British Journal of Mathematics & Computer Science

12(3): 1-13, 2016, Article no.BJM CS.20700
I SSN: 2231-0851

SCIENCEDOM AIN international

www.sciencedomain.org SCIENCEDOMAIN

Individual Character Comparison Techniquefor I mproving the
Internal Memory Performance

Jasim A. Ghaeb?'

'Faculty of Engineering, Philadelphia University, P.O.Box 9®3Amman, Jordan.

Article Information

DOI: 10.9734/BJMCS/2016/20700
Editor(s):
(1) Qiang Duan, Information Sciences & TechnologgpBrtment, The Pennsylvania State University,
USA.
Reviewers:
(1) Kexin Zhao, University of Florida, USA.
(2) Sarminah Samad, Universiti Teknologi Mara, Malaysia
(3) Anand Nayyar, KCL Institute of Management and Tedbgyy Punjab, India.
Complete Peer review Historttp://sciencedomain.org/review-history/11712

Original Research Article Received: 04 August 2015
Accepted: 10 September 2015
Published: 07 October 2015

Abstract

The efficiency of the cache mapping technique depends on howdadhe kines are organized and the v(ﬁay
that is used to look for and hit the target cache linghils paper, an efficient technique is proposed to
obtain a significant improvement in average hit time of re lin the cache. The paper presgnts
Distributive Comparison Approach (DCA) that significantly miides the hit time and improve cache hit
ratio. The efficient of DCA is based on how the cacheslime compared and picked up the coveted|one
leading to a low cache hit ratio. In DCA, the cache inassigned by multi tags where each individual
tag is only one character. Then, instead of one line tagraplete characters per a comparison cycle| the
comparator is flushed by multi tags of different lineshe cache. Also the cache lines that are come from
the main memory classified into two groups; even ardl loek's tags to reject the unwanted lines fgrm
the multi-tag comparison. These two procedures pragtispited up the repelling of misfit tagged lirjes
and consequently the hitting of the target line in thehea Simulation results show that the DCA
outperforms well-known mapping techniques including FAMT and SMT.

Keywords: Cache memory; memory hierarchy; cache hit ratio:level memory; cache mapping.
1 Introduction

The growing gap between processor speeds and memory $@eesslting in increasingly expensive cache
misses, underscoring the need for sophisticated cachardtigrtechniques. The well organized cache
hierarchy improves the cache hit ratio and minimizeheanisses. In the meanwhile, the increased demand
for the higher transfer data rates between subsystemssinahtoday multimedia applications is achieved

*Corresponding author: E-mail: gaebja@yahoo.com;

Ghaeb; BJMCS, 12(3): 1-13, 2016; Article no.BIJIM@30D

through the utilization of cache memory as a fast datdbiief between communication entities. The cache
can improve performance of the computer system if theicgpipin software is planned carefully for
utilizing the cache [1,2].

During data processing by computers huge amount of iafitom is shuffled between the memory and
processor. The large amount of information needs ategreapacity memory of a smaller cost per bit and a
lower average access time. Intuitively, the principlecapacity makes sense. A small-capacity memory
requires a lower access time. Obviously, it is eamier faster to look for a location in 1 Kbyte memory than
in 1Mbytes memory. The high access time and low cost pierate required for a computer memory. The
speed of a memory depends on its ability to keep up witlptheessor. For efficient data transfer and a
lower data access time, the main computer memory (ydaeje and slow) is supplemented by a small and
a high speed memory called cache [3]. It is the fastemony available due to its high technology
fabrication and its small size. The upper-level memorgarhe is used as a temporary storage of data
chunks shuffled between the lower-level memory and theepsot. For a computer system of memory
hierarchy of two levels or more, the system firstiesghe data needed by the processor from lower-level
memory into cache and then from the cache into the loemhory of the processor. Comparatively, the
upper-level memory of a lower capacity has a loweress time compared to the lower-level memory of
large capacity [4]. In order to run different applicatioms embedded systems efficiently the memory
subsystem needs to be optimized [5,6].

Employing the memory hierarchy, the average accessisirmereased and the number of accesses to that
memory is decreased as the memory goes far from tleegmor. Therefore, it is necessary to organize the
data such that the percentage of accesses to cacleeishan the main memory. When a memory reference
is addressed, a first trial is made to fiflne word in the cache. If this attempt succeeds a quickss is
obtained, otherwise, the particular block of referenseopied from the lower-level memory into cache and
the processor will access the memory words via theecach

The cache helps in organizing the movement of data trabsfeeen main memory and processor registers
to improve the performance. Data transferred from tdexeel memory to the cache is held in terms of
block-sized units [7]. This transfer process is simitathe process of column to row transposition of the
word locations. The size of low-level memory is largempared to the cache size, therefore, the cacle line
cannot be uniquely and constantly pointed to a particutzskb8]. Obviously during the execution of a
program, one of the blocks of data has to be removed the cache to allow a new block to fetch from the
main memory. Many mapping algorithms had been proposed totheaplocks of low-level memory into
cache lines. All these techniques have tried to attdowacache hit time, a low cache miss ratio and no
cache conflicts leading to improved cache access eftigif9,10,11]. An even or odd technique is proposed
by [12] to improve the cache performance. In this tealmighe line's tags are passed through one-bit
comparator to speed up the rejection of the cache bfiepposite least significant bit to the target cache
line. This technique is useful if the current values oflthe's tags come equally between the even values
and odd values. But there is no improvement in the ca¢hath if all or more of the current values of the
line's tags in the cache are coming in even or oddradd the cache line that is looking for is also ianev
or odd order.

In this paper, an efficient technique is proposed to imgtbe cache hit time. The proposed DCA divides
the original tag of a cache line into multi tags; wheaeh tag is reduced to one character. Therefore, dhstea
of feeding the control logic by one line-tag of compl€tsub-tags to complete one comparison per a time,
the proposed technique can fetch the control logic circul liye's sub-tags to execucomparisons per a
time. The proposed alteration does not need to wait fcomplete comparison of a line tag, and can repel
many lines per a comparison that their tags do nothmdthus the time required to reach the target line is
minimized and consequently the cache hit time is improvemul8tion results for the proposed DCA
scheme and FAMT and SMT schemes at different cache aiegeesented later in the paper. These results
show that DCA algorithm outperforms FAMT and SMT oifig significant reduction in cache hit time.

Ghaeb; BJMCS, 12(3): 1-13, 2016; Article no.BIJIM@30D

The paper is organized as follows: Section 2 introdtitesaverage access time for assigning of a word in
the cache. In Section 3, we introduce some fundamentataabfe organization. In Section 4, the well-

known cache mapping techniques are discussed in detail. dpespd technique to improve the cache hit
time is presented in Section 5. Section 6 presents tidation results and shows the performance of the
proposed technique against the well-known schemes. Firfgdlgtion 7 provides conclusions and work

summary.

2 Average Access Time

From conjectural point of view, the principle of lotglfor items of data makes sense. According to the
principle of locality, there are number of accessetetns in the block that is brought into cache, leading to
faster overall access time. The fraction of all mgmaccesses in the cache is the cache hit ratio. The
fraction of the total number of blocks that are missethe cache and need to access main memory is the
miss ratio. Higher hit-rates provide a high cache pevéorce. For two memory levels, the average access
time is determined in terms of cache hit and cache rat&ss and access times for cache and main memory
[13]. It is given by:

T =HxT + Mx (T +T) (1)

av
Where;
Tav: average access time of a memory word.
H: cache hit ratio.
M: cache miss ratio, (M= 1-H).
T, and T,: cache access time and main memory access timectigshe

Equation (1) ignores the time required by the cacherdoiogic to determine if the word is in the cache or
not. It may be rewritten as below:

T =HxT + (L-H)(T +T,) @)

av

T =T +(1-H)T, ,so;

T :TC + MT, 3)

av

3 Weéll-Known Cache Mapping Techniques

The power of the cache mapping technique depends on hogathe lines are arranged in the cache and
how dynamically the cache lines are tracked for a highrypity of line hitting and then a low hit time.

To highlight the performance of the proposed technique, a ctsopais made with the fully associative
mapping technique and the set-associative mapping of Kilinsubsection below, the fully associative
mapping technique and set-associative mapping techniquéseusskd in more detail.

Ghaeb; BJMCS, 12(3): 1-13, 2016; Article no.BIJIM@30D

3.1 Fully Associative M apping Technique (FAMT)

The direct mapping technique gives a fixed cache lineevidu each block of the main memory, but with
different tags [14,15]. The disadvantage of this technigumanifested in the replacement of a cache line
that still contains data needed shortly afterwards Fhly Associative Mapping Technique (FAMT)
overcomes the potential disadvantage of line hit accoragawith the direct mapping, by allowing each
block in the main memory to be located into any linghim cache. In other words, there is elasticity as to
which cache line to swap when a new data has to be loemtachifain memory, and thus the hit ratio in the
cache will be high. The FAMT solves the problem by considethe main memory address completely as
tag field instead of a tag and line field [16]. Thé bits of the line field andt" bits of the tag field are
reduced into one field called tag field, as shown in Fig

tag field line field word field Direct
t-bits r-bits w-bits mapping
L J
Summarized
into tag field
v only
tag field word field |
t-bits w-bits
tag field word field
t-bits w-bits
,,,,,,,,, 2'line 4 Associative
,,,,,,,,, mapping
v o
Comparator - "
Main memory for tag ﬂeld word fleld
address ahitoramiss [t-bits w-bits
. —
in cache

Fig. 1. Thefully associative mapping technique (FAMT)
3.2 Set-Associative Mapping Technique (SMT)

The set associative mapping technique (SMT) allows adimumber of blocks, with the same index and
different tags, to be in the cache. Therefore SMT banconsidered as a compromise between fully
associative and direct mapping schemes. SMT dividesatiee into many associative mapped caches, each
of which is called a set [17,18]. Each set consists oin&-to be referred as “K-way set associative
mapping”. Responding to an incoming address, the caafteottngic first determines which set has to be
involved, then inside the selected set the associative intajp implemented to appoint the line that is
looking for in the cache, as shown in Fig. 2. For a sisglt, the set associative mapping is reduced to fully
associative mapping and the control logic compares ttegg& for each line and does not need to index the
set number. For a single line per set, the set asseciatpping is reduced to direct mapping and the cache
control logic needs to index the corresponding cache line foomparison. The set associative mapping
technique reduces the number of comparisons and the bitfsize line-tags in each set but it increases the
time required for indexing the cache sets.

4 Multi-Tag Technique (MTT)

When a block of data needs to be read from its assignethlihe cache, it is necessary to brand its data to
be discriminated from other data. The tag-comparatthencache control logic carries out this work. The
tag-comparator plays a crucial role in cache hit tiexg] thus in cache hit ratio. Instead of feeding the

Ghaeb; BJMCS, 12(3): 1-13, 2016; Article no.BIJIM@30D

control logic by one line-tag per comparison as in tATF, multi sub-tags of many lines are flushed to the
control logic by the proposed MTT. In this case, theee @lwaysC sub-tags comparisons rather than just
one tag comparison per a time. The control logic iveseC sub-tags from different cache lines and
compares them simultaneously. Th€ssub-tags are coming from different lines of theneaorder (n). By
comparingC sub-tags with the corresponding charactej) Of the main memory address, the line of a misfit
sub-tag will be discarded directly and does not needrpace the rest of its multiple sub-tags. The number
of sub-tags that are discarded from the current compaisscompensated by new sub-tags from the cache
in the next cycle of comparison. The line-tag that hasCfutiatches of comparison is the one that is looking
for. The MTT increases the number of sub-tags per onganson, leading to a short time for the line
hitting and then a high cache hit ratio is achieved. 3iigsections below present the detail of the MTT
algorithm.

Main memory address

tag field set field word field
t-bits d-bits w-bits
To index one of 29-sets
tag
[—
1 7
1
,,,,,,,,,, Set-0
T | Kelines
1
\A v -
—
Comparator for —J Set-1
a hit or a miss R k-lines
in cache-set d_
— 2!-Sets
— ﬁ
1 | Set-29-1
S| elines
——
_J

Fig. 2. The set-associative mapping technique (SMT)
41MTT Algorithm

The number of lines in the cache is assumed 'D-lirash line tag is distinguished byGsub-tags'. The
length of each sub-tag ¥ is four-bit number. The tag-order in the cache is assumednd the sub-tag
order in the tag is 'n'. The comparatoCoength in the control logic is feeding from cache by a cactel

of C length. This cache word has the same sub-tag order fdiffallent lines, as shown in Fig. 3. The cache
word is compared with the corresponding sub-tag in the mamory address. The “m” in,¥ is varied for

all characters in the cache-word array. It can be agyntimber in the cache, depending on how many tags
are discarded from the current comparison and what trdgroare.

4.2 MTT Algorithm Sequence

The algorithm sequence used by MTT for low tag hittirigpria shown in Fig. 4. It consists of the following
steps:

» Step.l Start to feed the cache control logic by the cache wombnsists of the Least Significant
Sub-tags (LSSs) of the fir€tags in the cache %, Xim, Xim . . . untilC length). This cache word

Ghaeb; BJMCS, 12(3): 1-13, 2016; Article no.BIJIM@30D

is compared with the main memory address word. Theaneaddress word is @ repeated of the
LSSs of the main memory address.

& Step.2 If there is a match between the memory word sutataany cache line sub-tag, keep this
line for next cycle of comparison.

= Step.3 If there is a misfit for any sub-tag, discard its larel feed the cache word with a sub-tag of
a new line. The sub-tag order of the new line musthbesame order of the current sub-tag in the
cache word.

Continue in comparison and discard any line of a misfit agb-The one that is reaching the C continuous
matches is the cache line that is being sought and the coorphas to be stopped.

Characters of a memory address Characters, feeding from a cache
r Memory address word, Length= C sub-tags ! [Cache word, Length= C sub-tags L
() f '
Yol ------ ‘ Y1‘Y1 ‘Y1 T(1) 1) /_/»#Xm """ ‘X1m‘x1m‘x1m
=3 4 Control logic &~ S
s o v comparato P e\ 2
23 @ o 5
CEL ° T -V () -7 g} 8
<_c3> 5, (Comparison is §.£
sEl O NNV .. brokewhen | 3y [y | _..... - 2
¢ 2 Yy AORORSSCIE Pt Forfran” e £
£9 a particular tag.) 2o
I U P 8
e N ~(C) S
©/ W e e
Yc‘ """ ‘ YC‘YC ‘ Ye L \\\\‘{XCm """ P(Cm‘XCmP(Cm

m: is varied for all characters in the cache-word array.
It could be any tag number in the cache, depending
on how many tags are discarded from the comparator
and what their orders are.

Fig. 3. The multi-tag technique (MTT)

4.3 Even-or-Odd Division Technique (EODT)

Obviously, the address of a corresponding line in the cectegged by an even value or odd value. This
truth simplifies and speeds up the rejection lines of oppasast Significant Bit (LSB) to the cache line
value that is looking for. Therefore, one bit comparisogesia added before the MTT comparison stage, to
improve the cache hit ratio. The EODT works effectivelyhig turrent values of the cache line's tags of
opposite LSB to the one that is looking for are coming moeggoally. But EODT gives a worse hit ratio if

all or more of the current values of the line's taghécache are coming in even or odd order and the cache
line that is looking for is also in even or odd order.

4.4 Distributive Comparison Approach (DCA)

The use of EODT makes direct and quick rejection forntiigfit LSB cache lines from the cache control
logic, as mentioned in Sec 4.3.

Instead of feeding the control logic by one line-tag ganparison as in the traditional methods, multi sub-
tags of many lines are flushed to the control logichey proposed MTT. In this case, there are alviays
sub-tags comparisons rather than just one tag comparesoa time, leading to a short time for the line
hitting and then a high cache hit ratio is achieved. Thegusf MTT speeds up the number of discarded
lines of misfit tags from the cache control logicnaantioned in Sec 4.

Ghaeb; BJMCS, 12(3): 1-13, 2016; Article no.BIJIM@30D

The goal of this work is to minimize the cache memaitytime which affects significantly the overall
performance of system. Employing MTT and EODT, a Mistive Comparison Approach (DCA) is
achieved for an optimum cache hit ratio as we will seba@rsimulation results.

Start

Y

C = No. of characters per a
tag
Match (MH) =0
Number of tag-misfits(MF)=0

v

New added characters= MF.

Prefetch the cache control logic by:

»- - aword of C-characters (X) from the
line-tags in the cache, and

- a memory address word of C-characters
at n-order.

y

- Compare the memory address word with cache word.

- Record the number of tag-misfits =MF.

- Increase MH by one for any line-tag its character got a
match.

NO
n=n+1

cache line-hitting has
occurred

Stop the comparison

Fig. 4. Algorithm sequence applied by MTT for alow hit ratio in the cache
5 Results and Discussion

The counted time taken by the cache control logiotogare the main memory tag with the cache line tags
in order to hit the target line in the cache is the tagitie. A java program is written to select the lines
the cache randomly and to look for and hit them. The perfmemaf the proposed DCA is benchmarked

Ghaeb; BJMCS, 12(3): 1-13, 2016; Article no.BIJIM@30D

against that of FAMT, SMT and EODT for two different bacizes. Two main memories of 4 Mbytes and
16 Mbytes along with their corresponding cache memofid$ &-line and 32 K-line are used to evaluate
the performance of the different techniqgues mentioned quislyji, for cache hit ratio. The blocks are fed
from the main memory into the cache and their lineatkst randomly in the cache. Table 1 shows the hit
times spent by the proposed DCA technique and otheritpedsFAMT and MTT, to read lines located
randomly in 32 k-line cache of main memory size of 4 Mbyfe high performance of the proposed DCA
is appeared clearly compared to FAMT and MTT. It speverg low time to hit a line in the cache. Fig. 5
shows the hit time that was spent for hitting a line in eafdn the well-known technique FAMT and our
proposed MTT technique. The main memory size is taken 4édlpnd its cache is 16 K-line. The cache
lines are located in random tags; and twenty line tagganerated randomly for simulation. The power of
the proposed MTT technique is appeared clearly as it i;diyethe very low time to hit a tagged line of
data in the cache. The average time that is takehittong the twenty line tags in the cache is 12.921g0
by FAMT and 2.379%us by MTT. For system clock of 5 MHz, the number of hiae cycles taken by MTT
for the tag matching are 12 whereas by FAMT are 64. Anaugiment of 81.58% in average hit time is
attained by MT. Fig. 6 shows the hit time spent byRAMT and MTT to read a tagged line in 32 K-line
cache which is loaded from a 16 Mbytes main memory.dleiar that MTT overcome FAMT for reading a
tagged line in the cache. This is due the efficient perfocmaf MTT by achieving 82.19% improvement in
average hit time.

Fig. 7 shows the performance of FAMT, EODT and MTTHitting a line in the 32 K-line cache. It is clear
that MTT outperforms FAMT and EODT due to its quickemjon of misfit cache lines to reach the target
line. The simultaneous employing of both MTT and EODTaldshes the DCA which is provided an
optimum cache hit ratio as shown in Fig. 8. Fig. 9 shtives time taken by the well known mapping
techniqgue FAMT and the proposed DCA. It is shown that b pggformance is achieved with DCA due to
its high response of rejection of non-conforming tagsnfthe control logic. This high performance is
achieved by employing both MTT and EODT simultaneouslystal#ish the DCA technique. For 4-line per
a set of 32 K-line cache memory, the performances of 8Milthe proposed DCA techniques are shown in
Fig. 10. The DCA has produced a lower cache hit time coedp@ SMT. The average time that is taken for
hitting a tag in the cache is 3.75 ns by SMT and 1.02758J8y. It is clear that there is an improvement of
72.60% in average hit time attained by DCA.

The results conclude that the DCA has showed a high penfioerfar cache hit ratio compared to the well-
known techniques: FAMT, SMT and EODT.

Table 1. Hit times spent by the proposed DCA technique and other techniques FAMT and MTT, to
read lineslocated randomly in 32 k-line cache and main memory size of 4 M bytes

Tag vales of lineslocated randomly in cache (Hexadecimal) Hit time (us) by
FAMT MTT DCA

009412 46.4085 10.2605 8.2480
01998F 9.213(4.652(1.635(
088E77 13.1100 5.3410 2.3295
0AABC6 38.7510 9.9030 6.8920
21803E 37.872(9.739¢ 6.735(
2BE5SEB 31.1385 9.0112 5.5437
2E1CBE 35.731¢ 9.365(6.358¢
31289E 36.1470 9.4380 6.4292
319A51 32.5275 8.9540 5.7840
36FD13 37.7760 9.2953 6.7230
4EOF98 38.3865 9.2750 6.8150
5ADC6C 40.825! 11.705: 7.261%

Ghaeb; BJMCS, 12(3): 1-13, 2016; Article no.BIM@3@®

30 \ \
--©-- FAMT
— k- MTT
25+ |
I Q\\
I ! ~
I ! S
I I \\\
, 20 © ‘A <“p @ RCTN
g “‘ @\ @ \ " |
o r/\ [! | I |
5 N B o /
= 1 ‘\ “ «1 I
E. 15* @\‘ : \\ ‘ \ \H\ /l -
O A
= ‘ AR ,»
= | | I \ ’\ «1 [| B
10 1 : \\ | \ ‘v \‘ l’
| J ol R i
I ! ‘\ ! v | /’
| I | 1 I
5p ! | ¥ v O]
L& 1 0-0
7@ 777777 ‘C%\\ \\ﬁé \\ @7&\ /% e
*x RSN RN ;
! N " - - —
0 %7 77777 * Lk * * ﬁe * ! | |
0.5 1 1.5 2 2.5 3 3.5 4
lines located randomly in cache 10°

Fig. 5. Hit timesfor reading alinein 16 K-line cache. Main memory Sizeis 4 Mbytes

50 T T T
-0~ - FAMT
45F | - - - MTT]
I
A [
40 + /Q ! \\ ' T
(O _g ! ' o
| Q ©-- | ! \ | \
] \ / ! ! ! !
35‘r 1‘ \\ C/@// " ’/ \\\ /’ y‘ i
| : \I(b | ’/ \ ! \
g 30+ | o \ ! \ C ,
S Tp v | ¢
§ : : ‘\ ! \ ! ‘1
IS 25 “ /l \\ v‘ '\ B
o : \‘ | ! \ I \
1 \ ® I \
N
= (] ‘, /’ \ : \\ "
15"F 1‘ ! /’ \\ : \\ ;’ T
‘I Q | l! . : \\ '1
I/ 'y \ v
10 jﬁ 'y \ : \ I
1 \
Lot - \jﬁ% Ll , RN v ’ N B
5 ! A / > \ 7% N
” \6,)// e ﬁf\\\ K ¥
07* I I I \%/ I I \\\%fg \% I)
0 2 4 6 8 10 12 14 16 18
lines located randomly in cache x 10°

Fig. 6. Hit timesfor reading alinein 32 K-line cache. Main memory sizeis 16 M bytes

Ghaeb; BJMCS, 12(3): 1-13, 2016; Article no.BIM@3@®

30

251

Hit-time, Micro-sec
= N
[§)] o
T T

=
o
T

--O-- FAMT
--B-- EODT
- - MTT
@ ¥o
? N\ ¥ o ------ Yol
i A D¢ |
| | \ ! |
\\ I \ l f I
o | \ I fa |
! \\ ! \ g) // \‘ Q |
\ | \ ./ — 1
Cb ! | \\) \\ C’D \\!‘
1‘ \\ \ ! Q ! v
N \ 1 \ //D
SRR SR TN S Y SO
q \\ \\ \I‘ \\ @ A“ /g\\ ! O?
' \ v \ | ; V! / |
\ J. -E]
//ij N E AN \ . /'/ A N
I \\ \\l\ N ‘1 / // \ﬁ
o \ Vo
% Q?“ I T S -
*

Fig. 7. Hit timesfor reading alinein 32 K-line cachetaken by FAMT, EODT and MTT.

0.5 1 1.5 2 2.5 3 3.5 4
Tags of lines, located Randomly in cache

Main memory sizeis 16 Mbytes

50 \ \
® --0-- FAMT
4L - 3-- .
I =-- EODT
I @ - —%--MTT
L | 4
oo ol ¥ --+--DCA
! : <P ly ’/‘
3B | | \ / ‘\ 7
O I | Lo
8 ! ! \ ! \
n 30 | | | / \ |
o I 1 \ /’ \
o | | \ ! \
2
= 25 / ® b K o |
- I I\ [| Vo —
g ’/ :; ,‘ \\ /.\ l» /l Cj “ //® ©
200 o R AN / -
Iz O u : | :‘ | 1\ P \\ ! v
| \ \ ! \ ‘ [\ | // |
15 , %) Lo) ,
! -7 N \ Y V! | 7 ,/ E»#E
('B// [N \ ! V! 1m g Wy e
10+ | \ \ Cb [P o - 7
*% N N © ¢ e
Al ,f’m N Ve X @ -
-7 /‘* vl
5’ * l:?}/ \\\ [s m\’/ // \\ L N
* jg\ AN, ¥- ATk
0 'fi#\\\;‘\ﬂ;\;:x }hit/\/%\@\///\.7'\‘%;;/77777*77*\
0.5 1 1.5 2 25 3 3.5 4
Tags of lines, located Randomly in cache % 10°

Fig. 8. The simultaneous employing of both MTT and EODT to establish DCA for reading alinein 16

K-line cache. Main memory sizeis4 Mbytes

10

Ghaeb; BJMCS, 12(3): 1-13, 2016; Article no.BIM@3@®

Hit-time, Micro-sec

50 T T
--0-- FAMT
asr --e--DCA |7
I
5 o
[1 ,
40 ; 3 CS »‘ i
- (P 1‘ // \\
35- 1 | \ [N
O I | [
: l \ I \
30+ | | / \ B
: \‘ 1\ // \\
| | \ ! \
5L X C A o i
N | \ / v
| 1 ! \ ! Lo ©--0
\ ! | 7
20+ : | | ! ! o .‘ I il
: : \\ : y\ f‘ l //
15+ ! Jo) \ | \ | | 7 —
| /,/ \ | \ ! | //
L~ \ I \ ! | /
10 O7 Vs Clp ! W |
N - 0
L vy vl i
> (* \\/ [2N i _
! S (Ol SO e e - B e -
-7 | T e hats | L i | I
0.5 1 15 2 2.5 3 3.5 4
Tags of lines, located Randomly in cache x 10°

Fig. 9. Hit Timesfor reading alinein 32 K-Line Cache spent by FAM and DCA for reading alinein

hit-time, nano-sec

32 K-line cache. Main memory sizeis 16 M bytes

T T
- %~ SMT
6F % |--+- DCA 1
| \\
’I \\
5 ! \\ T
! A\
% N
4 N f
3+ \\ ¢ B
#*- g
e s
1- B e i
0 | L L L L L L |
0 0.5 1 15 2 2.5 3 3.5 4 4.5
lines located randomly in a cache-set % 10°

Fig. 10. Hit timesfor reading alinein 32 K-line cache. Main memory sizeis 16 Mbytes

11

Ghaeb; BJMCS, 12(3): 1-13, 2016; Article no.BIJIM@30D

6 Conclusions

In this paper, the proposed technique makes an individuahatba comparison for many cache line-tags

simultaneously in the way to reject any line-tag tistcharacter does not match. The performance of the
DCA to improve the cache hit ratio, and consequently ingrhie overall system speed is benchmarked
against that of FAMT and SMT schemes. The simulatisolte for two different cache sizes clearly depict a

significant improvement in average hit time of 81.58% ahd®% against FAMT and SMT respectively.

The index process together with the comparison processsraadtelay in the average access of a line in the
cache. Further work can be made to improve both index amgastson processes for a low average hit
time.

Competing Interests
Author has declared that no competing interests exist.

Refer ences

[1] Wang W, Tafil D. Performance enhancement on microprocessith hierarchical memory system
for solving large space linear systems. The Intesnati Journal of Supper Computing Applications.
1999;13:63-79.

[2] Yehuda A, David D, Adam M Cache index-aware memory allocation. In:"1hternational
Symposium on Memory Management; San Jose, CA, USA: 4-5 20hg;
DOI: 10.1145/2076022.1993486

[8] Gagged G, Paresh R, Madarkar J. Survey on hardware basetted technique for cache research
in computer science optimization for RISC based systechitacture. International Journal of
Advanced and Software Engineering. 2013;3-9:156-160.

[4] Mamagkakis S, Atienza D, Poucet F, Catthoor D, Seudil. Custom design of multi-level dynamic
memory management subsystem for embedded systems. In: WeEEShop on Signal Processing
Systems; New YorkJSA: IEEE. 2004;170-175.

[5] Baloukas C, Risco-Martin JL, Atienza D, Poucet C, Papaulop L. Optimization methodology of
dynamic data structures based on genetic algorithmsnédtimedia embedded systems. Journal of
Systems and Software. 2009;82:590-602.

[6] Eichenbaum H. Memory systems. Wiley InterdisciplinaryviBes: Cognitive Science. 2010;1:
478-490.

[71 Chilimbi T, Hill M, Larus R. Cache-conscious structlagout. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation; New York,USA. 1999;13-24.

[8] Stallings W. Computer organization and architecturesigieng for performance "7Edition: Prentice
Hall; 2006.

[9] Serhan S, Abdel-Hag H. Improving cache memory utilizatigviorld Academy of Science,
Engineering and Technology. 2007;26:299-304.

[10] Topham N, GonZalez A. Randomized cache placement forreltmg conflicts. IEEE Transactions
on Computers. 1999;4-2:185-192.

12

Ghaeb; BJMCS, 12(3): 1-13, 2016; Article no.BIJIM@30D

(11]

(12]

(13]

(14]

(19]

(16]

(17]

(18]

Bae J, Kyung M. A supplementary scheme for reducing caotessa time. Trans. on Information and
Systems. 1996;E79-d:385-389.

Ghaeb J. Enhancing cache performance based on improved aeseags time. In: ICCCISE
International Conference on Computer, Communication and Infamm&ciences and Engineering;
25-26 April; Paris, France. 2012;815-820.

Hill M, Smith A. Evaluating associatively in CPU casheéEEE Transactions on Computers. 1989;
38-12:1612-1630.

Jouppi N. Improving direct- mapped cache performancehéyatldition of a small fully-associative
cache and prefetch Buffers. In:"LAnnual International Symposium on Computer Architecture;, WA
USA: IEEE. 1990;364-373.

Wilton S, Jouppi N. CACTI: An enhanced cache access wrild ime model. IEEE Transactions on
Solid State Circuits. 1996;31-5:677-688.

Singh JA. Model of workloads and its use in miss-rataliptien for fully associative aches. EEE
Transactions on Computers. 1992;41-7:811-825.

Lin P A. 0.8-V 128Kb four-way set-associative two-lev@OS cache memory using two-stage
word line/bit line-oriented tag-compare (WLOTC/BLOTC)heme. IEEE Journal of Solid-State
Circuits. 2002;37-10:1307-1311.

Palsodkar P, Deshmukh A, Bajaj P, Keskar A. An approacHolr way set associative multilevel
CMOS cache memory. Lecture Notes in Computer Scie@®/;4692:740-746.

© 2016 Ghaeb; This is an Open Access article disted under the terms of the Creative Commons Atidb License
(http://creativecommons.org/licenses/byj4 ®Which permits unrestricted use, distributiondamproduction in any medium, provided
the original work is properly cited.

Peer-review history:

The peer review history for this paper can be asedsere (Please copy paste the total link in your
browser address bar)

http://sciencedomain.org/review-history/11712

13

