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ABSTRACT 
 

Cosmic membrane theory (CM) uses the model of a 4-dimensional balloon with a thin skin, 
expanding in hyperspace. A homogeneous vector field acts perpendicularly from outside on the 
membrane and causes the gravitation. CM denies the frame-dragging effect of the spin axis of an 
orbiting gyroscope (also named Lense-Thirring effect). The results of the Gravity Probe B 
experiment are correct only for geodetic precession. In the case of the frame-dragging effect, data 
were selected with a particular goal in mind, and only this way they yielded the desired result. 
 

 
Keywords: Geodetic precession; frame dragging; relativity; membrane; absolute space. 
 
1. INTRODUCTION 
 

One hundred years after the publication of the 
theory of relativity by Albert Einstein, new 
scientific insights have been gathered which 
make it advisable to develop the theory of 

relativity further. In this regard, many consider 
the cosmic background radiation (CBR) by 
Wilson and Penzias the most important 
discovery, because CBR depicts, by its dipole 
character, the absolute motion of Earth in space. 
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Cosmic Membrane Theory (CM) uses the model 
of a 4-dimensional balloon with a thin skin, 
expanding into hyperspace. The 3-dimensional 
surface of the balloon (the membrane) is our 
cosmos. A homogeneous vector field acts 
perpendicularly from outside onto the membrane, 
and causes the local curvature of the space 
which is otherwise the cause of gravitation and 
dark matter. The two major differences between 
general relativity and CM are: (1) CM denies the 
frame-dragging effect (also called Lense-Thirring 
effect), and (2) dark matter is considered to be 
only a membrane effect that is caused by the 
interaction of the homogeneous vector field with 
the curvature and the depth of space. The 
existence of dark matter cannot be derived from 
GR. The results of the Gravity Probe B 
experiment are correct only for the geodetic 
precession. In the case of the frame-dragging 
effect, data were selected with a particular goal 
in mind, and only this way they yielded the 
desired result. 
 
Despite the criticisms concerning the 
interpretation the data of the Gravity Probe B 
experiment, this great, expensive and optimally 
managed experiment is and remains one of the 
key experiments of physics and cosmology, 
comparable to the discovery of nuclear fission by 
Otto Hahn and Lise Meitner, or the discovery of 
the cosmic background radiation by Arno 
Penzias and Robert Wilson. Besides the exact 
and correct survey of the geodetic precession, 
the measurements of Everitt, Conklin and their 
team wear the signature of the membrane. 
 
This article is structured as follows: Section 1 is a 
brief review of cosmic membrane theory. The 
theme of section 2 is the change of the speed of 
light in the gravitational field. Section 3 shows the 
derivation of the formula of the change of mass 
in the gravitational field. Section 4 describes the 
geodetic precession under consideration of an 
absolute space. Further, we show that the frame-
dragging effect is nothing else than the geodetic 
precession caused by the sun. 
 
2. A BRIEF REVIEW OF COSMIC 

MEMBRANE THEORY 
 
The prediction of the cosmic micro-wave 
background radiation by Gamow, Doroshkevich 
and Novikov [1] and its discovery by Arno 
Penzias and Robert Wilson [2] with a clearly 
defined dipole supports the hypothesis of an 
absolute space (rest inertial system, quantum 
vacuum, or membrane) in the sense of Newton. 

One can explain the dipole as a Doppler-effect 
that is caused by the motion of the Earth in the 
rest inertial system. Naturally, this motion is a 
relative motion in respect to the rest inertial 
system. That means, whenever we had to deal 
with clocks or rods we had to consider relativistic 
effects due to special relativity. Furthermore, 
nearly all effects caused by the membrane have 
an adequate translation in the terminology of 
general relativity. Pioneers are here Dicke and 
espacially Puthoff [3]. The imagination of an 
absolute space is not far from Mach’s principle 
[4,5,6]. 
 
The fundamental element of cosmic membrane 
theory is the membrane [7,8]. The membrane 
expands like a balloon in 4-dimensional 
hyperspace. This membrane is our cosmos. 
Other names in use are space-time, quantum 
vacuum, or absolute space. In our 3-dimensional 
experience world, we are unable to imagine load 
in the 4th dimension, but we are able to calculate 
it [9]. We have described the methods of the 
computation in [8,10], e.g. the construction of the 
grid and boundary conditions, or the generation 
of a galactic model. One can find similar methods 
in [11-13], especially the questions of the range, 
the use of Gaussian density profiles, complex 
sequences of steps to find the initial values, or 
incorporating adaptive mesh refinement and 
surface tracking. 
 
A disturbance of the membrane appears from the 
higher dimension and causes a curvature. The 
disturbance of the cosmic membrane is caused 
by a homogeneous vector field that acts 
perpendicularly to the membrane. For properties 
of the homogeneous vector field see [6,14-15]. 
One can imagine the vector field as a flow or a 
radiation or another power source perpendicular 
to the membrane. The vector field acts only on 
matter embedded in the membrane, but not on 
the membrane itself. The curvature caused by 
the vector field depends on the distribution of 
matter. The simplest case is that of spherical 
symmetry. In the case of a 3D-membrane 
stretched in 4D-space, the vector field acts on a 
central mass and causes a spherical gravitational 
funnel in the 4th dimension. Let F0 be the          
tension of the undisturbed membrane. It has the 
dimension of a force per area, i.e. [N/m2]. 
 
We gave in [10] the derivation of the differential 
equation of the curvature of the 3D-membrane 
(curvature of space) in the simple case of a 
central load, with reference to the 2-dimensional 
analog. We found 
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                                  (1.1) 

 
Each function w(r)=C1+C2/r is a solution of the 
ODE. Differentiation of w(r) = C1+C2/r yields w‘(r) 
= -C2/r². That is the slope of the membrane at 
distance r to the center. Let x, y, z be the 
ordinary spatial coordinates of our coordinate 
system, and let w be the 4th spatial coordinate, 
perpendicular to the other coordinates. The w-
axis is positioned in the center of the gravitational 
funnel. If a (small) mass m is situated in the 
sloped membrane, the vector field causes a 
force. The decomposition of this force yields the 
downhill force FDH as 
 

FDH = m AVF sin(α).                                 (1.2) 
 
Here, the quantity AVF is the vector-field 
acceleration, and α is the angle of the slope                
of the membrane. For small angles is 
sin(α)≈tan(α)= w‘. We replace sin(α) by C/r², and 
obtain 

 
FDH = m AVF w’(r).                     (1.3) 

 
This is Newton’s law of gravitation for the case of 
two masses, i.e., a great central mass that 
causes the gravitational funnel, and a small mass 
m. The downhill force FDH is the force of 
attraction. Now, we apply Eq. (1.3) to the solar 
system. The quantity RS is the radius of the Sun, 
MS the mass of the Sun, WRS the depth of space 
w of the deformed membrane at the edge of the 
Sun, and W’RS is the slope of the membrane at 
the edge of the Sun. In [7], one can find a series 
of relations between depth of space, the slope of 
the membrane at the edge of the Sun, and the 
gravity. Among others, we find: 

 

.         (1.4) 

 
We can estimate the depth of space WRS at the 
edge of the Sun using Feynman’s radius of 
excess rEx. We equate formally the radius rEx with 
the geometrical extension of the path dS from the 
edge of the Sun to its center [8]. Using 
Feynman’s [9] value of rEX = dS = 491 [m] and 
RS=6.958×108 [m], we obtain the depth of space 
as WRS= 1.432×106 [m] or 1432 [km] in our 
membrane model. The vector-field acceleration 
AVF is the proportionality factor of the force 
caused by the homogeneous vector field that 
acts on one kilogram of matter in the membrane 

in direction of the negative 4th dimension. We find 
[8]: 
 

.        (1.5) 

 
Using the ordinary gravitational acceleration of 
gRS = 280.1 [m/s2] at the edge of the Sun, and the 
above mentioned values of RS and WRS, we 
obtain the value of the vector-field acceleration 
AVF as AVF = 1.361×105 [m/s2].  
 
The membrane steadies the position of the Sun 
against the forces of the vector field, just as the 
elastic mat of a trampoline steadies the weight of 
an athlete against gravity. The tension F0 of the 
membrane compensates the action of the vector 
field. From this, it follows that the force FW = MS 
AVF has to be compensated by the vertical 
(directed in w-direction) components of the 
tension F0 that pulls at the surface 4πRS

2 of the 
Sun. The vertical component of Fo is Fow= Fo 
sin(α). The slope of the membrane is w’=tan(α). 
We obtain the equation for the tension of the 
membrane at the edge of the Sun and for small 
angles α [8]. 
 

.         (1.6) 

 
The numerical value of the tension is Fo = 
2.164×1019 [N/m2]. Although the membrane is 
disturbed in the environment of a star, it is still 
almost flat, considering the tiny slope at the edge 
of the Sun. 
 
3. SPEED OF LIGHT IN THE 

GRAVITATIONAL FIELD 
 
The special relativity (SR) of Einstein postulates 
that light travels with the constant speed c in 
each inertial system. This does not hold true for 
accelerated systems, i.e. all systems under the 
influence of a gravitational field. The idea of a 
changing speed of light was published already in 
1911 by Einstein [16], then by Dicke in 1957. 
Puthoff [3] developed further Dicke’s theory and 
published in 2002 his “Polarizable-Vacuum 
approach to GR”. This theory is based on the 
spatial variations of the vacuum electric and 
magnetic permeabilities. We find in Puthoff’s 
paper, besides the changing speed of light, also 
the changing of mass under the influence of the 
gravitational field. Some other authors in the field 
of changing-speed-of-light theories are [17-19].   
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In terms of cosmic membrane theory, the speed 
of light depends on the depth of space, w, and on 
the properties of the membrane which depend on 
w [20]. This change in the speed of light is the 
cause of certain effects, including the bending of 
light by stars and galaxies, and the Shapiro time 
delay effect of radar signals with trajectories that 
graze the edge of the Sun. 
 
The bending of light by stars or galaxies depends 
on two causes: 
 

1. The common force of attraction of a 
gravitational field concerning all kinds of 
matter, including photons; 

2. The bending of the wave front of a beam of 
light because of the different velocities of 
the beam at the side of the mass and the 
opposite side. 

 
The more fundamental reason of the second 
cause is based on the fine structure of the 
membrane. In agreement with Dicke and Puthoff 
[3] we showed in [20] that the speed of light 
changes according to Eq. (2.1) in the case of a 
gravitational funnel with spherical symmetry. 
 

                                    (2.1) 

 
Here, the quantity c0 is the vacuum speed of light 
for r→∞, and 2a is the Schwarzschild radius of 
the central mass, e.g., the Sun.  
 
4. CHANGE IN MASS IN THE 

GRAVITATIONAL FIELD 
 
Mass changes in the gravitational field in a way 
similar to the speed of light. Unfortunately, we 
have no physical model direct from the 
membrane to explain this change, but on the one 
hand we can refer to Puthoff [3], on the other 
hand we will show that at least one effect is 
based on this assumption. The square of the 
kinetic energy, E2, is, in agreement with relativity 
theory,  
 

.        (3.1) 

 
The mass m00 is the mass of a body at an infinite 
distance from the gravitational center and with 
speed v=0 with respect to the surrounding 
membrane. Velocity c0 is the speed of light at an 
infinite distance from the gravitational center. The 
momentum p is p=mvf. Velocity vf is the pure rate 

of fall of a body falling from the infinite distance 
to the distance r from the gravitational center. In 
Eq. (3.2), the quantity K is a constant we still 
have to determine. We neglect the terms with 
a2/r2, and obtain the energy E as  
 

.  (3.2) 

 
We differentiate the energy E with respect to the 
distance r from the center of gravity. Hereby, we 
make use of the relations )/21()( 0 racrc −= , 

, , 

2
0 /2/ racdrdc = , , and 

, 

and  neglect the terms with a2/r2. We obtain 
 

.  (3.3) 

 
For the division by E, we rewrite E and neglect 
again the terms with a2/r2.  
 

      (3.4) 

 

We insert , and obtain the 

following expression for the energy E: 
 

.   (3.5) 

 
With 2

0/ cMGa = , and neglecting of all terms 

with a2/r2 and for r>>a, we obtain 
 

  (3.6) 

 
For small terms behind the 1 (unity) inside the 
parentheses of Eq. (3.3), the differential quotient 
dE/dr is then approximately 
 

 (3.7) 

 
We obtain, after multiplication of the two 
parentheses and neglecting all terms with a2/r2 or 
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r-terms with a power higher than 3, the following 
expression: 
 

     (3.8) 

 
The first term of the right side of Eq. (3.8) is 
Newton’s ordinary gravitation. The second and 
third terms are relativistic. The action of the 
homogeneous vector field is the cause of all 
forces in this case, i.e. 
 

( )

3
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2
00

2
00
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r

GMKam
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=
+

−=−        (3.9) 

 
Eq. (3.8) and Eq. (3.9) represent the same force 
caused by gravity, i.e., we have to equate the 
second term of the right side of Eq. (3.9) with the 
second and the third terms of Eq. (3.8). We 
obtain the new equation 
 

3
00

3
00 )94(

r

GMam
K

r

GMKam +−=− ,     (3.10) 

 
or K=4K-9, or 3K=9, and from this K = 3. The 
dependency of the mass on the distance r to the 
central mass, e.g., the Sun, is given by Eq. (3.11) 
in the case of free fall. 
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Eq. (3.11) is in agreement with Puthoff’s 
“Polarizable-Vacuum approch” [3]. The term a/r 
is the known relativistic increase of the mass in 
dependence on velocity. The term 2a/r is caused 
by a change in the properties of the membrane in 
the gravitational funnel. We have not found a 
direct derivation of Eq. (3.11) from the supposed 
properties of the membrane. But this equation 
receives its justification from the fact that one can 
compute, with its help, the geodetic precession of 
an orbiting gyroscope in the gravitational field. 
 
5. GEODETIC PRECESSION AND 

FRAME-DRAGGING EFFECT 
 
According to general relativity theory, the spin 
axis of an orbiting gyroscope performs two 
movements of precession of different magnitude 
– the geodetic precession and the precession 
caused by the Lense-Thirring effect (frame 
dragging). The Lense-Thirring effect should 

cause an annual movement of precession of 
about 39 milliarcseconds (mas) in the west-east 
direction if the gyroscope moves in a polar orbit 
with an altitude of 642 km (see Fig. 4.1.1), as in 
the Gravity Probe B experiment [21]. The 
geodetic precession appears even for a non-
rotating central mass. According to general 
relativity theory, its annual value is 6606 
milliarcseconds (mas) in the orbital direction (cf. 
the Gravity Probe B experiment [21]). 
 
According to membrane theory: 
 

1. The geodetic precession appears as well, 
but it generates different intermediate 
results of earthbound experiments (see, 
e.g., the Gravity Probe B experiment). The 
reason for these differences are the motion 
of the Earth around the Sun and the 
motion of the Sun in the absolute space. 
But these motions do not affect the final 
result of 6600 mas/yr. 

2. The Lense-Thirring effect (frame dragging) 
in the special case of the precession of the 
spin axis of an orbiting gyroscope appears 
presumably only if the rotating central 
mass possesses heterogeneities that 
cause gravitational waves [22]. In this 
case, a twisted gravitational field is formed 
in which the orbital plane of an orbiting 
gyroscope rotates in free fall. If a rotation 
appears, then this effect is clearly smaller 
than the 39 mas/yr of rotation in west-east 
direction expected in the Gravity Probe B 
experiment. We expect less than 5% of the 
above value because of the relatively small 
heterogeneities of the density of the 
surface of the Earth, i.e., we expect a 
maximum rotation of 2 mas/yr. 

 
5.1 Geodetic Precession without 

Consideration of the Absolute Motion 
in Space 

 
As mentioned above, one can compute the 
geodetic precession from the assumptions of 
membrane theory. If one neglects the motion of 
the Earth and the Sun in absolute space, one 
obtains the same value as predicted by general 
relativity, and the same value that the Gravity 
Probe B experiment has stated very exactly. The 
formula of the angular frequency 

GΩ&  of the 

geodetic precession is, in general relativity, 
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Fig. 4.1.1. Orbiting gyroscope in a polar orbit 
with geodetic precession of 6606 mas/yr and 

precession caused by the Lense-Thirring 
effect of 39 mas/yr 

 
In Fig. 4.1.1, R is the radius center of Earth-orbit, 
S is the spin vector of the gyroscope, and v is the 
orbital speed in the polar orbit. As Eq. (4.1.1) 
shows, the geodetic precession does not depend 
on the norm of the spin vector S. One finds the 

direction of the change in the spin, Sd
r

(here 
6606 mas/yr), from the direction of the vector 

product SG

r
& ×Ω . 

 
In membrane theory, the main part of the 
geodetic precession is caused by the decrease 
of the velocity of waves of any kind in the 
gravitational funnel [22-23]. We had already 
presented this effect in Section 3, Eq. (3.1), for 
the speed of light. The generalization to waves of 
any kind, i.e., matter waves (de Broglie waves), 
lends itself in this case, and will be justified by 
the result [24-25]. Remember, Eq. (3.1) was 
c(r)=co(1-2a/r). This decrease in speed is 
connected indirectly only with the geometrical 
curvature of space. The decrease is caused by a 
change in the inner structure of the membrane 
[16]. By analogy, we find Eq. (4.1.2). 
 

v( r ) = vo ( 1 – 2a / r )                 (4.1.2) 
 
Here, vo is the velocity of the center of mass of 
the gyroscope in its orbit, and 2a is the 
Schwarzschild radius of the Earth. An important 
question is the choice of the correction term 2a/r 
in eq. (4.1.2). Puthoff’s “Polarizable-Vacuum 
approch” [3] would tend primarily to a correction 
term 3a/r as given in eq. (3.11). But the term 3a/r 
leads to another results of the geodetic 
precession, different to the GR. Therefore we 
used the term 2a/r. Another justification is that 
the term a/r in eq. (3.11) is the known relativistic 
increase of the mass in dependence on velocity.   

Eq. (4.1.2) shows that those parts of the 
gyroscope move faster that are further away from 
the Earth. The nearer parts move more slowly. A 
small brake force appears only when swiveling 
into orbit. The derivative dv/dr of the speed with 
respect to distance r from the center of mass has 
the dimension of an angular frequency, i.e., 1/t. 
We find 
 

2
0

1

2

r

av

dr

dv ==Ω& .                  (4.1.3) 

 
Using the data of the Gravity Probe B 
experiment, integration over one year yields the 

rotation angle 5
1 10283.4 −×=Ω  of the spin axis 

of the gyroscope lying in the plane of the orbit, 
and the same direction of rotation as the orbit. 
This angle corresponds to 8834 mas. The angle 
of 8834 mas is nearly exactly one third greater 
than the 6606 mas that are predicted for the 
experiment by general relativity, and has been 
measured very exactly in the Gravity Probe B 
experiment. However, the second membrane 
effect – the increase of the mass in the 
gravitational funnel – yields the necessary 
correction of this excessively high value. 
Together, the two effects yield a rotation angle of 
6623 mas. The small deviation from the target 
value of 6606 mas/yr is caused mostly by 
imprecise orbital parameters. 
 
Eq. (3.11), m(r) = moo (1 + a/r + 2a/r), of Section 
3 describes the change in mass m in the 
gravitational field of a central mass with the 
Schwarzschild radius 2a, at the distance r from 
the center of the gravitational funnel. Here, the 
term a/r does not apply. The term 2a/r describes 
the change in mass as a function of the distance 
r in the gravitational funnel.  
 

 
 

Fig. 4.1.2. The gyroscope in two different 
positions 

 
Fig. 4.1.2 depicts the gyroscope at his polar orbit 
in two positions. In position 1, those volume 
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elements that are at that side of the gyroscope 
seen by the viewer (the blue arrow) move in the 
direction of Earth. The radius R and the velocity v 
are always perpendicular to each another. The 
distance of a volume element dV of the 
gyroscope from the center of gravity (center of 
Earth) is 
 

)cos()sin(),( θφθφ VrRr += .    (4.1.4) 

 
Here, the quantity θ is the rotating angle (polar 
angle) of the gyroscope (measured from the 
North Pole), R is the distance of the gyroscope 
from the center of Earth, rv is the distance of the 
volume element dV from the spin axis S of the 
gyroscope, and φ is the rotating angle of the 
gyroscope (measured from the equatorial plane) 
around its spin axis S. The term cos(θ)  
describes the influence of the gravitational force 
from different directions (radii) and its projection 
at the orbit. We obtain the rotating angle φ by the 
angular frequency ω of the gyroscope and time t 
as φ= ω t. We differentiate the change in mass, 
m(r) = moo (1 + 2a/r), with respect to the time t, 
and obtain 
 

)cos()cos(
2

2
θωφφ

φ v
oo r
r

am

dt

d

d

dr

dr

dm

dt

dm ==  (4.1.5) 

 
Now, suppose the spherical gyroscope is divided 
perpendicularly to the spin axis S into slices of 
thickness δ. Let be ρ the density of the material. 
The volume element in cylindrical coordinates is 
dV=rv dφ drv δ. Assuming a constant orbital 
speed v, the above-mentioned change in mass 
per time unit, dm/dt, causes a change in the 
momentum Fv =v·dm/dt with the dimension of a 
force. 
 

 
 

Fig. 4.1.3. Slice of the gyroscope with volume 
element dV 

If the volume element dV is moving toward the 
Earth, as illustrated in Fig. 4.1.3, i.e., opposite to 
the radius R, its mass will increase. The force Fv 
originates in the membrane, and it acts in 
position 1 of the gyroscope and, for an increasing 
mass of the volume element dV, in the direction 
of the orbital velocity v. At the opposite side of 
the slice, the mass of the mirrored volume 
element decreases, and the force -Fv acts in the 
opposite direction of the velocity v. The 
projections of the two forces, Fv and -Fv, at the 
direction of the spin axis S result in the pair of 
forces, FS and –FS, each with the leverage arm L. 
This pair of forces produces a torque dD of the 
slice. If the gyroscope is in position 2 (see Fig. 
4.1.2), the volume element moves away from 
Earth, i.e., its mass decreases. The force FS is 
directed in the opposite direction of the orbital 
velocity v. However, velocity has changed its 
direction after half an orbit around the Earth. That 
means, the force FS then has the same direction 
as in position 1 of the gyroscope. Accordingly, 
the direction of the force -FS remains unchanged 
too at the opposite side of the slice, and, thus, 
the direction of the torque dD. The torque dD will 
be zero when the spin axis S and the orbital 
speed v are perpendicular to each other. This 
behavior is described mathematically by the once 
again including factor cos(θ) in Eq. (4.1.6). 
 
The velocity v is the orbital speed of the 
gyroscope around the Earth, the angle φ=ωt is 
the rotating angle of the gyroscope around its 
spin axis, rv is the distance of the volume 
element from the center of the slice, L is the lever 
arm (it is computed as the projection of the 
distance rv at the direction of the vector product 

), Fv is the force acting on the volume  
element dV, FS is the projection of Fv at vector S, 
and δ is the thickness of the slice under 
consideration. In Fig. 4.1.3, the plane of the orbit 
is spanned by the vectors v and R. The lever arm 
L of the torque L· FS depends on the rotating 
angle φ as L=rv cos(φ). For this reason, the factor 
cos(φ) appears again (i.e., now as factor cos2(φ) 
in Eq. (4.1.6)). The projection FS of the force Fv 
at the direction of the rotating axis S depends on 
the polar angle θ of the momentary position of 
the gyroscope at its orbit (FS = Fv cos(θ) ). For 
this reason, the factor cos(θ) appears again (i.e., 
now as factor cos2(θ) in Eq. 4.1.6)). We replace 
the mass moo in Eq. (3.11) by the mass of the 
volume element, i.e., moo=ρdV=ρ rv dφ drv δ, and 
consider the fact that the torque is computed with 
the couple of forces, FS and –FS, and the same 
lever arm L (first factor of 2 in Eq. (4.1.6). The 
torque dD acting on the slice is then          

                                                      dD 

           
                                                                                     

                                                             
                        dV               FS                          

                                                                                      

                                               rv         L                         S 

                                    φ    L                  rv 
                                                   Fv 
                                                 rv                                      -FS 

                                                                   
                                                                                            -Fv 
                    R 

                                                                                   V 
                               δ                   

θ 

DdS
rv

×
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 (4.1.6) 
 
We perform the integration in two steps, and only 
for one half of the slice, because the factor of 2 
(mentioned above) is already present in Eq. 
(4.1.6). Therefore, in the first step of integration, 
we integrate with respect to the angle φ from 0 to 
π. In the second step of integration, we integrate 
with respect to the radius rV, running from the 
center (rV=0) to the radius rG  (rV=rG) of the slice 
of the gyroscope. This way, we get the full torque 
D acting on the slice. Now, the torque D depends 
only on the polar angle θ. 
 

)(cos
42

4 2

2

4

θωδρπ ⋅
⋅⋅

⋅⋅⋅⋅⋅⋅⋅=
r

arv
D G       (4.1.7) 

 
The moment of inertia JS of the slice is JS=( π δ ρ 
rG

4 ) / 2 with respect to its spin axis. If a torque D 
acts on a spinning gyroscope with angular 
frequency ω and moment of inertia JS, and the 
torque acts perpendicularly to the spin axis of the 
gyroscope, the precession of the gyroscope is 
 

.    (4.1.8)  

 
Vector F is the force produced by torque D. The 

direction of the vector (or of the vector  
respectively) is the one given by the vector 

product SD
rr

× . By centrifugal theory, the 

direction of the change 2Sd
r

 of the spin is given 

by the vector product FS
rr

× , i.e., the opposite 

direction of the main effect of 1Ω&  in Eq. (4.1.3). 

However, the precession 2Ω& still depends on the 

polar angle θ. Integration of 2Ω& with respect to 
the polar angle θ from 0 to 2π produces the 
factor ½, i.e. 
 

22 2 r

av

J

D

S

⋅=
⋅

=Ω
ω

& .                 (4.1.9) 

 
Under consideration of the opposite signs, the 
two equations (4.1.3) and (4.1.9) result in Eq. 
(4.1.1). That means, the result is the same as 
given by general relativity. The error bars           
given in the final report of Everitt et al. [21]            
are 6601.8±18.3 mas/yr. Our own numerical 
integration of eq. (4.1.1) yielded a value of 6623 

mas/yr. The t-value of t=(6623-6601.8)/18.3=1.25 
results in an error probability of 25% for the 
rejection of the null hypothesis. That means our 
result is within the error bars of the GPB 
experiment.  The discrepancy to the prediction of 
the GR with 6606.1 mas/yr is simply a 
consequence of our imprecise knowledge of the 
exact orbital parameters of the GPB experiment. 
 
5.2 Geodetic Precession under 

Consideration of Absolute Motion in 
Space 

 
In membrane theory, Eq. (4.1.1) is only a partial 
result. The true speed v of the gyroscope in the 
rest inertial system is composed as vector sum of 
the orbital speed vG=7.6 km/s of the gyroscope in 
its polar orbit around the Earth, the speed vE=30 
km/s of the Earth during its orbit around the Sun, 
and the speed vS=369 km/s of the Sun in the 
absolute space in direction of the constellation 
Virgo. 
 
The guide star IM Pegasi was the target in the 
Gravity Probe B experiment. Seen from the Sun, 
it is located in about the direction opposite to the 
constellation Virgo. The Sun moves with a speed 
of 369 km/s in the direction of this constellation 
(see Fig. 4.2.1).  
 
In the equatorial coordinate system, IM Pegasi 
has the coordinates right ascension 22h 53m, 
declination +16° 50’. The Virgo cluster has the 
coordinates right ascension 12h 27m, declination 
+12° 43’. If we arrange the x-axis of our 
coordinate system so that it is directed to the 
guide star IM Pegasi, then the Sun moves in the 
xy plane on a trajectory through the absolute 
space at an angle of 10h 26m or βSX=-156.5° (or 
+203.5° respectively) to the x-axis. Because of 
the positive declinations of +16° 50’ of the guide 
star and +12° 43’ of the Virgo cluster, the 
trajectory of the Sun in the xz plane has an angle 
βSZ =60.5° with the z-axis. Because of the 
declination of the x-axis, the z-axis of our 
coordinate system is not perpendicular to the 
plane of the celestial equator, but it is slanted by 
16° 50’ in direction of the Virgo cluster. The y-
axis of our coordinate system points away from 
the viewer backward, and it is lying in the plane 
of the celestial equator. 
 
On March 21, the Sun is positioned in the 
constellation Ram (spring point and zero point              
of the astronomical measurement of the angle          
of the right ascension in the plane of the   
celestial equator). Neglecting small angles, the   

2

222 )(cos)(cos22

r

radrdrv
dD VVV θφωφδρ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

=

)(cos 2
22 θ

ω r

av

J

D

S

⋅=
⋅

=Ω&

F
r

Ω−
r
&
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x-component vx of the speed v of the gyroscope 
in the absolute space is 

 
)cos()sin()cos( GGEESXSx vvvv θαβ +−=  (4.2.1) 

 
and the z-component vz is 
 

.    (4.2.2) 

 

 
 

Fig. 4.2.1. The orbit of the earth on the ecliptic 
with the zodiac 

 
Here, the y-component, vy, is neglected. In Eq. 
(4.2.1), the angle αE is the orbital angle of the 
Earth around the Sun (here measured from the 
x-axis), and θG is the orbital angle of the 
gyroscope on its polar orbit. Our x-axis is 
positioned in the plane of the orbit. The angle θG 
is measured from the z-axis. Now, we show that 
Eq. (4.1.1) remains valid even in absolute space. 
If the vectors r

r
and v

r
are not perpendicular to 

each other then )sin( rvvrvr α=× rr
 holds, 

where the quantity αrv is the angle between the 
vectors r

r
 and v

r
. Eq. (4.1.2) changes to be 

v(r)=vo(1–2a/r)sin(αrv). The velocity v0 is the 
absolute velocity in the orbital plane. The Eq. 
(4.1.3) becomes the Eq. (4.2.3). 

 

2
0

1

)sin(2

r

av

dr

dv rvα==Ω& .     (4.2.3) 

 
As Eq. (4.2.3) states, the projection FS of the 
force Fv onto the direction of the spin axis S does 
not further depend directly and exclusively on the 
polar angle θG of the orbit of the gyroscope, but 
on the angle αvS, i.e., the angle between speed 

v
r

 and spin axis S
r

 in the xz plane. The tangent 
of the angle αvS is tan(αvS)=vz/vx and thereby αvS 
=arctan(vz/vx). The term cos(θG) is, as before, 
part of the description of the distance of the 

volume element dV of the gyroscope from the 
center of gravitation (center of Earth). Thereby, 
Eq. (4.1.7) transforms into Eq. (4.2.4). 
 

,  (4.2.4) 

 
and Eq. (4.1.8) transforms into Eq. (4.2.5). 
 

.              (4.2.5) 

 

 
 

Fig. 4.2.2. Geodetic precession of one orbit of 
the gyroscope for three different positions of 

the earth 
 

The system of the Eq. (4.2.3) to Eq. (4.2.5) was 
integrated numerically. Fig. 4.2.2 depicts the 
precession Ω(αG) as a function of the orbital 
angle αG of the gyroscope for three different 
angles αE, i.e., for three different positions of the 
Earth on its orbit around the Sun. The curves for 
the angles αE=0° and αE=180° do not differ. The 
geodetic precession Ω increases by 1.228 mas 
during each orbit, which sums to a total angle of 
6623 mas for 5394 orbits during one year, i.e., 
nearly exactly the value of 6601,8±18,3 mas/yr 
given by Everitt et al. [21]. The prediction based 
on general relativity is 6606.1 mas/yr. 
 

5.3 Geodetic Precession Caused by the 
Gravity of the Sun versus Frame 
Dragging 

 

Everitt et al. [21] specify the influence of the 
gravity of the Sun as a west-east precession of 
16 mas/yr, i.e., the same direction as the 
expected frame dragging effect (Lense-Thirring 
effect). Everitt et al. adjust their frame dragging 
value by this value of 16 mas, but also by several 
other known influences, e.g., the motion of the 
guide star IM Pegasi. The Earth orbits the ecliptic 

)sin()cos( GGSZSz vvv θβ −=

Z 

Y 

X 
guide star IM Pegasi 

celestial equator 
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                                           Lion                                                               
Virgo          Maiden                      30 km/s                                                              Bull 
  
         369 km/s                                                                                                                        Ram 
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                                                                                                  Ecliptic 
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                                                                                  Goat 
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)cos()cos(
42

4
2

4

vSG
G

r

arv
D αθωδρπ

⋅
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=
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once every year. On March 21, the Sun resides, 
seen from the Earth, at the First Point of Aries 
(constellation Ram), the Earth, seen from the 
Sun, at the First Point of Libra (constellation 
Scales). From this point on, the Sun moves in 
direction of the constellation Scorpion (see Fig. 
4.2.1). The plane of the celestial equator and the 
plane of the ecliptic are inclined against each 
other by an angle of 23.5°. The line of 
intersection runs between the First Point of Aries 
and the First Point of Libra. We take the line of 
intersection to be our x-axis directed to the First 
Point of Aries. The y-axis lies in the plane of the 
ecliptic and is directed to the constellation 
Cancer. The z-axis (rotation axis) is 
perpendicular to the ecliptic and points in the 
same direction as yx

rr× . Neglecting small 
angles, the Sun moves on a trajectory through 
the absolute space in the direction of the Virgo 
cluster. The trajectory has an angle of 12 h 27 m 
or αVirg=186.75° with our x-axis lying in the xy 
plane (the dashed red line in Fig. 4.2.1). The 
angle βSZ=60.5° of the trajectory with the z-axis 
in the xz plane remains nearly unchanged 
because of the positive declination of the guide 
star IM Pegasi (about δPeg=17°)  and the positive 
declination of Virgo cluster (about δVirg=13°). The 
term cos(δPeg) appears because of the 
declination of IM Pegasi. The formulas from 
Section 4.2 remain nearly unchanged. Eq. (4.2.1) 
transforms to Eq. (4.3.1).  
 

)cos(
)sin(2

2
0

1 Peg
rv

r

av

dr

dv δα
==Ω& .  (4.3.1) 

 
Here, the radius r is the mean Sun-Earth 
distance, and 2a is the Schwarzschild radius of 

the Sun. If we compute the correction term 2Ω&  
for Eq. (4.3.1), the projection FS of force Fv  onto 
the spin axis S does not further depend directly 
and exclusively on the orbital angle αE of the 
Earth, but on the angle αvS, the angle between 

the speed v
r

 of the Earth and spin axis S
r

 lying 
in the xy plane. Under consideration of this 
change in the meaning of the angle αvS, Eq. 
(4.2.5) in Section (4.2) stays nearly unchanged, 
too. However, we have to replace the orbital 
angle θG of the gyroscope by the orbital angle αE 
of the Earth. Because of the fact that, for αE =0, 
already a small angular deviation of αPeg= −17° 
exists between the orbital angle αE of the Earth 

and the spin vector S
r

 of the gyroscope, we now 
take into account this deviation. For αE = − αPeg, 
the radius and the projection of the translational 

motion of the gyroscope are perpendicular to 
each other, and, therefore, contribute no 
component in the direction of the radius. This 
behavior is described mathematically by the term 
cos(αE +π/2− αPeg). The term cos(δPeg) is needed 
because of the declination of the guide star IM 
Pegasi. We find Eq. (4.3.2) for the correction 
term. 
 

)cos()cos()2/cos(
22 PegvSPegEr

av δααπα −+⋅=Ω& .

      (4.3.2) 
Neglecting small angular deviations, the x-
component vx and the y-component vy of the 
orbital speed v

r
of the Earth in absolute space 

are 
 

)sin()cos()cos( EEVirgVirgSx vvv αδα −= , (4.3.3) 

 

)cos()cos()sin( EEVirgVirgSy vvv αδα += .  (4.3.4) 

 
The angle αvS is 
 

αvS =arctan(vy /vx) + αPeg.     (4.3.5) 
 
The angle αPeg is the right ascension of the guide 
star IM Pegasi of 22 h 53 m (αPeg= −17°). The 
system of Eq. (4.3.2) to Eq. (4.3.5) was 
integrated numerically. Fig. 4.3.1 depicts the 
precession ΩWO for two orbits of the Earth on its 
trajectory around the Sun. 
 
 

 
 
 

Fig. 4.3.1. Geodetic west-east precession of 
Earth, caused by the gravitation of the Sun, 

for two years 
 
The angle ΩWO of precession increases by about 
18 mas per year, which is in good agreement 
with general relativity. In addition, a strong sine-
shaped deviation arises from the straight line. 
The cause for this deviation is the motion of the 



 
 
 
 

Weber and Eye; PSIJ, 10(4): 1-14, 2016; Article no.PSIJ.26365 
 
 

 
11 

 

Sun and, therefore, also that of the Earth. One 
can separate the two parts of the curve in Fig. 
4.3.1 using a nonlinear regression analysis 
resulting in a straight line and a sine wave. The 
model of the regression is 
 

)sin()( 210 φααα −++=Ω EEE bbb .  (4.3.6) 

 
The OLS estimates of the regression coefficients 
are b0=18.87, b1=0.0462, b2=27.64, and 
φ=115.3°. The increase per year is 17.9 mas, a 
value which is close to the value of 19 mas given 
by general relativity. The reason of choosing the 
range of the orbital angle of the Earth, i.e. αE 
runs from -22° to 341°, depends, on the one 
hand, on the definition of the x-axis, and, on the 
other hand, on the fact that, in the Gravity Probe 
B experiment (which we refer to) the data have 
been collected within the period of one year 
starting on September 1. 
 
The frame-dragging effect (Lense-Thirring effect) 
does not appear in the present state of our 
membrane theory. The reason of our opinion is 
that, for the rotating Earth, the gravitational 
funnel is nearly smooth and without a dragging 
property. On the other hand, the results of the 
LAGEOS laser ranging experiments and its 
follower experiments state a clear precession of 
the orbital plane of the polar orbit as described 
by Ciufolini [26]. But there is a difference 
between the LAGEOS experiments and the 
Gravity Probe B. In the LAGEOS experiments 
the orbital plane performs a precession as a 
whole. In the GPB experiment the spin axis of 
the gyroscope performs (or should perform) the 
precession. We suppose that this difference has 
some deeper physical meaning. Therefore, we 
restrict our critics of the GPB experiment in this 
article to the precession of a spin axis of an 
orbiting gyroscope. Due to our calculations, we 
assert that at least 95% of the results of the 
Gravity Probe B experiment which refers to the 
frame-dragging effect, can be considered a 
misinterpretation of confusing data. The main 
cause of the misinterpretation is the negation of 
the absolute motion of Earth and Sun in space. 
 
When the central mass is not cylindrically 
symmetric, but it has heterogeneities on the 
surface (e.g., the mountains and oceans on the 
surface of the Earth) or in the inside, 
perturbations of the gravitational field propagate 
with the speed of light with the shape of a spiral. 
These perturbations could possibly cause a weak 

Lense-Thirring effect, but we have not found any 
evidence for this effect. 
 
Of course, we have reflected on the way the 
authors of the Gravity Probe B reports [21,27] 
arrived at their result of 37.2±7.2 mas/yr for the 
frame-dragging effect. Fortunately, Conklin [27] 
gave us an indication in his preliminary report in 
2008: “The results from the 85-day analysis is -
6632±43 marcs/yr in the North-South direction 
and -82±13 marcs/yr in the West-East direction 
using the SQUID and telescope noises. These 
estimates are consistent with the GR prediction 
of -6571±1 marcs/yr and -75±1 marcs/yr in            
the North-South and West-East directions 
respectively”. 
 
This means, the estimation of the value of the full 
year was performed using mostly the data of the 
period between December 12, 2004 and March 
4, 2005, i.e., using the data of 85 days (also a 
period of only 45 days has been mentioned, i.e., 
from January 1, 2005 to February 15, 2005). The 
two periods are 23%, or 12% respectively, of the 
full year. Had we used the data of the 85 days 
period as seen in Fig. 4.3.1, we would have 
computed a value for the west-east precession 
that is much too large. The reason for this over-
estimation is that the above-mentioned 85 days 
period lies in the angular sector of 80° to 163° of 
the orbital angle αE of the orbit of the Earth. In 
this sector, the curve has a strong, nearly linear, 
positive slope. 
 
However, if one tries and computes a regression 
line EE b αα 1)( =Ω  with the data of the first full 
year of Fig. 4.3.1, which yields the regression 
coefficient b1=0.1585, the sine wave will be 
intersected asymmetrically. Fig. 4.3.2 depicts the 
result. 
 
Now, one computes the residuals 

EEE bR ααα 1)()( −Ω= , and then, with the 
residuals, the regression line 

)sin()( 2 SESE bS ϕαα −=  , which yields the 

regression coefficients b2S=20.45 and φS=93°. 
This way, the new regression coefficient of the 
sine is smaller than the coefficient of the 
combined regression model of Eq. (4.3.7), i.e., 
b2S=20.45 instead of b2=27.64. We eliminate the 
thus estimated part of the sine wave in the data 
of the curve in Fig. 4.3.2, and obtain the result 
depicted in Fig. 4.3.3. 
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Fig. 4.3.2. Regression line and sine wave 
intersected asymmetrically 

 

 
 

Fig. 4.3.3. West-east precession with partially 
reduced sine 

 
The red part of the linear trend in Fig. 4.3.3 lies 
within the 85 days period of December 12, 2004, 
to March 4, 2005. The slope of b1=0.2033 yields 
a value for the full year of Ω=73.2 mas/yr (in the 
case of the 45 days period a value of Ω=76.3 
mas/yr). Conklin’s first estimation of Ω=82±13 
mas/yr changed by further analyses in the final 
report of Everitt [21] to Ω=73.4 mas/yr (thereof 
37.2 mas/yr for the targeted frame-dragging 
effect, 16.2 mas/yr for the relativistic geodetic 
effect of the Sun, and 20.0 mas/yr for the proper 
motion of the guide star IM Pegasi). Our 
estimation of Ω=73.2 mas/yr in the case of the 85 
days period meets nearly exactly Everitt’s value 
of Ω=73.4 mas/yr. This match suggests the 
conclusion that our approach to data analysis 
accords with the approach taken by the data 
analysts of the Gravity Probe B experiment. 
 
Despite our criticism of the selective 
interpretation of the data of the Gravity Probe B 
experiment, this great, expensive and optimally 
performed experiment is one of the key 

experiments in modern physics and cosmology, 
comparable to the discovery of the atomic fission 
by Otto Hahn and Lise Meitner, or the discovery 
of the cosmic microwave background radiation 
by Arno Penzias and Robert Wilson. In addition 
to the exact verification of the geodetic 
precession, the measurements of Everitt, Conklin 
and their team bear the signature of the 
membrane. We are still unable to estimate the 
scientific value of this discovery today. 
 
6. RESULTS AND DISCUSSION 
 
One important difference between general 
relativity and CM is that the cosmic membrane 
theory does not need the frame-dragging effect 
(also called Lense-Thirring effect). For a spinning 
mass of cylindrical symmetry, we will not find a 
twisted gravitational field, and, therefore, also no 
frame-dragging. Only when the spinning mass 
has heterogeneities, a twisted gravitational field 
will be generated that could be the cause of this 
effect. If this effect actually exists, it should be 
significantly smaller than predicted by Lense and 
Thirring. Here we are in a clear contradiction to 
the results of the LAGEOS mission (compare 
Ciufolini [27]). That means further research for 
the CM model. Otherwise, the LAGEOS 
experiments measured the precession of the 
orbital plane of the satellite, and not the 
precession of the spin axis, as performed in the 
GBP experiment. Here, Everitt and Conklin have 
not included the influence of the motion of the 
Sun and the Earth in the analysis of the Gravity 
Probe B data. They interpreted the relevant 
measurements as errors. In the case of geodetic 
precession, the influence of the motion of the 
Sun and the Earth in the absolute space is 
marginal. According to the excellent measuring 
technique of the Gravity Probe B experiment, the 
conformity of the predictions of the general 
theory of relativity to the geodetic precession is 
very strong. 
 
However, we have another case when trying          
to verify frame-dragging. The only significant 
gyroscopic effect in west-east direction is the 
geodetic precession caused by the gravity of the 
Sun. But this effect is superposed by a strong 
sine. The cause is the motion of the Sun and the 
additional motion of the Earth. Everitt and 
Conklin have erroneously interpreted the slope of 
the sine curve in an 85-days period as frame-
dragging effect. 
 
Despite our criticisms of the interpretation of the 
data of the Gravity Probe B experiment, this 
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great, expensive and optimally managed 
experiment is and remains one of the key 
experiments in modern physics. Besides the 
exact and correct survey of the geodetic 
precession, the measurements of Everitt, Conklin 
and their team wear the signature of the 
membrane (the absolute space). Today, this 
discovery cannot be valued high enough. 
 
A second difference between the cosmic 
membrane theory and the general theory of 
relativity concerns the interpretation of dark 
matter. The general theory of relativity makes no 
contribution to this issue. In contrast, the cosmic 
membrane theory posits that dark matter is an 
effect of the membrane that is caused by the 
interaction of the curvature and depth of space 
with the homogeneous vector field. Numerical 
computations suggest that this idea is fertile. 
 
7. CONCLUSIONS 
 
The cosmic membrane theory and the general 
relativity are very similar to one another. One can 
explain nearly all known effects in the same or a 
similar manner and with the same results. One 
finds differences in the use of the time. The CM 
theory uses four spatial coordinates, not three 
spatial coordinates together with the construct 
“ct”, as GR does. However, by Puthoff’s 
“Polarizable-Vacuum approch to GR” we find a 
connection between CM and GR. 
 
The frame-dragging effect is, besides the dark 
matter issue, one point of our special interest. 
The LAGEOS missions showed with good 
precision the precession of the orbital planes of 
the satellites. Otherwise, our calculations in 
section 4 show that the west-east precession of 
the spin axis of an orbiting gyroscope is probably 
caused only by the gyroscopic effect of the Sun. 
This is a real conflict. Therefore, further research 
should concentrate on this issue. 
 

• Is the issue a problem of the cosmic 
membrane theory? 

• Is the issue a problem of the general 
relativity? 

• Is the different behavior of an orbiting 
satellite and an orbiting gyroscope a real 
fact? In this case we have to revise both 
theories. 

 
Since the CM theory yields also some interesting 
contributions to the dark-matter problem, we 
should pursue all directions and thoughts. 
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