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Abstract

Binary neutron star mergers, such as the multimessenger GW170817 event, may produce hypermassive compact
objects that are supported against collapse by the internal circulation of the fluid within the star. We compute their
unstable modes of oscillations driven by gravitational-wave radiation and shear viscosity, modeling them as triaxial
Riemann ellipsoids. We work in a perturbative regime, where the gravitational radiation-reaction force is taken into
account at 2.5-post-Newtonian order and find unstable modes with dissipation timescales 1 ms that are relevant
to the transient state of a hypermassive remnant of a merger. We show that the secular instabilities are dominated
by gravitational-wave radiation. If the shear viscosity is included, it can increase the growth times or even stabilize
the unstable modes, but it must have values several orders of magnitude larger than predicted for cold neutron stars.

Unified Astronomy Thesaurus concepts: Neutron stars (1108); Stellar oscillations (1617); Gravitational
waves (678)

1. Introduction

The observation of gravitational waves (GW) from the
binary neutron star (BNS) inspiral event GW170817 by the
LIGO–VIRGO collaboration (LVC; Abbott et al. 2017a,
2017b, 2017c) strongly motivates the studies of the post-
merger objects left behind in such events. Numerical simula-
tions (for recent examples see Shibata et al. 2017; Most et al.
2019; Dietrich et al. 2020; Ruiz et al. 2020) show that after an
initial highly nonlinear phase of evaluation on timescales of the
order of 10 ms, the star settles into a gravitational equilibrium,
which is a hypermassive compact star supported against
gravitational collapse by the internal circulation of the fluid
(for reviews see Faber & Rasio 2012; Baiotti 2019; Chat-
ziioannou 2020). The lifetime of such an object is not well
known, as it depends on several unknown factors, such as the
strength of magnetic fields or the equation of state; however, it
is expected that it could last up to 100 ms and, for low-mass
systems, beyond. The gravitational waves emitted during this
“long-term” phase of the evolution of the post-merger object,
which can be detected by the advanced LIGO, have the
potential of providing information on the integral parameters
(mass, radius, etc.) of these objects.

In this work, we report computations of the oscillation
modes of hypermassive neutron stars modeled as classical
homogeneous ellipsoids with internal circulation, i.e., Riemann
ellipsoids (Chandrasekhar 1969). In doing so, we include the
effect of shear viscosity and gravitational-wave radiation,
which allows us to access the secular instabilities of these
objects through mode analysis.

Secular instabilities can develop in rapidly rotating compact
objects, the classical case being the m=l=2 toroidal (or bar)
mode, which becomes unstable for uniformly rotating axisym-
metric stars for the ratio of rotational kinetic energy to
gravitational potential energy T W 0.27 (Chandrasekhar
1969, 1970). Subsequently, it was shown that compact stars
undergo the so-called Chandrasekhar–Friedman–Schutz (CFS)
instability due to gravitational radiation under much more
general conditions (Friedman & Schutz 1978a, 1978b). The
corresponding timescales for the CFS instability were studied

(including the role played by viscosity) for Maclaurin spheroids
(Comins 1979a, 1979b) and rigidly rotating axisymmetric
Newtonian models (Ipser & Lindblom 1991).
The case of triaxial objects with internal circulation is more

complex: the set of oscillation modes of such objects were
computed in the ellipsoidal approximation by Chandrasekhar
(1965, 1966) in the nondissipative limit. The focus of the
subsequent studies of these objects shifted toward the problem of
their secular evolution under the action of gravitational radiation
and (shear) viscosity. Miller (1974) integrated equations of motion
Riemann S-type ellipsoids under gravitational radiation-reaction in
the post-Newtonian formalism and showed that the evolution
proceeds toward either axisymmetric or nonaxisymmetric bodies
without internal circulation. Earlier, Press & Teukolsky (1973)
integrated the equations of motion in the case of viscous fluid
showing that a secularly unstable, viscous Maclaurin spheroid
deforms itself into a stable, Jacobi ellipsoid, whereby the
intermediate configurations are Riemann S-type ellipsoids.
Detweiler & Lindblom (1977) integrated the relevant equations
of motion in the presence of both gravitational radiation-reaction
and viscosity. They find that the evolution ends on the
axisymmetric zero-circulation Maclaurin sequence. Lai & Shapiro
(1995) considered gravitational-wave radiation by nascent neutron
stars within the compressible ellipsoidal approximation (Lai et al.
1993) in the presence of gravitational radiation-reaction and
viscosity. Their study was mainly focused on the signatures from
gravitational waves generated by a secularly unstable newborn
neutron star, although they give analytical results for the
oscillation modes of Maclaurin spheroids. It has been acknowl-
edged frequently in the literature quoted above that Riemann
ellipsoids are secularly unstable; however, it appears that their
oscillation modes have not been studied beyond the nondissipative
limit given in Chandrasekhar (1965, 1966). It is, in part, a purpose
of this work to fill in this gap.
Below, motivated by the perspectives of observation of “long-

term” oscillations of hypermassive neutron stars in gravitational
waves we study the spectrum of oscillation modes of Riemann
S-ellipsoids including the secular effects of gravitational radiation-
reaction and shear viscosity in a perturbative manner. As the
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hypermassive remnants of mergers are hot, we neglect the effects
of superfluidity of their interiors, i.e., the dissipation due to the
mutual friction between the superfluid and normal fluid; this can
be treated within the ellipsoidal approximation (Sedrakian &
Wasserman 2001). In this report, we focus only on the perturbative
treatment of the secular effects whose growth times can be reliably
computed using a Newtonian background. The results of the full
(nonperturbative) treatment of the modes will be given elsewhere.

2. Perturbation Equations

We approximate a post-merger hypermassive compact star
as a Riemann S-type ellipsoid (Chandrasekhar 1969), with
principal axes ¹ ¹a a a1 2 3 and internal circulation w in the
(co)rotating frame, which has angular velocityW t( ) of principle
axis with respect to an observer at rest. For S-type ellipsoids w
and W are parallel, and are chosen to lie along the Cartesian
x3-axis, which is the same in the inertial and rotating frames;
without loss of generality we assume a1�a2. Following
Chandrasekhar (1969) we assume uniform density ρ and
incompressible fluid flow, x = 0· , where x is the
Lagrangian displacement. For small perturbations, keeping
terms only in linear order in displacements, and assuming time
dependence of perturbations given by x x= l xt e t( ) ( ) the
characteristic equation is written as (Chandrasekhar 1969)

l l l
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flow velocity inside the star ui to the coordinates in the rotating
frame ui=Qijxj. For the Riemann S-type ellipsoids with
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and all other elements of Qij equal zero. The expressions for the
perturbed gravitational potential energy tensor d ijW and pressure
perturbations dP are standard, and following Chandrasekhar
(1969) we write the perturbation of the dissipative part of the
stress tensor in the “low Reynolds number approximation”
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where ν is the kinematic shear viscosity, related to the dynamic
shear viscosity η by ν=η/ρ. Finally, the last term in
Equation (1) is associated with the perturbations of gravita-
tional radiation back-reaction tensor and is given by (Miller
1974)
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and Ikℓ
r( ) is the moment of inertia tensor in the rotating frame,

Cm
n are binomial coefficients, and for rotation about the x3-axis,

the 3×3 matrix sW º W* where the matrix s is defined as
s s= iij y for Îij 1, 2 (with σy being the y-component of Pauli

matrix) and σij=0 for i=3 or j=3. The quantity V ij
5( ) is

defined analogously to (6)
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To simplify the expressions (6) and (8) we note that for a time-
independent moment of inertia as measured in the rotating
frame, Equation (7) reduces to
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and for a triaxial ellipsoid with the principal axes aligned with
the coordinate axes in the rotating frame =I Iij ij
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Now, since Ω and Iij are constant in time, the only nonzero
component of I ij

5( ) is (Lai et al. 1994)
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where we have defined the auxiliary functions
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3. Characteristic Equations and Solution Method

The sequences of Riemann ellipsoids can be characterized by
the values of f (see Equation (3)) and the value of one of the
parameters α=a2/a1 or β=a3/a1 (without loss of generality

=a 11 ). Interesting special cases of the f-parameter are f=0
corresponding to zero-circulation triaxial bodies (Jacobi
ellipsoids), = ¥f —triaxial bodies supported by internal
circulation only (Dedekind ellipsoids), and f=−2 corresp-
onding to an irrotational ellipsoid in the inertial frame, since the
vorticity in this frame is given by w W= + f20 ( ) .

2

The Astrophysical Journal Letters, 902:L41 (5pp), 2020 October 20 Rau & Sedrakian



To find the modes described by Equation (1) we separate the
nine distinct equations in the independent subsets that are even
and odd with respect to index 3. We will not write down the
lengthy expression for each component here. We note only that
the even modes should be supplemented with

+ + =- - -V a V a V a 0, 1511 1
2

22 2
2

33 3
2 ( )

valid for incompressible flows. We next introduce dimensionless
quantities p rW º W G˜ , l l p rº G˜ , and n n p r= a G1

2˜
where G is the gravitational constant. An estimate for the
dimensionless kinematic shear viscosity is
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where ρ0=2.7×10
14 g cm−3 is the nuclear saturation density.

The timescale associated with the damping via gravitational-wave
radiation scales as tc

5˜ , where tc̃ is the dimensionless light-crossing
time
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Because ñ and tc̃ depend on ρ,l l r=˜ ˜( ), unlike the case without
viscosity or gravitational radiation damping in which l rµ
and this ρ-dependence is eliminated by dividing by the
characteristic frequency p r r r= ´ ´G 7.52 103

0
1 2( ) Hz.

We first obtain the equilibrium sequences of Riemann
ellipsoids characterized by α, β, and W̃ for fixed f. The
equilibrium semi-axis values (a1=1) and rotation frequency W̃
for representative cases are listed in Table 1. Then the
characteristic frequencies are computed separately for the even
and odd modes. For the even modes, we eliminate the pressure
perturbations and obtain a system of five equations with six
unknowns V11, V22, V33, V1;2, V2;1, and l̃, which can be solved
for l̃ by first writing it as a matrix equation

l =M V V V V V, , , , 0, 18even 11 22 33 1;2 2;1
T( ˜ ) · ( ) ( )

where T indicates the transpose, and demanding that the
determinant of the matrix Meven is zero. The resulting
characteristic equation is a polynomial in l̃ of order 17 in the
dissipative case, whereas it is of order 8 in the absence of

dissipation (i.e., both viscosity and gravitational radiation).
Note that for the Riemann S-type ellipsoids four of the roots are
zero in the nondissipative case, whereas only one root is zero
when shear viscosity and gravitational radiation damping are
included. Similarly, for odd modes we find

l =M V V V V, , , 0, 19odd 1;3 3;1 2;3 3;2
T( ˜ ) · ( ) ( )

which leads to a characteristic equation that is a polynomial in
l̃ of order 14; in the nondissipative case this reduces to a
polynomial of order 8. In discussing the numerical results for
the modes, we define s l= -i˜ ˜ and an associated (dimension-
less) dissipation timescale

t
s

= -
1

Im
. 20˜

( ˜ )
( )

Thus, for Im(σ)<0 the modes are unstable with characteristic
(dimensional) growth time t pr t= -G 1 2( ) ˜ .

4. Numerical Results

To obtain physical values of oscillation frequencies and their
damping or growth timescales we need to evaluate the quantities
ñ and tc̃, i.e., we need to specify physically motivated values of
a1, ρ, and ν, as well as the mass and the radius of the object. To
model a hypermassive compact object resulting from a merger of
two neutron stars we choose the value 2.74Me corresponding to
the GW170817 event (Abbott et al. 2017a, 2017b, 2017c). We
set the uniform density ρ=3.62ρ0 by enforcing that the f=−2,
α=β=1 star has a radius of a1=11 km. This is a reasonable
value for the radius of the semi-homogeneous core of the star—
we assume that an outer envelope region of thickness 1–2 km is
unimportant for the oscillations. We adjust a1 so that each
ellipsoid has a constant volume and hence the same mass. This
results in both ñ and tc̃ varying accordingly.
If we assume that the viscosity of the hypermassive neutron

star is due to the (nonsuperfluid) core (consisting of neutrons,
protons, and charged leptons in beta equilibrium) then viscosity
is dominated by the normal neutron fluid. Taking as a reference
value the low-temperature results of Flowers & Itoh (1981) and
Shternin et al. (2013), h ~ T1019

8
2 gcm−1s−1 for temperature

T=108 K and ρ=ρ0, we find that the kinematic viscosity
would be of the order of ν∼4 cm2s−1 for the characteristic
temperature of a hypermassive neutron star at 1MeV. A

Table 1
The Equilibrium Structure of Riemann Ellipsoids for Several Values of Circulation Parameter f; Note that f=−2 Corresponds to Irrotational and f=0 Rigidly

Rotating Cases

α β W̃ β W̃ β W̃ β W̃ β W̃

f=−3 f=−2 f=0 f=2 f=3

1.0 0.96 0.160 1.00 0.267 0.58 0.374 0.30 0.110 0.32 0.071
0.9 0.91 0.161 0.95 0.267 0.55 0.373 0.29 0.110 0.30 0.071
0.8 0.86 0.163 0.88 0.268 0.52 0.367 0.27 0.111 0.28 0.072
0.7 0.79 0.167 0.81 0.269 0.48 0.356 0.25 0.112 0.26 0.073
0.6 0.72 0.172 0.73 0.269 0.43 0.337 0.23 0.114 0.24 0.075
0.5 0.63 0.179 0.63 0.266 0.38 0.310 0.21 0.116 0.21 0.077
0.4 0.53 0.184 0.52 0.253 0.33 0.270 0.19 0.117 0.18 0.080
0.3 0.41 0.178 0.38 0.221 0.26 0.215 0.17 0.114 0.15 0.082
0.2 0.26 0.142 0.24 0.156 0.18 0.144 0.14 0.097 0.12 0.077
0.1 0.12 0.064 0.11 0.065 0.10 0.060 0.09 0.052 0.08 0.047

Note. Listed are the reduced values of semi-axis α=a2/a1 and β=a3/a1 and the nondimensional rotation frequency W̃.
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kinematic viscosity of this magnitude is far too small compared
to the dissipation via gravitational-wave radiation. If the
temperature of a hypermassive neutron star is above the
neutrino trapping temperature T�10MeV, then neutrinos can
contribute to the viscosity. This contribution can be estimated
using the well-known kinematical formula for classical gases

h = n n nn ℓ p
1

5
, 21( )

where ℓν, nν, and pν are the neutrino mean free path, number
density, and momentum, respectively. If neutrinos are close to the
ballistic regime (in the vicinity of the trapping temperature), then
we can takeℓν;10 km—the size of the system. Approximating
further nν; 0.1ρ/mN where mN is the nucleon mass, pν;
10MeV/c, we find ν; 1013 cm2 s−1 and hence n ~ -10 3˜ . At
this size, the viscosity starts to have a noticeable effect on the
instability growth times (see Figure 2). We use an artificially
enhanced kinematic viscosity ν*=1014 cm2 s−1; given the
simplistic nature of (21), which does not take into account a
number of physical factors (e.g., turbulent viscosity), such a choice
is not prohibitive. It has been argued that bulk viscosity can be the
dominant mode of dissipation in hot compact stars (Sawyer 1989)
and neutron star mergers (Alford & Harris 2019; Alford et al.
2019), which however would require a treatment beyond the
incompressible limit adopted here.

It has been shown by Chandrasekhar (1969, see Section 49) that
Riemann S-type ellipsoids undergo dynamical (i.e., in the absence
of dissipation) instability by one of the odd-parity modes when
f<−2. Otherwise, the remaining odd- and even-parity modes
were found to be stable. By explicitly solving the characteristic
equations for the odd- and even-parity modes, we find that the
Riemann S-type ellipsoids are generically unstable when gravita-
tional radiation and shear viscosity are included. In doing so we
extract those modes that are perturbative, in the sense that they
have an oscillatory part approximately equal to that of an
undamped mode, i.e., their complex frequencies can be expressed
as σ=σ0+Δσ,where s Î 0 is an undamped mode frequency
and sD Î  is a small correction. This is in agreement with the
computation of gravitational radiation-induced unstable toroidal
modes of Maclaurin spheroids by Chandrasekhar (1970). The
perturbative treatment is required for two reasons: (a) the
gravitational radiation back-reaction force we use is computed to
2.5-post-Newtonian order, whereas our background ellipsoids are
Newtonian, i.e., post-Newtonian corrections to the background
should be added for consistency on the hydrodynamical time-
scales; (b) the secular effects on the hydrodynamical scales might
require a more complete form of the gravitational radiation back-
reaction force given by Chandrasekhar & Esposito (1970), than the
one employed here (Miller 1974); these two forms agree in the
perturbative limit.

Turning to the results of the mode analysis, we show in
Figure 1 the growth timescales of unstable odd and even modes
for various f values in the absence of viscosity. The growth times
are labeled τe for even modes and τo for odd modes. It is seen that
there is one unstable odd mode for each f, and that there are even
unstable modes only for f>0, with one such mode for each f. In
the special case f=0 and α=1, when the Riemann S-type
ellipsoid reduces to a Maclaurin spheroid, there is a point of
marginal stability for eccentricity e=0.81267 where Im(σ)=0
for one of the even modes, in agreement with Chandrasekhar
(1970). In general, the unstable odd modes can have shorter

growth times than the unstable even modes and are unstable for a
greater subset of the Riemann S-type ellipsoids. The unstable even
f=1, 2 modes start off unstable for large α, then are first
stabilized and subsequently become unstable again as α decreases.
The effects of (artificially enhanced) viscosity ν*=1014 cm2s−1

on the growth times of unstable modes are shown in Figure 2 for
several values of f. It is seen that viscosity has little effect on the
growth times of the unstable odd modes. For the even modes,
viscosity suppresses the gravitational radiation-induced instabil-
ity and increases the corresponding growth times, in some cases

Figure 1. The dimensionless growth times for the perturbative unstable modes
with zero shear viscosity for f=3, 2, 0,−2,−3 (odd modes) and f=3, 2, 1
(even modes) for stellar model M=2.74Me as a function of α=a2/a1. The
even/odd modes are distinguished by solid/dashed lines, respectively. The
dimensional growth timescale in units of ms is given by t t r r= -7.52 0

1 2(˜ )( ) .

Figure 2. Same as in Figure 1, but including (artificially enhanced) viscosity
ν*=1014 cm2 s−1.
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moving them outside of the physically relevant range. This
suppression is in agreement with previous results found for
axisymmetric Newtonian stars (Ipser & Lindblom 1991).
Figure 3 show the dimensionless oscillation frequencies sRe( ˜ )
of unstable modes in the absence of viscous dissipation. The
changes due to the viscosity are insignificant. (Note that the
growth timescale and oscillation frequencies in Figures 1–3
are shown with the same line markers.) The dimensionless
frequencies of the modes are concentrated mostly in the range

s 0.1 Re 0.6( ˜ ) , which given the value of the normalization
frequency pr r rW = = ´G 7.52 100

1 2 3
0

1 2( ) ( ) s−1, corre-
spond to frequencies in the kHz range.

5. Summary

It is anticipated that hypermassive neutron stars left behind
by a binary neutron star merger will be detectable by advanced
gravitational-wave detectors at kHz frequencies. After a short
transient, the star is expected to settle down in an equilibrium
configuration supported by internal circulation (provided there
is no prompt collapse to a black hole). Here we have modeled a
hypermassive neutron star by a classical Riemann ellipsoid—
rotating triaxial body supported by internal circulation—and
derived the perturbative set of small-amplitude oscillation
modes taking into account the dissipation through gravita-
tional-wave radiation and viscosity. In general, the obtained
characteristic equations have 17 even-parity and 14 odd-parity
modes, among which we identified the class of perturbative
unstable modes with growth timescales of the order of 1 ms
and eigenfrequencies in the kHz range (see Figures 1–3). The
instability of the modes is due to the gravitational radiation.
Adding (artificially enhanced) viscosity suppresses the instabil-
ity of the modes, increasing their growth times, in some cases,
beyond the physically interesting regime.

A prerequisite of our analysis is that the star is in an
approximate equilibrium, which can be tested only through
numerical simulations of the post-merger transient. This
implies that the growth times of unstable modes are shorter
than the timescales over which the unperturbed equilibrium
changes appreciably, which is the case, for example, for models
of Riemann ellipsoids computed in Miller (1974). Provided that
the quasi-equilibrium state has been reached, our analysis
accounts for the complete set of the dissipative modes of a
hypermassive neutron star within approximations employed.
Our modeling of hypermassive neutron stars can and should

be improved in the future by adding more realistic features,
such as nonuniform matter distribution, realistic equations of
state, and effects of relativity in describing the fluid perturba-
tions and the equilibrium stellar models. However, the current
insights into the instabilities that develop in Riemann S-type
ellipsoids could be of interest also in more general context of
stellar equilibria and oscillations, physics of nuclei as well as
trapped atomic clouds.
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