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ABSTRACT

We study repulsive Hubbard and t − J type systems on a square lattice (long believed to capture
certain quintessential aspects of the high temperature superconductors). These models (alongside
the parent compounds of the high temperature superconductors) are antiferromagnetic in the
absence of hole doping. As we illustrate, a unifying underlying principle for the dynamics of holes
introduced by doping rationalizes the emergence of nonuniform electronic structures– “stripes”
and possible pairing tendencies therein. Specifically, our analysis invokes the following (numerically
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verified) sublattice parity principle: A strong antiferromagnetic background forces injected holes
to hop in steps of two such that they always remain on the same sublattice. When applied to
a domain wall in an antiferromagnet, this simple principle naturally gives rise to (bond centered)
stripes. We demonstrate that the holes are self-consistently localized on stripes. Extending this
picture, we then show that the holes on a stripe favor the formation of pairs on neighboring rungs or
sites. Throughout this work much emphasis is placed on the problem of a two leg ladder immersed
in a staggered magnetic field. Although we will focus on the square lattice, our considerations may
be extended to similar electronic structures appearing in other models on bipartite lattices when
these exhibit antiferromagnetic correlations with an underlying sublattice structure.

Keywords: Hubbard model; t−J model; superconductivity; stripes; pairing; antiferromagnet; sublattice
parity.

1 INTRODUCTION

The current work constitutes an updated version
of ideas and results concerning the possibility
of “kinetically driven confinement” in the cuprate
superconductors that we introduced in [1]. Three
decades have passed since the discovery of
these high-Tc superconductors. [2] Although
much has been learned since, there is still
no satisfactory explanation of what causes the
superconductivity. There is a widespread belief
that it should be possible to describe many
electronic properties of the square CuO2 lattices
by the bare two-dimensional repulsive Hubbard
type model [3, 4] when endowed with additional
longer range hopping terms and interactions,

H = −t
∑
⟨ij⟩σ

(c†iσcjσ + c†iσcjσ)

+U
∑
i

ni↑ni↓ + · · · , (1.1)

where c†iσ creates an electron on site i having
a spin component σ. The number operators
niσ = c†iσciσ. In its original bare incarnation (sans
the additional terms denoted by an ellipsis in
Eqn. (1.1)) [3], the Hubbard model contains both
the hopping of electrons between neighboring
sites (t) and a repulsive on-site Coulomb energy
penalty (U ). The Hubbard model is one of the
simplest possible models of interacting electrons.
The main problem is then finding the possible
solutions of this model. This however has
proven not to be an easy task. The Hilbert
space of the model is too large for exact
numerical solutions. Away from half filling, Monte
Carlo simulations have the minus sign problem.

U is approximately equal to 8t, so we are
neither in an extremely strong, nor in a weakly
interacting limit. Therefore, standard perturbative
techniques may be of limited use. Intense
investigations employing high temperature series
expansions, infinite dimensional dynamical mean
field results, renormalization group calculations,
exact quantum Monte Carlo calculations at
half-filling, and various approximate numerical
approaches have employed to the study of this
model [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].
In the limit of large U/t, a perturbative expansion
relates the Hubbard model to another extremely
well studied system, the so-called “t − J model”
[17],

Ht−J = −t
∑
⟨ij⟩,σ

(c†i,σcj,σ +H.c.)

+J
∑
⟨ij⟩

S⃗i · S⃗j . (1.2)

Here, S⃗i =
∑

σσ′ c
†
iσσ⃗σ,σ′ci,σ′ denotes the

electron spin operator at site i (the vector σ⃗
represents the Pauli matrices). The number
operator ni = ni↑ + ni↓. The t − J model
Hamiltonian of Eqn. (1.2) is defined on a Hilbert
space in which ni ≤ 1. To leading order in
a perturbative expansion of the Hubbard model
in (t/U), the exchange J in Eqn. (1.2) is
J = 4t2

U
. Away from the regime of large

U/t (far from the antiferromagnetic phase), the
t − J model is quite distinct from the Hubbard
model. Variants of the t − J model (including
the “t − Jz” model) are known [18] (and in some
cases, e.g., [19] can be rigorously demonstrated)
to exhibit intricate correlations and structures
including particular “stripe orders” that will form
the focus of the current work. Many aspects of
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the t − J , Hubbard, and other related models
have been investigated throughout the years,
e.g., [20, 21, 22]. Numerically, energy differences
between contending low energy stripe and other
states are often found to be small , e.g., [23].
Disputes appear in the literature as to which
of the suggested states are more accurate and
of lower energy. For irrational doping fractions
in related systems, the stripes may form quasi-
crystalline structures with gapless excitations
[24]. The large number of contending low
energy states and associated conflgurational
entropy suggest that glassy dynamics might be
possible [25, 26]. In order to obtain results
using simple illuminating analysis, that do not
rely on elaborate calculations, and may rather
universally rationalize the appearance of low
energy stripe like structures, we will invoke
simplifications. The main assumption that we will
rely on (and establish in the appendix) is that,
when lightly doped, these systems are endowed
with sublattice constraints on the kinematics. The
nearly degenerate states of pristine Hubbard
or t − J models with no additional terms may
be of academic interest. A broader approach,
such as the one that we follow here, centers on
a prominent effect captured by these systems.
In the current work, we will, for concreteness,
perform simple calculations applied to Hubbard
models. Our considerations may apply to a
broader class of systems that have a bipartite
Néel antiferromagnetic (or other) background that
imposes restrictions on hole dynamics.

Stripes were first detected in cuprates[27] in
the famous neutron scattering experiment of
Tranquada and coworkers. Earlier theoretical
approaches already predicted stripes before their
experimental discovery [28, 29]. Various aspects
have been investigated by numerous works,
e.g., [30, 31]. Notably, similar phenomena and
viable physical underpinning may also appear
in further unconventional (pnictide and other)
superconductors different from the cuprates, e.g.,
[31]. A plot of the incommensuration as a
function of doping (the Yamada plot), which is
a straight line from 0 to 0.125 doping with a
slope of 1/4 [32], indicates that stripes may
be quarter filled. DMRG calculations by White
and Scalapino [16] have further indicated that
the ground-state for stripes in the t-J model is

approximately quarter-filled. In the intervening
years, many additional facets having been
discovered. Related issues that have become the
focus of intense investigations include the specter
nematic orders and the relation between stripes,
nematic order, and superconductivity [33, 34].
Aside from the initial appearance of the current
work [1] on stripes within Hubbard type models,
there have been many works that attempted to
relate stripes and related charge, spin, and pair
density wave and nematic orders as well as
superconducting tendencies [4, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62] to these
models. In an offshoot of this paper, we detail
a possible reason why stripes are quarter-filled
[63]. As alluded to above, the principal goal of
the current work is to rationalize how the square
lattice Hubbard model of Eqn. (1.1) is amenable
to stripe formation and pairing. As we will
expand on, our guiding principle is that of a sub
lattice constraint on hole motion; this constraint
is expected to arise in bipartite systems that
display Néel like order in their half-filled state
(the state in which there is one electron per
lattice site). We will see that this will kinetically
favor the formation on stripes structures in which
the holes aggregate together in intricate the
domain well stripe structures so as to allow
nearest neighbor hopping along the stripe. As
our point of departure relies on the constraints
imposed by an antiferromagnetic background,
our considerations cannot be extended to
certain pyrochlore lattice and other Hubbard
type systems that do not exhibit conventional
antiferromagnetic Néel orders but instead exhibit
spin liquid or other ground states [64, 65]. In
this paper, we will assume from the outset that
bond-centered stripes (stripes with the geometry
of two leg ladders) form antiphase domain walls
in a surrounding Néel type antiferromagnetic
background and demonstrate how self consistent
localized eigenstates and pairing follow from this
assumption.

2 OUTLINE
The remainder of this work is organized as
follows: In Section (3), we introduce the sublattice
principle which will form the backbone of our
analysis. In order to streamline the quintessential
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physics, we will be brief in exposing this principle.
For further details regarding the underpinnings of
this principle, the interested reader may peruse
Appendix A. Invoking the sublattice principle,
we will show in Section (5) how exponentially
localized wavefunctions will be found when
we assume, self consistently, that stripes form
antiphase domain walls. We will find that the
transverse stripe scale is of the order of the
lattice constant. What drives stripe formation
in our picture are not confining magnetic string
potentials, but a rather novel kinetic effect which
we term dynamical confinement.

Once we establish, self consistently, that bond
centered stripes form domain walls in the
surrounding antiferromagnet, we will move
in small steps towards examining further
microscopics. As we will explain in Section (6),
we will consider a bond centered stripe engulfed
by a surrounding antiferromagnetic region as a
two leg ladder immersed in an external staggered
magnetic field. We will then consider the problem
of a single electron on a staggered empty two
leg ladder (Section (7)) which will facilitate the
analysis of a single hole on an otherwise full
staggered two leg ladder (Section (8)). Both
problems will lead to similar results.

This will be followed by a similar analysis for
a two electron system on an empty staggered
ladder and the inverted problem of two holes on
a full staggered ladder, in Sections (9) and (10)
respectively. The surprising conclusion is that in
this case there is an essential difference between
electrons and holes. Numerically, we find that for
holes, pair states are slightly favored over single
hole states although the correlations are very
faint.

Having shown how narrow bond centered stripes
with bound pair states emerge, in Section (12)
we fuse all of our finding together to reconstruct
earlier suggested stripe patterns found by
DMRG, mean-field, and many other methods.

In Section (13), we will examine the effects of
longer range Coulomb effects and additional
longer range kinetic terms to show how much of
our self consistent analysis can easily be fortified
by the addition of such terms.

3 THE SUBLATTICE PARITY
PRINCIPLE

As has long been appreciated [4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 33, 34, 35, 36, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], the
problem posed by the two-dimensional Hubbard
model of Eqn. (1.1) is very rich. To make
progress in a cogent way, in this article, we
will invoke the simplifying assumption that much
of the low energy physics of holes in a strong
antiferromagnetic background can be summed in
a nutshell:

Holes can only move in steps of two.

This principle is equivalent to the omission of
spin flips, waves, and string states. This
sublattice parity principle is, of course, a gross
oversimplification- the physics of hole motion in
an antiferromagnetic is a fascinating and rich
topic. Nonetheless, the low energy single hole
dispersion curves (requiring careful extensive
numerical work) coincide very well with those
immediately following from this principle. For
a review of this often overlooked principle, the
reader is invited to read Appendix (A).

Stated in formal terms, the principle amounts to
Z2 order, which has lately been much discussed
in the context of its viable destruction [66].

Many beautiful works exist on the subject of stripe
formation and dynamics [67]. Hole dynamics on
the stripe has been primarily addressed in terms
of spinon-holon excitations, as in the works of
Tchernyshyov and Pryadko [68]. In this article
we do not assume that the elementary excitations
are spinons and holons. Our approach is
closer in spirit to the very interesting work of
Chernyshev, White, and Castro Neto [69], which
aim to answer the same fundamental questions
concerning stripes. Their work examines the
elementary excitations within the framework of
the t-Jz model by examining retraceable paths
of a hole out of the stripe into the surrounding
antiferromagnet. We arrive at much of the
same physics using the sublattice parity principle
as our only guide. Our derivations are much
more pedestrian yet physically transparent as
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compared to the detailed Green’s function and
numerical DMRG analysis carried out by these
authors.

Many works place much emphasis on the string
states created by hole motion or on kinks [70].
In our low energy analysis, there are no string
states. For a discussion on how string states can
be avoided and for a demonstration that they do
not dominate the low energy physics, the reader
is referred to Appendix (A). Similarly, the role of a
domain wall in an antiferromagnet as an effective
attractive potential for holes simply by the bad
ferromagnetic magnetic bonds that they remove,
and the careful interplay between string states
and transverse and longitudinal hole kinetics is
not what we consider here. A large body of
literature complements our simple asymptotic low
energy analysis.

4 A BOND CENTERED
STRIPE IN THE ANTIFERRO
-MAGNET

Fig. (1) shows the system which we will be
looking at. We will examine the anatomy of

a bond-centered stripe in an antiferromagnetic
background. As foretold, we will neglect spin-
flips and assume the background to be a perfect
Néel antiferromagnet. We will further assume
that there is a phase-shift in the staggered
antiferromagnetic order parameter as we traverse
the stripe. This implies that there is a seam of
ferromagnetic bonds between spins on the two
different legs of the stripe. The ferromagnetic
bonds will cost a lot of energy. However,
introducing holes into the stripe will reduce this
strain. The ferromagnetic bonds will turn out to be
essential to explain the stability of stripes against
“hole evaporation”.

In order to understand why a system would want
to form such a stripe, we make the theoretical
assumption that the system starts out with
an antiphase boundary as shown in Fig. 2.
Theoretically, one can force such a system by
imposing suitable boundary conditions. If the
system is L sites long, this will entail an energy
penalty of, approximately, 2LJz. Introducing
holes into this system will reduce the energy of
this ferromagnetic seam and ameliorate matters.

Figure 1: Schematic representation of a quarter-filled bond-centered stripe in an antiferromagnet.
We assume there are no spin-flips in the antiferromagnet. There is a π-phase shift in the staggered
magnetization over the stripe. The cartoon above is not to be taken too literally. In reality, the pairs
are smeared along the rungs.
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Figure 2: We will make the assumption that the system starts out as antiferromagnetic with a
“domain wall” - a skyrmion. We will analyze what happens if we add holes to this system.

Topologically, stripes are not literally domain
walls in an antiferromagnet (whose spins S⃗ are
continuous variables and not Ising like) but rather
topological excitations of the antiferromagnet
known as skyrmions. As noted by Wilczek and
Zee [71] and later incorporated by others in rather
novel theories, e.g. Wiegmann [73], skyrmions
in an antiferromagnet are cylindrical domains
separating Néel states shifted by half a period.
We note that topologically, stripes are identical
to skyrmions stretched out to form domain walls
spanning the entire lattice. Berry phase effects
in the antiferromagnet associated with domain
wall stripes can give rise to exotic statistics
similar to that of skyrmions in 2+1 dimensions- as
suggested by extending the results of [71] to our
domain walls. Subsequent the initial appearance
of our work [1], further illuminating investigations
modeled magnetic order and fluctuations via an
analysis of coupled two leg ladders [72].

5 DYNAMICAL CONFINEMENT
(AN ON-STRIPE HYPOTHESIS)

We now examine what happens if we introduce a
hole into the antiferromagnet with a domain wall
(see Fig. 3). Once again, our major assumption
still is that this hole moves in steps of two such
that it will always stay on the same sublattice. We
reiterate a note for the experts: our analysis has

nothing to do with string states and kink (wiggle)
motion beautifully analyzed by many [69, 68],
and many of the works in [74, 75, 76, 77, 78,
79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89] (our
point of departure -the sublattice parity principle-
is just a way to explicitly avoid high energy
string states from the outset). Nor, does our
bare analysis have anything to do with the role
of the magnetic alleviation energies for a hole
drifting into the stripe (whereby it removes bad
ferromagnetic bonds) which plays the role of an
effective attractive potential. Such effects will only
enhance the bare findings that we report here.

With these remarks in mind, we note that if the
hole is in the antiferromagnet, far away from the
stripe, it has eight positions were it can move
to (see Fig. 3). If it is sitting next to the
boundary (just outside the stripe), it loses one
hop, because of the reversed sublattice structure.
The remaining seven hops are all the same as if
the boundary was not there.

Larger changes happen with a hole located within
the stripe. For such a hole there are only six
hops left. In Fig. 3, the hole on the stripe cannot
move downward left or downward right because
of the change in sublattice structure. So, naively,
one might come to the conclusion that a hole has
more kinetic energy in the antiferromagnet then
if it is on or near the boundary/stripe. Naively,
confinement of the hole in the stripe would cost
kinetic energy. However, this is not the case.
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t0
t2

t2 t2

t1 t1

t

Figure 3: An illustration of holes and an antiferromagnetic domain wall immersed in the surrounding
antiferromagnet. Our analysis will demonstrate that the holes may, due to kinetic considerations, drift
to the domain wall. This is so as on the wall (stripe) there is a nearest neighbor hopping of (a
large) amplitude t. Such a large amplitude single step hopping is not possible not in the surrounding
antiferromagnet. Only a (far fainter amplitude) next neighbor hopping is possible far from the domain
wall.

The reason is that within the antiferromagnet the
holes can only move in two steps longitudinally
with an amplitude t0 or diagonally with an
amplitude t2 which are of the order of J =
t2/U ≪ t (the uniniated reader is referred
to Appendix(A) for an exposure to the origin
of the exchange coupling J). On the stripe
the hole can stay on the same sublattice by
doing a single (instead of double) step up or
down with amplitude t. As a consequence, the
hole has a much larger kinetic energy if it is
situated on the stripe. Therefore we find that
the hole automatically drifts toward the stripe:
the amplitude for the ground state wavefunction
is maximal for sites on the stripe and decays
exponentially the further the sites are away from
the strip (see Fig. 4). Holes are driven by an
increase in kinetic energy (not exchange energy)
to the domain wall. We term this mechanism
“dynamical confinement”. The word dynamical is
used because it is the motion of the holes on the

stripe that lowers the energy. The primary role of
kinetic energy in favoring the stripe as a ground
state has been discussed many times before,
e.g. [68, 69, 67]. Nonetheless, the trivial (yet
sizable) lowering of the kinetic energy allowed by
hole motion along the ferromagnetic rungs on the
domain wall seems to have gone unnoticed.

For the two dimensional problem of a single hole
in the vicinity of a full domain wall embedded
in a surrounding antiferromagnet (of the variant
shown in Fig. (3)), we may work in a very
much reduced Hilbert space. In effect, the
strongly correlated many particle system reduces
to a single particle problem defined on half
of the lattice. As there are, ab initio, four
possible electronic states on each site (empty,
one electron with its spin up, an electron with
spin down, and an up and down electronic pair),
the Hilbert space of an N site system is, trivially,
of dimension 4N . Invoking the sublattice parity
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principle allows us to reduce the Hilbert space to
a mere size of N/2. The Hubbard Hamiltonian
is then reduced to a purely kinetic model,
having an amplitude t for nearest neighbor direct
hops within the stripe, amplitudes t0 and t2
for longitudinal and diagonal two step hops (as
depicted in Fig. 5 for the horizontal motions)
within the antiferromagnet and an amplitude t1 for
two step hopping within the stripe along the axis
of the ladder.

Before doing a more detailed analysis, let us first
give the reader an intuitive feeling of where we
are heading. Looking at Fig. (3), we note that a
hole in the bulk disperses with an energy

ϵbulk = ϵ0 − 2t0(cos 2kx + cos 2ky)

−2t2(cos(kx + ky) + cos(kx − ky)).(5.1)

Similarly, along the ladder,

ϵstripe = ϵ0 ± t− 2t1 cos 2kx, (5.2)

where the second, ±t, contribution denotes the
energies of the bonding/antibonding states along
the rung. Within this approximation, a sizable
finite gap ∆ ≈ t separates the minima of both
dispersions. In our analysis, it is this O(t) gap
which is the main driving force for self consistent
stripe formation having nothing direct to do with
string states and magnetic alleviation energies
(which are all of order O(J)).

In reality, the hole can hop between the stripe
and its surrounding bulk: the stripe states may be
connected to the bulk. The low lying stripe states
are however much lower in energy than their
counterparts within the bulk. As a consequence,
holes become localized on the stripe. As t ≫
t2/U = O(t0) = O(t2), the on stripe dispersion
is markedly lower in energy than its counterpart
for motion within the antiferromagnet. This leads
to an exponential decay of the lowest eigenstates
states out of the stripe.

We have numerically diagonalized a 12 x
21 system with a direct nearest neighbor
hopping amplitude t = 1, effective longitudinal

and diagonal next nearest neighbor hopping
amplitudes t0 = t2 = −0.1 within the
antiferromagnet, and a next nearest neighbor
amplitude along the axis of the stripe (ladder)
t1 = −0.1. The groundstate wavefunction is, to
good numerical accuracy, given by

ψ(x, y) ≈ | t0
t
|yeikxx. (5.3)

Fig. (4) depicts this wavefunction along the
direction perpendicular to the stripe. This figure
is similar to Fig. 22 from Chernyshev et.
al. [69] who calculated this from a 11 × 7
t-Jz system employing the numerical DMRG
method. Our approach leads directly to this
exponential confinement due to the dynamical
confinement, without the need for complicated
numerical calculations.

We will now aim to give the reader an intuitive
grip on the physics along with the ability to easily
derive rigorous bounds on hole localization within
the planar problem.

If we were to allow a hole on the particle to
hop to a larger number of neighbors within the
bulk (i.e. to artificially enhance kinetic motions
and lower confining tendencies), then we may
map our system into the dynamics of pseudo-
spin 1/2 particles in the presence of a transverse
magnetic field. The mapping is as follows: let us
mark each point within the bulk by its sublattice
parity (up/down) number as depicted in Fig.(3).
Let us now tile the plane into vertical 2 × 1
domino blocks lying with their long side parallel to
the y axis. Each domino within the bulk contains
one “up” (|σz = +1⟩ or | ↑⟩) and one “down”
(|σz = −1⟩ or | ↓⟩) site; the labeling of the up and
down sites on the dominos lying along the rungs
of the ladders may be done arbitrarily. Next, let us
envision replacing each domino by a single spin-
1/2 particle: the number of the fictitious spin-1/2
particles is equal to half of the number of sites
which we now label by m and n. For simplicity
we will now assume that all second order hops
are of equal magnitude σ.

Let us now consider the Hamiltonian

H = −σ
∑

⟨mn⟩,d

(c†mdcnd + c†ndcmd)−
∑

n∈ladder

h⃗ext · D⃗n, (5.4)
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Figure 4: Ground state wavefunction perpendicular to a domain-wall for a single hole in an
antiferromagnet. This was calculated using the simple approximation discussed in the main text. The
hole prefers to be on the stripe. We find |ψ| ≈ | t0

t
|y. The line in the figure just connects the midpoints.

Nx and Ny are the linear extents of the two dimensional system and the hopping amplitudes t0, t1
and t2 are as defined in Fig. (3).

with the fictitious external magnetic field h⃗ext of
magnitude t oriented along the transverse x-axis,
and D⃗n the spin of the psuedo-particle (domino)
along the n-th rung of the stripe and d is the
pseudo-spin polarization label. In the first term m
and n span the entire plane; the sum is performed
over all nearest neighbor site ⟨mn⟩ and on four of
the eight next nearest neighbor sites (such that all
same sublattice hoppings of the holes within the
bulk are accounted for). For holes not far from
the stripe or on it, the Hamiltonian of Eqn.(5.4)
introduces additional unphysical motions. These
allow hoppings of the holes off and on the stripes
which are disallowed- such additional terms can
only enhance delocalization tendencies. The
second term in Eqn.(5.4) codes for the nearest
neighbor up/down hops along the same rung-
these alter a pseudo-spin up state to a down
state and vice versa. We trivially observe that
the low energy dynamics corresponds to the
motion of a | →⟩ particle polarized along the
applied transverse field (or |σx = +1⟩) sensing an

attractive confining potential of strength t along
the stripe. In physical terms, the psuedospin
polarized state | →⟩ = 2−1/2(| ↑⟩ + | ↓
⟩) corresponds to the symmetric low energy
bonding state (and its counterpart | ←⟩ (or |σx =
−1⟩) corresponds to the high energy antibonding
state). The ground state is simply that of a
polarized | →⟩ particle (the symmetric bonding
state) sensing a well of infinite extent along one
axis and having a finite extent (2a, with a the
lattice constant) along the transverse direction.
As the problem is translationally invariant along
the ladder axis, the longitudinal momentum kx
is a good quantum number. The lowest lying
wavefunction is translational invariant along the
infinite cylindrical axis (kx = 0) and, at long
distances, has the transverse profile of a particle
of an effective mass meff = 1/(2σ) subject to
the influence of a potential well of depth t and
width (2a). This trivially leads to an exponentially
decaying amplitude in the direction transverse to
the stripe. As t ≫ J , this confining tendency
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is much more profound (and physical) than most
of the common magnetic bond (J) arguments
prevalent in the literature. The reader should bare
in mind that our point of departure- the sublattice
parity principle is correct only as low energy
scales (as compared to J). Nonetheless, what
drives localization in our picture at low energy
scale are the much more significant kinetic effects
which outshadow the common bad bond (J)
counting arguments.

The solution to this potential well problem is
standard. Scaling back by a factor of two to the
original (non-domino) coordinates along the y−
axis, we find, asymptotically,

ψ(x, y) ≈ A exp[−2α|y|]; |y| ≫ a, (5.5)

with the lowest lying bound state of Eqn.(5.4) is
obtained by the solution of the transcendental
equations

[βa tanβa = αa] and [a2(α2 + β2) =
1

σ
t]

or [βa cotβa = −αa] and [a2(α2 + β2) =
1

σ
t] (5.6)

having the largest value of α.

Eqn.(5.5) gives an upper bound on the leakage of
the “hole” wavefunction out of the stripe. If we set
σ = max {t0, t1, t2}, we obtain a rigorous upper
bound on |ψ|, at large distances |y|, consistent
with our numerical findings (Eqn.(5.3)). As
the Hamiltonian of Eqn.(5.4) contains additional
unphysical hopping processes from the ladder
to its environment, a localized state found for

the Hamiltonian of Eqn.(5.4) implies even more
localized states for the more restricted physical
problem.

We may similarly address the problem of an
arbitrary stripe configuration. In general, adding
additional hoppings transforms the problem of
the hole motion within and/or near stripes to
a kinetic planar problem of a hole coupled by
Zeeman couplings to magnetic fields piercing the
plane along the stripe trajectories. A multitude of
viable self consistent minima of narrow stripes of
various geometries are found. Stripe dynamics
is akin to the motion of the fields (solenoids)
piercing the plane; these, in turn affect hole
dynamics by a Zeeman like effect. The evolution
of a hole-stripe system may be addressed via
such a self consistent scheme.

A related way of immediately deriving lower
bounds on the diffusion of the hole out of
the stripe amounts to looking at the transverse
cross-section of the stripe as depicted in
Fig. (5), and examining single hole motions.
Solving the Schrodinger equation for this one
dimensional system, we immediately obtain a
localized bonding state of the lowest energy.
As here fewer hops are accounted for than
in the original physical problem, the solution
serves as a lower bound on “hole” wavefunction
leakage out of the stripe. When fused with
the previous upper bounds from the pseudo-spin
system, we immediately obtain both lower and
upper exponential bounds on asymptotic hole
propagation out of the stripe.

t0t0
t

t0

Figure 5: A schematic rationalizing dynamical confinement. Outside the stripe, the hole can only
moves in steps of two with an amplitude t0. However, inside the stripe it can make a direct hop with
a far larger amplitude t with t ≫ t0. Thus, due to kinetic reasons alone the hole prefers to be on the
stripe.
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In this scheme, splintering the sites according
to their sublattice numbers (equivalent to the
magnetic field sensed by a spin of definite
polarization if it is placed at various locations
throughout the lattice) introduces hopping
parameters for the low energy dynamics with
no potential energy in sight. As shown by
our analysis, magnetic alleviation effects are
not imperative for achieving this dynamical
confinement (even when direct magnetic effects
are removed we numerically attain exponential
localization with little noticeable change). We
reiterate that we are examining the reduced
Hilbert space where no magnetic string states
exist from the outset.

In our approach, we first create an
antiferromagnetic spin structure with domain
walls and then dope the system. Then, if the
spin structure is strong enough, the holes will
migrate to the walls and will form a charge
structure. Hopefully we have convinced the
reader that sublattice parity order can indeed
drive stripe formation. The energy scale
associated with this discrete sublattice parity
(Z2) order [66] can indeed be quite high: the
persistence of incommensurate peaks up to
at least the high energy resonance peak in
YBCO might be interpreted as an indication
that the stripe persists as a domain wall up to
very high energy scales [90]. Experimentally,
charge order is a far greater robust driving
force for stripe formation than spin order. The
role of sublattice parity (albeit its high energy
scales) is not clear at the time of writing. The
reader should consider our argument as a self-
consistent one in which the creation of the no-
hole domain-wall first is a theoretical device that
simplifies theoretical discussion. Summarizing,
we have seen that once there is a ferromagnetic
seam in a very strong antiferromagnet, single
holes will automatically move to this seam and
be exponentially localized onto them. In the
remaining part of this article we will see what
the consequences are of this result for more than
one hole on the stripe. The localization of the
holes is in accord with NQR measurements, e.g.,
[91].

6 STAGGERED LADDER
SYSTEMS

We have seen that by dynamical confinement
we may consider an antiferromagnetic domain
wall as a two-leg ladder with staggered boundary
conditions. So, once again we can restrict
our Hilbert space. Ladder systems have
been extensively studied throughout the years.
Hundreds of works on standard (unstaggered)
ladder systems have been carried. For a well-
known review see Dagotto and Rice [92].

In our case, the influence of the antiferromagnet
surrounding the ladder is still there. The
surrounding antiferromagnet effectively gives rise
to staggered boundary conditions. In the up
and coming, we will look at two-leg ladders
with staggered fields mimicking the surrounding
antiferromagnet. The staggered fields endow
the ladder with a sublattice parity structure.
Unfortunately, to date, staggered ladders have
not been investigated intensively.

Krotov, Lee, and Balatsky [93] examined
staggered ladders for the Hubbard model at small
U . In this limit, one starts with a non-interacting
system and then derives the renormalization
group equations. Staggered spin ladders without
any holes have been studied by Wang et. al [94].
However, staggered ladder systems with holes in
the large U limit have not yet been addressed
before as far as we know. We will now analyze
staggered two leg ladders in a rather pedestrian
manner. We verified the perturbative results that
we will cite by explicit numerical computations.

7 THE SINGLE ELECTRON
ON AN EMPTY STAGGERED
LADDER

To understand the effect of the boundary
conditions on the movement of electrons and
holes on the ladder we first examine a single
electron on an empty ladder immersed in a
staggered magnetic field. This is, of course, a
hypothetical situation, but it is nevertheless
a good starting point for our discussion.

11
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If the electron is on the correct sublattice (i.e. if its spin polarization is opposite to that of the applied
staggered magnetic field) then its magnetic energy will be ϵ0 = −J . Being on the wrong sublattice
leads to a magnetic energy penalty of ϵ1 = +J .

This gives rise to staggered potentials on the ladder. The resulting Hamiltonian for the system as
shown in Fig. (6), reads

−t −t

−t

Figure 6: A single electron on an empty ladder. In principle, the electron may hop to all of its nearest
neighbors with an amplitude t. However, the ladder is embedded in an antiferromagnetic background
that influences the electronic hopping amplitudes.

H =



ϵ1 −t −t
−t ϵ1 0 −t
−t 0 ϵ0 −t −t 0

−t −t ϵ0 0 −t
−t 0 ϵ1 −t −t

−t −t ϵ1 0 −t
−t 0 ϵ0 −t −t

0 −t −t ϵ0 0 −t
−t 0 ϵ1 −t

−t −t ϵ1


. (7.1)

Here we express the Hamiltonian in terms of ordered real-space basis states where we place the
upper and lower sites of each rung adjacent to each other. An electron at any site can always hop
to three other sites. Because this is a single particle problem with a translational invariant potential
(with unit cell of size two), the eigenfunctions of this Hamiltonian can exactly be determined. They
are exactly given by

ψ = (B,±B,Aeik,±Aeik, Be2ik,±Be2ik, Ae3ik, ...). (7.2)

Here A and B are determined by

Ek = ϵ0 ± t− 2t
B

A
cos k

Ek = ϵ1 ± t− 2t
A

B
cos k. (7.3)

The energy can immediately be obtained from
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∥∥∥∥ ϵ0 ± t− Ek −2t cos k
−2t cos k ϵ1 ± t− Ek

∥∥∥∥ = 0, (7.4)

leading to

Ek = ±t±
√
J2 + (2t cos k)2

= ±t±
√
J2 + 2t2 + 2t2 cos 2k. (7.5)

This dispersion illustrates that, due to the staggered boundary conditions, the electron effectively
moves in steps of two. Fourier transforming the energy shows that because of the symmetry between
k and π − k, only terms which have an even number of steps from the starting point may have an
amplitude unequal to zero: odd, sublattice parity interchanging, hops are banned. In more physical
terms, this trivially corresponds to the halving of the period (in k) in the dispersion Ek.

7

H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ϵ1 −t −t
−t ϵ1 0 −t
−t 0 ϵ0 −t −t 0
−t −t ϵ0 0 −t
−t 0 ϵ1 −t −t
−t −t ϵ1 0 −t
−t 0 ϵ0 −t −t

0 −t −t ϵ0 0 −t
−t 0 ϵ1 −t
−t −t ϵ1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (8)

Here we express the Hamiltonian in terms of ordered
real-space basis states where we place the upper and
lower sites of each rung adjacent to each other. An elec-
tron at any site can always hop to three other sites. Be-
cause this is a single particle problem with a translational
invariant potential (with unit cell of size two), the eigen-
functions of this Hamiltonian can exactly be determined.
They are exactly given by

ψ = (B,±B, Aeik,±Aeik, Be2ik,±Be2ik, Ae3ik, ...). (9)

Here A and B are determined by

Ek = ϵ0 ± t− 2t
B

A
cos k

Ek = ϵ1 ± t− 2t
A

B
cos k. (10)

The energy can immediately be obtained from

∥

∥

∥

∥

ϵ0 ± t− Ek −2t cosk
−2t cosk ϵ1 ± t− Ek

∥

∥

∥

∥

= 0, (11)

leading to

Ek = ±t ±
√

J2 + (2t cos k)2

= ±t ±
√

J2 + 2t2 + 2t2 cos 2k. (12)

This dispersion illustrates that, due to the staggered
boundary conditions, the electron effectively moves in
steps of two. Fourier transforming the energy shows that
because of the symmetry between k and π−k, only terms
which have an even number of steps from the starting
point may have an amplitude unequal to zero: odd, sub-
lattice parity interchanging, hops are banned. In more
physical terms, this trivially corresponds to the halving
of the period (in k) in the dispersion Ek.

Eqn. (12) shows that, for unphysically large J ≫ t
(a strong influence of the surrounding two-dimensional
antiferromagnet), the Hilbert space splits up in four dif-
ferent sectors. First, there is a splitting because of the
boundary conditions: half of the sites have the electron
on the right sublattice, which leads to a low energy of

E +J

-J

J-t

-J-t

-J+t

J+t
E +t

-t

t-J

-t-J

-t+J

t+J

FIG. 7: Energy diagram for a single electron on an empty
staggered ladder. If the staggered potential is large (large J),
the splitting J is more important than t. In the lowest state,
there are only N/4 states. These are the same states as for
a single one dimensional model where an electron moves in
steps of two. If J ≪ t (right) we still get the same lowest
sector.

−J . The other half have the hole on the wrong sublat-
tice, with an energy of +J . Because the upper and lower
leg of the ladder are exactly equivalent, the electron will
slosh back and forth between the upper and lower legs.
This, in turn, leads to bonding/antibonding linear com-
binations of the upper and lower sites along each rung,
further splintering the Hilbert space into two additional
subsectors. The lowest sector, which contains N/4 ba-
sis states, consists of wavefunctions with the electron on
the right sublattice (e.g. a spin up polarized electron on
the up sublattice) with the symmetric linear combination
(bonding) of upper and lower sites.

In the large J limit, Eqn. (12) simplifies to

Ek = −J − t− 2
t2

2J
− 2

t2

2J
cos 2k. (13)

Not surprisingly, we see that we this energy corre-
sponds to the electron populating the correct sublattice
(−J) and being smeared along the two rungs in a sym-
metric bonding fashion (−t). We can easily read off that
the effective hopping is in steps of two from the cos 2k
term. Because we are in the large J limit, the hopping
amplitude in second order perturbation theory is given
by t2

2J . We have to hop twice (t2) over an intermediate

state with energy 2J . The extra contribution −2 t2

2J to
the energy comes from virtual excitations where the spin
moves one position to the left or right and immediately
returns back. There are two possible ways of doing this,
and the amplitude again is t2

2J . Thus, we can intuitively
understand every term in this limit.

There is a gap of 2t separating the lowest Hubbard
band from the antibonding states. Because 2t is a very
large energy scale (approximately 0.5 eV, or 5000 K), we
can neglect the influence of the other sectors and may
restrict our attention only to the lowest sector.

Our discussion above hinged on the assumption that
J is very big (J ≫ t). This assumption is not satisfied
in the physically relevant region wherein J ≈ 0.25t. In

E +t

-t

t-J

-t-J

-t+J

t+J

Figure 7: Energy diagram for a single electron on an empty staggered ladder. If the staggered
potential is large (large J , see left panel), then the splitting set by J will be more significant than
that associated with t. Within the lowest energy sector, there are only N/4 states. These are the
same states as for a single one dimensional model where an electron moves in steps of two. The
corresponding schematic for J ≪ t (having the same lowest energy) is depicted on the right.

Eqn. (7.5) illustrates that, for unphysically large
J ≫ t (a strong influence of the surrounding
two-dimensional antiferromagnet), the pertinent
Hilbert space splinters into four disjoint sectors.
First, there is a splitting because of the boundary
conditions: half of the sites have the electron
on the right sublattice, which leads to a low
energy of −J . The other half have the hole
on the wrong sublattice, with an energy of +J .
Because the upper and lower leg of the ladder
are exactly equivalent, the electron will slosh
back and forth between the upper and lower
legs. This, in turn, leads to bonding/antibonding

linear combinations of the upper and lower sites
along each rung, further splintering the Hilbert
space into two additional subsectors. The lowest
sector, which contains N/4 basis states, consists
of wavefunctions with the electron on the right
sublattice (e.g. a spin up polarized electron
on the up sublattice) with the symmetric linear
combination (bonding) of upper and lower sites.

In the large J limit, Eqn. (7.5) simplifies to

Ek = −J − t− 2
t2

2J
− 2

t2

2J
cos 2k. (7.6)
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σ σ

ε0

Figure 8: Effectively, the electron moves on a one-dimensional chain in steps of two. There are
only two effective parameters: the on-site energy ϵ0 and the two site hopping amplitude σ.

Not surprisingly, we see that this energy
corresponds to the electron populating the
correct sublattice (−J) and being smeared along
the two rungs in a symmetric bonding fashion
(−t). We can easily read off that the effective
hopping is in steps of two from the cos 2k term.
Because we are in the large J limit, the hopping
amplitude in second order perturbation theory
is given by t2

2J
. We have to hop twice (t2)

over an intermediate state with energy 2J . The
extra contribution −2 t2

2J
to the energy comes from

virtual excitations where the spin moves one
position to the left or right and immediately
returns back. There are two possible ways of
doing this, and the amplitude again is t2

2J
. Thus,

we can intuitively understand every term in this
limit.

There is a gap of 2t separating the lowest
Hubbard band from the antibonding states.
Because 2t is a very large energy scale
(approximately 0.5 eV, or 5000 K), we can neglect
the influence of the other sectors and may restrict
our attention only to the lowest sector.

Our discussion above hinged on the assumption
that J is very big (J ≫ t). This assumption is not
satisfied in the physically relevant region wherein
J ≈ 0.25t. In the physically relevant regime, we
still have a splitting of the Hilbert space into four
sectors (see Fig. (7)). The lowest Hilbert sector
is still the same one as the one for the large J
limit. For small values of J compared to t, the
groundstate properties are still dominated by the
−J , −t sector. However, the low lying excitations
out of the lowest sector are now to the sector
where the electron goes to the wrong sublattice
(a single hop) instead of going from a bonding
to an antibonding state. Such hops will lead to
string states. Nevertheless, as long as the width
of the lowest Hubbard band is small compared to

2J (which itself is also a large energy, of the order
of 2400K), we can still think in terms of bonding
states on the correct sublattice. Within the lowest
Hubbard sector, the electron will only be on the
even lattice sites. Effectively, only second order
hops are present. Because of the hybridization
of up and down sites on a rung, it is sufficient
to consider the one dimensional model shown in
Fig. (8).

Just as for the single hole in the two dimensional
antiferromagnet, discussed in Appendix (A), a
lone electron on the empty ladder moves as an
effective quasiparticle, with a sublattice hopping
amplitude σ.

8 ONE HOLE ON A FULL
STAGGERED LADDER

We next examine one hole in an otherwise
full ladder immersed in a staggered external
magnetic field. The single spin problem was
very simple to solve analytically given our
assumptions. The single hole problem is
exceedingly more difficult because it is a strongly
interacting many body problem. For a system of
only 6 × 2 sites, there are already approximately
800, 000 states! Systems of this size and larger
may be addressed by employing the Lanczos
method of diagonalization, which only finds the
lowest eigenstates of a matrix. We employed
this method for systems of up to size 8 × 2.
The complicated results that follow from this
numerical study can be understood quite easily
for large values of J . Though not the physically
relevant regime, just as in Section (VII), both for
J > t and J < t, the ground state is in the same
sector of Hilbert space.

For large values of J , the basic properties are
once again those of a single quasiparticle. From
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the outside, we again assume that the hole
cannot leave the stripe. An electron next to the
hole can move to the position of the hole, leading
to a string-state with one wrong spin. The hole
can also move up and down. And it can move
in steps of two to the left and right. In addition,
we can have spin flips on the ladder. However,
just as in the two-dimensional antiferromagnet we
neglect the spin-flip processes. For large values
of J we find once again a number of Hubbard
sectors. The lowest sector has N/2 states where
the hole is on the right sublattice and an energy
of approximately −2(N − 1)J . Above this lowest
Hubbard sector we have the Hubbard sector with
a string state of length one. There are 2N states
in this sector. The gap between this sector and
the lowest sector above it is ∆ = 4J ≈ 4800K.
We could ingnore this sector if this gap is large
with respect to the internal splitting of the lowest
Hubbard sector. This bandwidth is given by 4t′′

with t′′ = t2

U+4J
≪ t. For U ≈ 8t we have

t′′ ≈ 0.1t: both J and t have approximately the
same amplitude. However, for the groundstate
properties, the relevant properties are those
of the lowest a single hole moving in steps of
two. The band, shifted down by t2/2J by virtual
hopping, has the dispersion of an inverted cosine.
The gap ∆ = t, separating the on-stripe states
from those in the surrounding antiferromagnet,
is large with respect to t′′. The spins adjust to
surrounding antiferromagnetic. In the U, J ≫ 1

limit,

ϵ0 = −J − t− 2
t2

2J
,

σ = 2
t2

U + 2J
. (8.1)

The motion of a single hole on a stripe and its
motion in a two dimensional antiferromagnet
is identical. The only difference between the
parameter sets, is sparked by the presence
of the direct hopping term t allowed within the
topological domain wall. This is in contrast to one
dimensional effective theories that assume that
the hole effectively becomes a holon on a stripe
(see for instance Tchernyshyov and Pryadko
[68]). Our hole is not a holon in the sense that
it will remember if it was injected for a spin up
or a spin down electron: they move on diffent
sublattices.

We see that we can consider a single hole
on a stripe as a quasiparticle, just as a single
electron on an empty lattice. They can both be
characterized by (different) values for ϵ0 and σ.
The main difference between a hole on a full
ladder and an electron on an empty ladder is
that the hole moves more slowly, because it can
only move through double occupied intermediate
states, which costs a lot of energy. Therefore, σ
is small for a hole, while it is large for an electron
on an empty lattice. Our main conclusion is that
a single hole and a single electron are effectively
identical.

t t

t

Figure 9: We assume a single hole can move on the stripe and cannot leave the stripe. The
surrounding antiferromagnet leads to staggered boundary conditions.
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t1 t1

t

Figure 10: A one dimensional ladder with strong staggered potentials on the boundaries.

9 TWO ELECTRONS ON
AN EMPTY STAGGERED
LADDER

The equivalence between holes and electrons is
no longer true for more than one particle. We
will show that the low energy properties for two
electrons are different from those of two holes.
We first consider the problem of two electrons
with opposite spin on an empty ladder. Various
possible geometries are sketched in Fig. (11).
Because only the relative distance is important,
we keep the position of the up spin fixed.

The two electrons can be on the same or opposite
legs. Six amplitudes: ϵ0, ϵ1, ϵ2, σ, σ

′ and τ ,
defined in Fig. (11), are of relevance. We notice
that the hopping amplitude for the electrons when
they are far apart (σ) is much larger than the
hopping amplitude when they are next to each
other (τ ). If they are far apart, they do not
notice each other. Two electrons have less kinetic
freedom if they are next to each other. In order to
move passed each other, they have to go through
a doubly occupied state.

In the U ≫ J limit, lowest order perturbation
theory yields

ϵ1 = ϵ0 = −2J − 4
t2

2J
,

ϵ2 = −2J − 2(
t2

2J
+

t2

2J + U
),

σ =
t2

2J
, (9.1)

τ =
t2

U + 2J
.

(9.2)

The lowest Hubbard sector contains both single
electrons and pairs of electrons. However, we
have seen that single electrons have a larger
kinetic energy than pairs.

Therefore, the ground state consists of electrons
that are as far apart as possible. Fig. (12)
shows a schematic picture for the density of
states. Only at the higher energies of the lowest
Hubbard band do we find pairs. The pairs have
a small bandwidth because of the small hopping
amplitude. Once again we find various sectors
as shown in Fig. (12).

10 TWO HOLES ON A FULL
STAGGERED LADDER

To see the difference between electrons and
holes, we now look at two holes in a filled ladder.
When far apart, two holes (quasiparticles) do not
notice each other. Just as for two electrons on an
empty lattice, there are two states in which they
strongly influence each other. The main question
we wish to address is whether two holes come
together and form a real-space pair, or if they
tend to be as far apart as possible.

If the two holes are far apart, they will move
independently with an amplitude σ = t2

U+2J
(see

Fig. (13)). However, this is different if they are
sitting next to each other. In this case no double
occupied state is needed. Therefore the hopping
amplitude τ = t2

2J
, thus τ ≫ σ. If the two holes

are on the same leg, sitting next to each other
(see Fig. (14)), than the two holes can move
together with a much larger amplitude than if they
move alone.

16



Bosch and Nussinov; PSIJ, 10(3), 1-33, 2016; Article no.PSIJ.24117

ε0

σ σ
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Figure 11: Different possible configurations of two electrons on a staggered two leg ladder.

0

−2J

E

+2t

0

−2t

+2t

0

−2t

single

pair

ε2 ±2τ−t

ε0−2σ−t ε0+2σ−tε0−t

Figure 12: Different sectors for two electrons on an empty ladder. The lowest energy sector
contains both single electrons and pairs of electrons. However, the groundstate consists of single
electrons. Pairs are only formed at a higher energy in the lowest Hubbard sector.
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t
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Figure 13: Different configurations of two holes on a stripe with the relevant on site energies and
hopping amplitudes.

Figure 14: Two holes can move together without creating an intermediate double occupied state.
Therefore, holes want to form real-space pairs. A hole pair can move if a single electron makes two
hops.

In the left subfigure, a spin up electron moves
left. The intermediate state in the middle figure
has a higher energy of the order of J . From this
position, the electron with spin up can move back
to the starting position, or it can move on to end
up as shown in the right figure. Once it is there,
the hole-pair has effectively moved one site to
the right. This figure only illustrates one possible
hopping sequence, there are also other possible
ways of hopping. For discussions of pairing

one should be careful with fermionic minus signs
sparked by the interchange of identical spins
once a pair is made to go around [95, 67].
For the movement of a single hole, there is an
intermediate state with an energy of U . However,
if the two holes are next to each other then the
intermediate state will not have a doubly occupied
site, so therefore this energy is only of the order
of 4J . Therefore, σ′ is much large than σ. This
leads to the formation of pairs on the stripe.
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For large U and J , employing the same convention as before, we find in perturbation theory,

ϵ0 = −(N − 2)J − 4
t2

2J
− (2N − 8)

t2

U + 2J

ϵ1 = −(N − 2)J − 4
t2

2J
− (2N − 8)

t2

U + 2J
(10.1)

ϵ2 = −(N − 2)J − 2
t2

2J
− (2N − 6)

t2

U + 2J
,

with N = 2L the total number of sites on the two leg ladder.

σ σ

tσ σ

t

Figure 15: Hopping amplitudes for holes on a two leg ladder. The boundary conditions enforce spin
polarization selection rules onto where the holes can hop. As in the earlier figures, the two possible
spin polarizations are colored differently.

The motion of the pairs on a ladder and the
motion of single holes is coupled: both are
present in the lowest Hubbard sector. If they
form disjoint Hilbert spaces, we will find E =
ϵ2−2τ cos k for the real space pair. For two single
holes, E = ϵ0 − 2σ cos k, within perturbation
theory. Because σ is very small, the spectrum
for single hole states does not exhibit much
dispersion. Taking the energy values from Eqn.
(10.2), the dispersion for two holes on a stripe
with staggered potentials is suspected to look like
that shown in Fig. (16).

The big difference between holes and electrons
is that for two electrons the separated electrons
have a large bandwidth and the pairs of electrons
are a high energy state with a small dispersion.
For holes this is reversed: the pairs have the
largest bandwidth, while the separated electrons
form a low energy excitation (string states) with a
small dispersion.

The lowest state for the pair cosine band is
located at ϵ2 − 2τ and the lowest state for
the separated holes is located at ϵ0 − 2σ. In
perturbation theory, both energies amount to

−(N − 2)J − 4
y2

2J
− (2N − 8)

t2

U + 2J
. (10.2)

However, here we assumed the pairs and
separated holes to be independent. But where
they overlap in energy, which in this case is
the bottom of the band, the wavefunctions will
hybridize.

If we think of a hybridization of up and down sites
along the rungs, then no possible interchange
can be performed between the holes leading to
fermionic minus signs that elevate, rather than
depress, the pairing energy [67].

11 LANCZOS CALCULATIONS

Lowest order perturbation theory for two holes
on a staggered ladder leads to the dispersion
shown in Fig. (16). The ground state
properties cannot be easily determined because
of the overlap between separate hole and pair
states. To test this situation numerically, we
have performed standard Lanczos calculations
for the Hubbard model endowed with staggered
boundary conditions on a twelve site single chain
with staggered boundary conditions. Solving this
problem for large two leg ladders is inhibited by
the large Hilbert space. The maximum size which
we are able to examine numerically is a 6 × 2
system for which there are ≈ 650, 000 states.
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Figure 16: Theoretical dispersion relation for two holes in a bond-centered stripe.The groundstate
consists of pairs.

Such a system is too small to observe single
hole states and pairs accurately. Because of the
strong bonding combination between the upper
and lower leg of the ladder, the reduction to a
one dimensional line is physically justified. The
results of the Lanczos calculation show that the
ground state has the largest amplitude for pair
states with only a small admixture of single hole
states. Immediately above the ground state,
the excited states are predominantly single hole
states. There is a finite energy gap separating the
ground state and these excited states. Because
of the small lattice size, we cannot determine the
value of the energy gap ∆E.

Another approach is to assume that ϵ0, ϵ2, σ, and
τ are adjustable parameters. In that case, we can
perform a simplified calculation on a 20×2 ladder
having twenty spin up, and twenty spin down
sites. In the aftermath, this leads to a 400 × 400
matrix that can be easily diagonalized. Using this
model it is relatively easy to choose the effective
parameters such that the cosine band for the
pairs has a lower energy than the states where
we have single holes far apart. Our numerical
results for the Lanczos method suggest that the
gap ∆E separating pair states and single particle
states is sufficiently large for the groundstate to
consist mostly of pair states.

Nonetheless, as the gap separating the single
hole and pair states is small, the pairing physics
is, a priori, susceptible to the addition of longer
range interactions and hopping interactions.
Such effects could easily tip the balance between
the single hole and pair states (or enhance
pairing tendencies).

12 PUTTING ALL OF THE
PIECES TOGETHER:
EXTENDED LATTICE
STATES

We found that if we assume that, somehow,
the antiferromagnet has a ferromagnetic domain
wall, holes will automatically localize on this
topological line. Furthermore, we looked at the
movement of a single hole on this staggered
ladder and found that it behaves as a single
quasiparticle that moves along the ladder in steps
of two. Two electrons on an empty lattice try
to be as far apart as possible. Two holes on
an otherwise half filled ladder, however, form a
bound pair. Fusing all of these findings together
and considering not only a single domain wall
but rather a larger lattice, we obtain stripe
configurations suggested by DMRG calculations
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[16], mean-field theory, and other treatments. As
has long been emphasized, DMRG computations
are performed with open boundary conditions.
These boundary conditions favor (and, in some
cases, may trigger) the formation of stripes and
other inhomogeneities. Thus, stripes as seen by
DMRG may be argued to be stem from boundary
effects. The DMRG results with open boundary
conditions have been analyzed via bosonization
and other means [96]. Notwithstanding the
precise character of the pristine lowest energy
states and the importance of boundary effects
in DMRG, similar patterns (including other
geometries- those of diagonal and horizontal
site-centered stripes) are found by numerous
other means of analysis, e.g., [23]. Our analysis
illustrates that stripes may be stabilized by kinetic
constrained. That is not to say that these are the
only possible low energy states.

The arguments that we employed in the
current work were very pedestrian and general.
Throughout we invoked the sublattice parity
principle and the related staggering potentials.
Our findings are further supported by numerical
calculations on the t-J model. We give a very
simple physical interpretation for the stripes found
by DMRG and other methods.

A hole is on the stripe will delocalize by the
hybridization of the upper and lower leg. If we
place a hole on the upper leg, the hole will almost
immediately jump to the lower leg and vice verse.
In numerical calculations, we will therefore find
the linear superposition of a hole and the electron
depicted in Fig. (18).

White and Scalapino first employed the DMRG

technique on the t-J model [16]. Fig. (19) shows
one of their well known results. We see that the
bond centered stripes are very narrow. They
look like a ferromagnetic seam embedded in
an antiferromagnet. The same result can be
obtained via mean-field calculations [97].

The DMRG calculations of White and Scalapino
and those of others since vividly suggested how
spin and charge may nestle. Much emphasis
was placed on the fact that the holes are on next-
nearest neighbor sites. On the opposite diagonal,
the spins (which are on the same sublattice)
have a very strong antiferromagnetic bonding.
In effect, the bound pair is creating a flip in the
antiferromagnetic lattice. This might also explain
why in the exact calculations and the Monte-Carlo
results the binding energy would decrease as a
function of the lattice size. Basically, the hole-pair
is creating an antiphase boundary, whose energy
is increasing as a function of lattice size. That this
is indeed a good representation of stripes follows
from DMRG calculations by White and Scalapino
and other computations.

The reader is urged to focus on the central part
of Fig. (19). (Here, the spin and charge texture
towards the boundaries are more contorted by
the open boundary conditions employed.) We
claim that the reason that the mean-field [97]
and the DMRG calculation are so similar has
to do with the fact that the antiferromagnet
is very strongly ordered. The stripes are so
narrow because of kinetic driven attraction or
dynamical confinement. Although we focused
on bond-centered stripes, similar considerations
rationalize other stripe geometries.

Figure 17: Combining all of the elements of the analysis presented in the text suggests (at a doping
that of 1/4 hole per site), the above configuration of paired holes on the two-leg ladder is energetically
favored.
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+ =

Figure 18: The hole has equal amplitude to be on the upper or lower leg of the ladder. Therefore,
the groundstate is a linear superposition of a hole and a spin down.

0.4

0.25

Figure 19: A reproduction of the state found by the DMRG calculation of the t-J model by White and
Scalapino [16]. This and similar calculations typically employ open or cylindrical boundary conditions.

13 LONGER RANGE KINETIC
AND COULOMB TERMS

Let us summarize the assumptions that we have
invoked, so far, in our analysis:

(i) We assumed, self consistently, the existence
of an antiphase domain wall having the geometry
of a two leg ladder. Sublattice parity (Z2) order
was assumed to prevail throughout the entire
system. (ii) Albeit the relatively minute energy
difference by which the lowest lying pair states
were found to be favored over single hole states,
we assumed that the stripe was composed
entirely of pairs.

It should be noted (especially in the context of
assumption (ii)), that the small energy differences
we found separating various contending states
(as well as those separating, say, bond
centered stripes from site centered stripes)
are very susceptible to additional terms in the
Hamiltonian.

As we emphasized in the Introduction, the
Hubbard model and its t-J cousin are only
models. There are myriad very important effects
that it does not include which could easily shift
the balance between various nearly degenerate
contending states.

Coulomb effects (which are much greater
importance here than elsewhere given the poor
screening in these materials) enhance and
stabilize stripe order: a uniform charge density
order is strictly forbidden by the divergent
Coulomb penalty that it will incur. This point
has been emphasized by Emery, Kivelson,
and coworkers [29, 98]. Fourier transforming
the Hamiltonian and looking for the minimizing
waveumbers, we are able to see how stripe like
charge density modulations will evolve [99] once
lattice effects are taken into account.

Even if the stripe correlations found by DMRG
and other calculations are triggered by the
application of open boundary condition effects,
when long range Coulomb interactions are
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introduced, charge stripe order will be further
stabilized. Given the natural coupling between
spin and charge [100], this will further enhance
the sublattice parity flips across the stripe that we
assumed from the outset (assumption (i)).

Less emphasized are the role of higher order
kinetic terms. These can easily tip the balance: a
next nearest neighbor hopping increases pairing
significantly. Within the pure t-J model (with
a vanishing direct diagonal hopping amplitude
t′ = 0) pairing correlations are infinitesimal and
are further frustrated by the π phase shift across
the domain wall. Numerically, t′ which allows
holes to move on the same sublattice enhances
pairing dramatically. Furthermore, numerically, a
negative t′ is seen to favor stripe formation [101].

14 CONCLUSION

The principle objective of the current work
was to demonstrate that stripe ordering
and pairing tendencies in repulsive doped
Hubbard type models may result from kinetic
considerations. Our analysis indeed illustrated
that stripe order self-consistently emerges from
the existence of a strong antiferromagnetic
background that forces holes to move on the
same sublattice. We demonstrated that holes
move to antiferromagnetic domain walls and
effectively form two-leg ladders. This dynamical
confinement of holes onto the stripe is caused
by the sublattice structure of the antiferromagnet
and the increase in kinetic energy on a domain
wall. The effective two-leg ladders still feel the
influence of the surrounding antiferromagnet in
terms of a staggered boundary potential. As
shown by Krotov, Lee, and Balatsky[93], this
increases the tendency to superconductivity. The
reason for this is that holes on the stripe form
real-space pairs. In principle, our ideas might
be tested for other bipartite lattices in which
a background Néel order may favor hopping
between sites on the same sublattice.

In a related work [63], we illustrated that these
real-space pairs can be mapped to an effective
one-dimensional XXZ model in a transverse field.
This enables us to discuss the filling fractions of
stripes.
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APPENDIX

A The Sublattice Parity Principle
The sublattice parity principle amounts to the assumption that a hole in an antiferromagnet is free
and can move to all of its next nearest but not to its direct neighbors. This principle is based on and
follows from the sublattice structure of antiferromagnetic order. In the two sub-sections that follow, we
will invoke simple analysis and provide phenomenological proof for this assumption by examining the
dispersion relations obtained by very detailed numerical works.

A.1 Spin Flips
It is well known that the Hubbard model for a half-filled system in the large U limit leads to an effective
Heisenberg model,

HHeisenberg =
∑
⟨ij⟩

J⊥
2

(S+
i S

−
j + S−

i S
+
j ) + JzS

z
i S

z
j , (A.1)

with J⊥ = Jz = J .

The last (Ising) term of the Heisenberg Hamiltonian wants to make the spins on neighboring lattice
sites point in opposite directions. If only this term is present, the groundstate will be a perfect
Ising antiferromagnet with long-range (Néel) order: the lattice can be subdivided in an up sublattice
and a down sublattice. However, the first (XY) term in the Hamiltonian can undo this order by
flipping two neighboring, opposite spins. In principle this term can completely destroy the long
range order and indeed it does so in one dimension. In dimensions d ≥ 3 clear sublattice order
prevails. A large amount of effort in numerical calculations and the very important analysis of the
non-linear sigma model by Chakravarty, Halperin and Nelson[102] have shown that the ground-
state of the two-dimensional Heisenberg model (and thus of the undoped Hubbard model) is a
long range antiferromagnet for which there exists a two-sublattice structure. The groundstate of the
antiferromagnet is not exactly given by the classical Néel state which one would expect from the Ising
model. The spin-flip term leads to a finite density of flipped spins (approximately 20%) which give rise
to a lowering of the magnetization. It also leads to spin-waves. These spin-waves destroy the long-
range antiferromagnetic order at any finite temperature. However, one can define a correlation length
and on distances smaller than this length, we can still speak about local antiferromagnetic order. For
T > 0, we have local order with a correlation length that decreases with increasing temperature.
Therefore, thinking in terms of an Ising model is not completely incorrect as long as one keeps in
mind that there is a finite density of flipped spins in the lattice. In the remainder of this article we will
neglect these spin flips.

A moment’s reflection reveals that [H,Stot
z ] = 0 for the Hubbard model (a property inherited to its

descendants), and net magnetization is strictly preserved. Consequently, if Néel order prevails also
when a single hole is introduced, hole motion is rigorosly restricted to one sublattice: if a hole could
indeed hop to its neighboring site on the opposite sublattice, the magnetic quantum number (Sz/~)
would remain unaltered. On the other hand the two low energy “vacuum” states corresponding to the
injection of a hole on the two different sublattices have magnetic quantum numbers (Sz/~) differing by
±1. These states obviously cannot be connected by any of the magnetization conserving processes
of H. Myriad analytical treatments of the t-J and Hubbard models were aware of this selection rule
and have computed transition matrix elements for a single hole between sites of the same sublattice.
For one example amongst many see [20].

29



Bosch and Nussinov; PSIJ, 10(3), 1-33, 2016; Article no.PSIJ.24117

Figure 20: If a single hole in an antiferromagnet moves by nearest neighbor hopping of surrounding
spins, it cannot move without creating a string of flipped spins. For small values of J⊥, there are no
spin flips that can destroy this string. This leads to a linearly increasing confining potential and the
eigenfunctions are Airy wave functions. Because of this string, a single hole cannot easily propagate
through an antiferromagnet by nearest neighbor hops.

A well known argument leads to the conclusion that a single hole cannot propagate freely in an
antiferromagnet. As shown in Fig. (20), whenever a non backtracking single hole moves from one
sublattice to the other, it creates a string of flipped spins in its wake.

This leads to a linear confining potential that strongly inhibits hole motion between different sublattices.

This, however, is not the only process that can take place. Fig. (21) shows that it is also possible for
a hole to move two steps without creating a confining string potential. This is a second order process
in perturbation theory. First we create a second hole two sites away from the first hole. We do this
by moving that electron one site closer, next to the first hole. This gives rise to a double occupied
intermediate state with a high energy U . Then, we let the same electron move again, now removing
the first hole. The amplitude for the total process is given by σ = t2

U
, much smaller than t, the first

order hopping amplitude. However, the final state has exactly the same energy as the starting state.
There are eight sites to which a single hole can hop in this fashion. Note that throughout the entire
process, the magnetic quantum number in Fig. (21) is preserved, e.g. Stot

z = ~/2 if perfect Néel order
prevails everywhere around the fragment displayed in the figure for a lattice with an even number of
sites. Within the t-J and t− Jz approximations to the Hubbard model, same sublattice hops are more
masked. In the t-J model, only a third order process links a hole to one of its next nearest neighbors
on the same sublattice. Albeit holding for models derived from the Hubbard model on bipartite lattices,
in many instances the sublattice parity principle becomes much more alive and transparent within the
original Hubbard model itself.

A.2 Numerical Dispersions
Simulations of the Hubbard and Heisenberg model with a single hole have found a discrete number
of sharp peaks in the spectrum which could be identified with string-states. The longer the string,
the higher the energy of the peak. Because there is a gap between the first and second peak,
we can confine our attention to the lowest peak. This peak has a finite quasi-particle weight. The
dispersion of this peak as a function of k, tells us about the effective movement of a hole through an
antiferromagnet. A numerical result from Louis et. al. [80] for this dispersion relation in the Hubbard
model is shown in Fig. (22).

The central result of numerous investigations is that they all found that a sharp quasiparticle peak
appears at the bottom of a broad continuum of the hole spectrum. These quasiparticle poles form a
coherent hole band with a width of order of 2J over a wide range of J/t, and the coherent propagation
is made possible by “healing” a string of flipped spins by quantum fluctuations.

One can easily Fourier transform the numerical low energy hole dispersion relation ϵ(k⃗) to unveil the
important real space quasiparticle motions and their respective amplitudes. If we make the simplifying
assumption that the hole is the quasiparticle then we find that essentially all of the low energy weight
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Figure 21: A single hole can still move through an antiferromagnet without generating string states
by hopping in steps of two. This way it stays on the same sublattice. For this it has to go through an
intermediate state with a double occupied site. This intermediate state costs an energy U . This leads
to movement of the hole on the same sublattice with an amplitude ∝ t2/U .
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Figure 22: Quasiparticle band structure for a single hole on 12 × 12 clusters of the square lattice
with periodic boundary conditions and U = 8t. The solid line corresponds to the fitted dispersion
relation (see text). The inset shows the bandwidth as a function of t2/U for U ≥ 8t; the fitted straight
line is −0.022t+ 11.11t2/U . From Louis, Guinea, López Sancho and Vergés [80].

is distributed amongst the next nearest neighbor motions linking the hole to its sublattice. This is a
consistent logical outcome of a strong local Néel order fused with the fact that the magnetic moment
is a conserved quantum number. That the nearest states on the same sublattice (and those further
away) have the highest weight could hardly be surprising. Hopping amplitudes to sites which are
further and further away on the same sublattice drops significantly with distance [80].

Stated alternatively, if on the two dimensional lattice, the hopping amplitude to any of the four colinear
sites (twice (up, down, right or left)) is t0 and if motion to any of the four diagonal sites has amplitude
t2) then the dispersion relation will read

ϵk = ϵ0 − 4t2 cos kx cos ky − 2t0(cos 2kx + cos 2ky). (A.2)

From lowest order perturbation theory [20], we immediately expect t2 = 2t0 = −O( t
2

U
) where the

relative factor of two originates from the two paths by which we may reach diagonal sites by two
consecutive hops as comparde to the single two step route to longintudinal next nearest neighbors.
As illustrated in Fig. (23), renormalized hopping amplitudes of the same order of magnitude O( t

2

U
)

reproduce the detailed and tedious numerical fits of Fig. (22) remarkably well. More generally, if
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one Fourier transforms the elaborate data encoded in Fig. (22) we find that the bulk of the Fourier
weight corresponds to next to nearest neighbor motions with hopping amplitudes of the same order
as anticipated from lowest order perturbation theory [80].

In accordance with expectations from perturbation theory, it is indeed found numerically that diagonal
(nodal) hopping is almost twice as large in amplitude as compared to longitudinal hopping (a property
which might easily transcend to larger length scales by virtue of many of the small length scales in
these materials) with both amplitudes of order O( t

2

U
). In Fig. (23), we show the theoretical dispersion

curves coming from equation (A.2) for t0 = −0.70 t2

U
and t2 = −1.52 t2

U
and ϵ0 = −68.15t. These

curves capture all the essential features of the numerical dispersion curve shown in Fig. (22).

It is obvious that the Brillouin zone has doubled as a result of the fact that the hole is moving in steps
of two through the lattice.

Figure 23: Dispersion relation for a single hole in an antiferromagnet according to the simple view
that the hole is a quasi-particle that moves on one sublattice by hopping in steps of two (equation
A.2). Here we employ ϵ0 = −68.15t, t2 = −1.52 t2

U
and t0 = −0.70 t2

U
with U = 8t.
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The very good fit obtained to the dispersion curve of a single hole in an antiferromagnet by introducing
the three parameters (ϵ0, t0 and t2) suggests that the complicated problem of a single hole in an
antiferromagnet can be reduced to a single particle problem. This is a major simplification. If we
really can neglect spin-flips and string-states, the single hole problem has been reduced to a single-
particle problem. The spins have become static and their only function is to create a checkerboard
like sublattice structure that keeps the hole moving on only one sublattice by forcing it to move in
steps of two. Large J means in principle both large Jz and J⊥. A large J⊥ leads to spin-flips being
relatively important and this will restore the string-states. Increasing the value of J , and thus of J⊥,
leads to spin-flips which will restore a string to the normal antiferromagnet. However, the relevant
region of the Hubbard model and the t-J model is the region of small values of J .

Stated more generally, the constraint on hole motion (equivalent to the assumption of Néel order) may
be regarded as a low energy selection rule on the matrix elements of the effective Hamiltonian. The
total z component of spin (sublattice parity order) is a conserved quantum number and transitions
between different sublattice states are banned. Whenever Néel order is strong, the states are
effectively separated into two disjoint Hilbert spaces each for a different sublattice parity (magnetic
Sz) quantum number. As we demonstrate in the main text, stripe order may be interpreted as an
immediate consequence of sublattice parity quantum numbers.
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