positive integer), = AW, =AW, ,, — AW,

Ki:f(tn+ha¥’yn+hiaﬁjKJJ and a,-:iaﬂ

j=1 j=

H, = pt,.bhy,+h>jH,) and Bb=>h
j=1 j=1

Pty 2,) == 7 F(t,,y,)
and z = y

Ks = g(tn +has,y, +J|ibs;] Ksjj and as =Zslbsj
j=1

=

Zs:cl =1 and Zs:vi =1
i=1 i=1

whereC,,s ,v;,a,as,8;,b;

i ,and bs,j ,for all i,j=12,...,s are constants to be determined.

We can classify SRRK methods, as follows:

If by =a; =bs, =0, Ui <], then the method is called semi-implicit.
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If b, =a;, =bs, =0, Ui< ], thenthe method is called explicit.

Otherwise it is called implicit.
2 Derivation of the Methods

In order to derive the two-stage explicit SRRK methods, idenghe general form of the explicit SRRK
methods, which we shall denote by JAk2.

yn+hz CIKI

ismj

yn+l = s :
1+ hz ynvl Hi =
i=1 (3)
where,hand J, are asin (3).
When s = 2 in (3) we obtain two-stage explicit SRRK given by
+h(c K, +c,K
Yoo = 22 MGK TR 4, (5K +5,Ks)
1+ hyn (VlHl +V2H2) (4)

Where
K,=f(t,y,) ; K,=f(,ahy, +ha,K,) and a :i%
H, = p(t,.z,) ; H,=p(t,bhz+hb,H,) and b :iZ:,bl,;
Ks =g, Y, ; Ks,=g(t,+asJd;,y, +Jbs,Ks) and as =iZ:lb$,j

1
H,=p(t,,z)=-Z2°f(,Y,), Z, :7

n

h=%,N is a Positive integer, J, =AW, =AW,,, —AW,

and Db, =b,,a, =8a,,as, =bs,

ic, =1 and ivi =1
i=1 i=1

are to ensure consistency of the schemes and the otmsigc,,v,,V,,S,,S,,a,,0,and as, are to be
determined.

Expanding the RHS of (5) binomially and simplify to get
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Yo =[Yn (K, + K )L+ hy, (WH, +V,H,)) ™ +J,(sKs +5,Ks,)

®)
Yaur =[¥n + (G, +C,K)IL (hy, (v H, +V,H,))+ (hy, (vH, +V,H,)? +
(hyn(V1H1+V2H2))3+---+‘]1(51K31+32K52) (6)
Yo = Yo h(CK; +CK,) +..=hy (H, +V,H, ) +...+ 3, (S KS, +5,Ks,) @

ExpandingK, using Taylor series abouitn, yn) we have:
ah’
K,=f(,+ahy,+ha,K)=f+ah(f + ffy)+T(ftt +21ff, + fzfyy) +...
8

Similarly, expandingH, and Ks, about (t,,z,) and (t,,Yy,) respectively and substituting the
expansions in (7) to obtain

2h3
Yo = Yo T NG (t,, V) +CNE (L, Y,) +Ca0°(F + ffy)+C222, (f, +2ff, +126,) +...

hy?v

2
YV P(t, 2) =YV, Pt 2) ~7Yovby (P + pR) == 2 (p, +2pm, + p7p,) +..]

JZ
+J[s,g+asJd (g, +99,) +a§2—,1(gtt +29g, +9°0,,) +...)] o
g 9

Then,

Yo = Yo +hi(c, +c,) + h2(02a2 f +C,ay ffy) +hp(v, +Vv,) + hz(Vzbz P, + Vb, pp,) +

J,9(s, +s,) +s,@8,37(g, +9g,) +... (10)

But

Pr(t0,2,) = = 2, T (t,¥0) ==Z°p(t,, Vo) and 2, = L7

Hence (10) becomes

Yo = Yo + O +,) + h°C,a, (f, + 1F,) +hp(v, +v,) +h*v,b, (p, + pp,) +

J,9(s,+s,) +s,88J7 (g, +99,) +... (12)

We denote solution of the stochastic partyy and adopt the following notations

y=1ty), d=pty), ¥ =9y
(12)
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y'=f +ff, q"=p +pp, ys' =g, +4dg,
(13)

y' = fn + ﬁty"' fy(ft + ﬁy)+ f(fty+ ﬁyy):(ftt +2f'fty+ fzfyy)+(ftfy+ f-fyz) (14)

q" = p, + PRy, *+ P, (P + PP,) + P(Py + PR,,) = (P +2PR, + P°P,,) + (PP, + PP)) (15)

Jn

%" =0 +98, +9,(9+99,) + 9(gy + 99,,) = (9 + 209, +9°9,,) + (99, +99%) ;)

Substituting (12) — (16) in (11) and truncating after h toptwers two we get

h? h? J2
You = Y, +hf +E(ft + ffy)+hp+5(pt + ppy)+Jlg+El(gt +4gg,)

(17)
For consistency, we let
G+c =1
v, +v, =1
1
ca, =Vv,b, ==
2a2 2~2 2
sts =1
S,as, = :
2 (18)
with local truncation error of ordd‘na, J3.
Case 1:
If cl:vl:sl:%, C,=V,=5, :g, a,=b,=as, :2 we have
Yn+h(iK1+iK2) 1 3
Your = 1 3 + Jl(z K%. + Z KSZ)
1+ hyn(i H1 +— H2
4 4 (19)

where K;,H,,K,,H,,Ks,Ks,, h,J; are as defined in (4)
Case 2:

If C1=V1=O- C2=V2=1v %:SZ:%,aZ:bZ:%’aszzl,then
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_Ya*h(Kp) L Lo, 2
=0~ <~ +]J(=Ks +=K
yn+1 1+hyn(H2) 1(2 %. 2 Sz) (20)
where K, H,,K,,H,,Ks;,Ks,,h,J, are as defined in (4).
Case 3:
IfweletC, =C, =V, =V :1 :l :§a:b =la :g
p =V = Vs 2’S_L 4152 53270 S 3
Then we obtain
1 1
yn + h(E Kl +E Kz) 1 3
yn+1 = 1 1 + Jl(z K%. + Z KSZ)
1+hy,(ZH,+>H,)
2 2 21)

where K;,H,,K,,H,,Ks,Ks,,h,J; are as defined in (7)
3 Stability Analysis of the Two-Stage Schemes

Theorem 1: (Convergence, [6])

() Let the functiong(X,Y,h) be continuously jointly as a function of its three argumeintshe
region F defined byX D[a,b], y O (-00,0),h 0 [O,ho] h, >0

(i) Let ¢(h,y,h) satisfy a Lipchitz condition of the forMX, y,h)—@xy, h)‘ <M ‘y* - y‘

for all points (X, y",h),(X,y,h) in .~

Then the methody,,; — Y, = h¢(X,, Y,,h) is convergent if and only if it is consistent.

For the stability analysis of the derived schemes, lvedl adopt the principles of [8,9,10,11,12]. Since the
stability analysis of the deterministic method corresponds thie stability of the corresponding stochastic
method [6,7]. Therefore, for the stability of the stoticasmethods, it is sufficient to analyse the stabitify
the corresponding deterministic methods.

From (19) the corresponding deterministic method can b&ewris

-1
e yn+[hK1+3hK2) 1+[hynHl+3hynH2)
4 4 4 4

If we expand (22) using binomial expansion, simplify anddate h after the powers of two we have

(22)
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_hy?H, _3hyiH, hK, 3K, h°yoH, 3h°yoH,  3h°yoHH,

Yea = =y 4 4 4 16 16 16
ON*Y2KH, _ 307y, KiH, , On°yoHZ 3y, HiH, _9h°y,K,H,
16 16 16 16 16 (23)

Let

y'=Ay, and y'=f(,y,)="f,

Hl = p(tn,Zn) = _sz (tn'yn)v Zn :;

n

and p(t,,z,) = -2°f (t,, ¥,) = —Z°Ay,
then,

K, =y

K, =/1h(1+%/1h)yn

1
Hl = _?Ayn

1 3
H, =—-—Ah@l+-—A4h
2 y2 ( 4 )yn
Substituting these in (24), we have

1 Ah(, 3 3 2.8 _ 1
hy?| == Ay, | 3hy? 2= |1+5Ah 3hAh 1+ Ah h%yl == Ay,
y{ yzyj_ yﬁyﬁ( 4 ]y” h (+4 jy” y[ y2 yj

_ n yn n
-y - + + +
yn+1 yn 4 4 4 4 16
SthS(-lzﬂhJ 3h2y§[—iAynJ[-/]?J(H?’/Ih]yn 9h2yﬁﬁy{-1ﬂyﬂ)
yn + yn yn 4 _ yﬂ —
16 16 16
2
AY, 3
3h?y, Ay, —% (1+3Ah)yn e (1+Ah)yn 3h?y, —"y; Ah(1+3/1h)yn
yn 4 + yn 4 _ yn 4 _
16 16 16
9h2yn/lh(1+3/]h]yn —/]—? (1+3/1thn
4 >\ 4
16

Truncating terms in h of power three and highenpiify and rearrange the expression in ascendingep®
of Ah, we get
Any, | 9h*A%y,

2 16 4§2

yn+1 = yn +
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2
Vo = (1+ /]—2h + %} Y, . which is a first order difference equation.

Let
Ah . 9(Ah)?
+—+ 7

¢=1
2 16 (25)

be the characteristic equation, for the absoluateilgly region, we requir+€| <1 where A < Otherefore,

2
PRI

16
Hence the interval of the absolute stability of the-stage (20) is (-4.44, 0).

The interval of absolute stability of the two-stgg6) is (-3, 0) while that of (22) is (-12, 0).
4 Numerical Examples and Results

Problem 1

Consider the SDE [3].

dy(t) =~ Y- y)dt+ (- y)aw(, 1004 y(©)=0

with the exact solution given by:
y(t) = tanhQ5)W(t) + tanh*(y(0))
Problem 2:

Consider the SDE [13].

dy(t) = —(a + B2y)(L- y2)dt+ BA-y?)dW y(0) =Yy, tO[0]

with initial condition y(0) = O, where the exact solution is given by:

_ (L+y(0)e O +y(0)-1
L+ y(0)e O~ y(0) +1'

y(t) a=1 B=001 £=0001 N=500

Therefore, the numerical solution of the explicRRK methods for the two-stage schemes as obtaimed i
this work with absolute errors are given in the [€abl and 2. The following notations will be used t
represents results in the tables below RAel-3: Resbtained by [3] Logmani: Results obtained bg][1
JAKk 2: Results obtained by our new methods.
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Table 1. Numerical results of two-stage JAk 2 explicit SRRK in comparison with [3] for Problem 1

t W Exact PL Absolute  RAel Absolute  RAe2 Absolute  RAE3 Absolute  JAk 2 Absolute
solution error (Pa) error error error error

0 0 0 0 0 0 0 0 0 0 0 0 0
0.1 -0.0439 -0.0219 -0.0219 0 -0.0219 0 -0,0219 O -0.0219 O -0.0219 0.0000
0.2 -0.0679 -0.034 -0.0334  0.0006 -0.0334 0.0005 -0.0334  0.0005 -0.0334  0.0005 -0.034 0.0000
0.3 -0.0473 -0.0237 -0.0223 0.0014 -0.0223 0.0014 -0.0223  0.0014 -0.0223  0.0014 -0.0237 0.0000
0.4 -0.0951 -0.0475 -0.0456 0.0019 -0.0456 0.0019 -0.0456  0.0019 -0.0456  0.0019 -0.0475 0.0000
0.5 -0.1686 -0.0841 -0.081 0.0031 -0.0811 0.003 -0.081 0.003 -0.0811  0.003 -0.0843 0.0002
0.6 0.0044 0.0022 0.0072 0.0005 0.0072 0.005 0.0071 0.0049 0.0072 0.005 0.0022 0.0000
0.7 -0.0121 -0.006 -0.0012 0.0048 -0.0012 0.0049 -0.0013  0.0048 -0.0012  0.0049 -0.006 0.0000
0.8 0.0556 0.0278 0.0327 0.0048 0.0327 0.0049 0.0326 0.0048 0.0327 0.0049 0.0278 0.0000
0.9 0.2192 0.1092 0.113 0.0039 0.1132 0.004 0.113 0.0038 0.1132 0.004 0.1096 0.0004

1.0 0.0809 0.0404 0.0416 0.0012 0.0417 0.0013 0.0416 0.0012 0.0417 0.0013 0.0405 0.0000

Table 2. Numerical results of two-stage JAk 2 explicit SRRK in comparison with [13] for Problem 2

PL R2 SIM M SIM3 JAK 2
h Error Error Error Error Error Error
0.040 0.007381 0.000111 0.000007 0.000003 0.000000 0.000011
0.020 0.003666 0.000027 0.000001 0.000000 0.000000 0.000000
0.010 0.001827 0.000007 0.000000 0.000000 0.000000 0.00000i!
0.005 0.000912 0.000001 0.000000 .00@O00 0. 000000 0.000000
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5 Discussion of Results

With the derived two-stage explicit Stochastic Badl Runge-Kutta schemes (SRRK) denoted JAk in the
numerical results tables. Some of the family sclewere tested on the numerical Problems 1 fronaifi]
problem 2 from [13]. Matlab software (version 204s employed to run the simulations, based on alorm
distributed random numbers with mean zero and neeidstandard deviation) one, i.e N(0,1). From @&sbl
land 2, we can see the performance of our famityofstage schemes with the existing schemesara]

[13 ]. Also detail analysis of each family of theotstages developed were carried out using Schthade

in line with what we call mean and mean squareilgtaprinciples in stochastic stability analysisdussed

by some authors in section 3.0, of which the stgtainalysis of each family of two- stage are boechdy

the intervals (-4.44), (-3.0,0) and (-12.0, 0) exgjvely, which are better than counter part deteistic
explicit Runge-Kutta methods.

6 Conclusions

Clearly family of two-stage schemes performs beitteterms of convergence and accuracy, therefage th
SRRK schemes are alternative methods to solveldss of these problems.
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