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The purpose is to study the Carbon Footprint (CF) verification system of power

enterprises, promote the Low-Carbon Economy (LCE) in the power industry,

and improve resource utilization during Energy Conservation and Emission

Reduction (ECER). The Carbon Dioxide Emission (CDE) of power enterprises is

explored based on the CF. First, Edge Computing (EC) is adopted to calculate

the direct Carbon Dioxide Emission (CDE) of the Chinese power industry from

2005 to 2020 based on energy input. The direct CDE and the changing trend are

analyzed. On this basis, Blockchain Technology (BCT) is employed to quantify

the indirect CDEs of power enterprises’ energy consumption. A comprehensive

analysis is made of the changing trend and circulation of the total CF of power

enterprises based on the direct and indirect CDEs. The data show that the

proportion of direct and indirect CDEs in total CF gradually decreases and

increases. The results show that the power industry should increase the

proportion of clean power in the power industry, control the CDEs from the

source, and improve energy utilization to optimize the CF verification.
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1 Introduction

China’s energy demand has been increasing with the rapid economic development in

recent years. Many have realized that China’s dependence on crude oil has exceeded the

international warning line. It is now urgent for China to focus on the efficient use of

energy, reduce energy consumption, reduce air pollution, and achieve Energy

Conservation and Emission Reduction (ECER). Especially since the Reform and

opening-up, China’s economy has seen decades of economic boom. However, the cost

of resource consumption and environmental destruction is overwhelming. The

uncontrolled development and utilization of resources have led to the deterioration of

the environment and seriously affected China’s sustainable development (Sonmez et al.,

2018). Therefore, the emergence of ECER technology-driven Low-Carbon Economy

(LCE) offers a possible development path, targeting greenhouse gas emission reduction.

LCE has changed people’s lifestyles and brought structural transformation. It is reshaping
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the development concepts and becoming a new direction for

China’s economic development. Because of the current situation

of China’s economic development, there is a need to take

corresponding measures to promote LCE’s rapid development

vigorously.

In 2007, the termCarbon Footprint (CF) was proposed as one of

the key quantitative parameters in the ECER process. CF measures

the greenhouse gas emissions in production and consumption,

including direct and indirect emissions. Indirect carbon emissions

are greenhouse gas emissions from using purchased power or heat.

CF is generally divided into personal, product, enterprise, and

national urban CF. Of these, personal CF estimates carbon

emissions in daily life. The enterprise CF is the sum of the

carbon emissions generated by the overall enterprise activities. It

includes the carbon emissions from non-production activities to the

product CF. The urban CF mainly includes the various greenhouse

gas emissions. At present, the exploration of CF in China has just

begun without any in-depth achievements, and more industrial

practices are urgently needed to promote CF development

(Premsankar et al., 2018). The lagging and high regional power

grid emission factors will make the carbon emission results of non-

emission control enterprises distorted and large. There are potential

disadvantages that damage the competitiveness of enterprises.

China’s accounting guidelines specify that the regional power grid

emission factors published in the latest year should be used to

account for indirect electric power emissions. The accounting

guidelines are also applicable to non-emission-controlled

enterprises. However, the regional power grid emission factors

have not been updated. Thus, it is understood that the national,

provincial, and pilot carbon-market emission factors are often used

for non-emission-controlled enterprises. Adopting the grid emission

factor more in line with the actual situation as a supplementary

means can play certain positive roles. Nevertheless, doing so will lead

to poor comparability of accounting results and great reference

difficulty. Hence, it is not conducive to the benchmarking

evaluation and decision-making of enterprises, the public, and

investors (Wiche et al., 2022). According to the research review in

China and overseas, the current indirect Carbon Dioxide Emission

(CDE) calculationmethodsmainly include the input-outputmethod,

life cycle method, and Intergovernmental -Panel on Climate Change

(IPCC) method (Osorio et al., 2022). Firstly, the input-output

method is based on the division of different departments. It

cannot reflect the differences in CFs of different products within

the department. This leads to a large deviation in the results. At the

same time, the CF of specific industries or departments obtained by

the input-output method cannot be applied to calculating other

products, with a limited applicational range (Schmitt et al., 2022). The

life cycle method involves many links in the production process. The

data collection is often incomplete, or the data collection is often

distributed on multiple links. The final results fail to reflect the CF of

the product genuinely. Lastly, although the IPCC method is widely

used, it only considers the direct CF within the region and does not

consider the indirect CF caused by the linkage between the outside

and the inside of the region. Therefore, it has high requirements for

the research object and applies to the CF calculation within the closed

system.

In this work, the total CF of the power industry is obtained

through the direct and indirect emissions of carbon dioxide in the

power industry and its change trend. Further, the indirect CDE of

power enterprises is quantified using Blockchain Technology (BCT)

based on specific data. The trend and cycle of total CF of power

enterprises are analyzed from the direct and indirect CDEs. The

innovation of this work is to analyze the direct and indirect CDEs and

their change trends in the power industry using Edge Computing

(EC) and BCT. Consequently, the flow of the total CF of the power

industry is obtained. This work aims to provide an important

reference for improving energy efficiency and optimizing CF

verification of power enterprises. Chapter 1 describes the purpose

and background. Chapter 2 analyzes the relevant research on EC and

BCT and combines the two to verify the CF. Chapter 3 gives the

experimental results. The research results can provide suggestions

and references for the follow-up ECER work and the CF verification

work of power enterprises. At the same time, it lays a foundation for

optimizing the CF verification system of power enterprises from the

emission source and breaks down the obstacles that hinder the

development of LCE. It is of great significance to Chinese power

enterprises’ economic growth and ECER.

2 Materials and method

2.1 Edge computing

Multi-access EC is proposed by European

Telecommunication Standards Association (ETSA). It provides

computing, storage, and other infrastructure for the Internet of

Things (IoT) devices at the network edge close to users. MEC is

defined as mobile EC in the narrow sense and multi-access EC in

the broad sense. EC supplements the performance of current

cloud computing and exerts a more positive impact on the

development of the IoT (Li et al., 2021a; Li et al., 2021b).

EC has unique advantages over Cloud Computing. EC performs

on widely distributed nodes compared to the centralized nodes of

Cloud Computing. EC can provide computing services for the

network edge close to the data source, meet the needs of IoT

applications, and can give a better solution. It has six basic

characteristics: wide distribution, low delay, edge devices-based

computing, edge intelligence, secured user privacy, and reduced

traffic (Krestinskaya et al., 2019; Li, 2022a; Li, 2022b). Based on

this, the edge node must have certain computing ability, network

transmission, storage capacity, and compatibility with multiple

protocols. The IoT terminal devices interact with the cloud center

through the edge nodes in EC. Offline computing ofmany businesses

can be directly implemented on the edge side in an EC ecosystem.

There is no need to upload to the cloud, making the business

processing faster and more efficient, relieving the traffic pressure,
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and increasing private data security (Porambage et al., 2018;

Yousefpour et al., 2019). Figure 1 displays the system architecture

of EC, which consists of three layers: cloud server layer, MEC server

layer, and mobile terminal layer from top to bottom.

EC can shorten the data processing distance and enhance real-

time performance. However, the security issues in the data processing

and analysis steps still need further research. Meanwhile, with the

development of IoT technology, BCT has become a research hotspot

in many fields with its strong data security storage capacity.

Therefore, further research on BCT is needed.

2.2 Blockchain

BCT is a crucial technological innovation. Its basic structure

includes six application, contract, incentive, consensus, network,

and data layers. This structure is distributed from top to bottom,

reflecting the function allocation from concrete to abstract. Each

of these six layers has its function and can cooperate. A

reasonable blockchain includes at least these six layers.

Figure 2 presents the specific structure. Each layer should be

designed according to its functional requirements (Sabella et al.,

2019; Sodhro et al., 2019).

2.2.1 Data layer
The data layer is a physical expression of BCT, the basic and

core structure in the whole structure. It is characterized by no-

tampering and full backup.

2.2.2 Network layer
The network layer controls the communication of the whole

system. It can improve data transmission efficiency in each stage

when sending, receiving, and sharing data. The most crucial part

of the blockchain network is Point to Point (P2P) transmission,

which is adapted to complete a distributed network. Thereby,

blockchain is essentially a P2P network structure with an

automatic networking mechanism. At each node, information

can be received and generated. Any node in the network can

maintain the communication between them when the same

growing blockchain structure is maintained. Moreover, the

network layer also has many functions, such as data

dissemination and verification, which are the most basic

(Sittón-Candanedo et al., 2019).

2.2.3 Consensus layer
The consensus layer encapsulates a consensus mechanism

algorithm on each node to control the authentication and

identification of data in P2P mode. Dispersed nodes must

reach a consensus through the consensus layer in the

decentralized network structure to safeguard data validity. The

consensus mechanism guarantees system security and reliability

and is one of the core technologies of blockchain structure.

2.2.4 Incentive layer
There are many incentive mechanisms in the incentive layer,

and the nodes in each blockchain participate in verifying new

blocks.

2.2.5 Smart contract layer
The smart contract layer is the basis for the blockchain to

program and de-trust. It systematically specifies the transaction

method and specific process, including all kinds of scripts and

codes, which can be executed automatically and cannot be

tampered with at will.

FIGURE 1
MEC system architecture.

Frontiers in Energy Research frontiersin.org03

Xue et al. 10.3389/fenrg.2022.989221

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.989221


2.2.6 Application layer
The application layer undertakes the docking with various

application scenarios, and the entities in each application

scenario will participate in it and formulate the overall rules

according to the intelligent contract, making the whole business

logic more complete (Roman et al., 2018).

2.3 Carbon footprint verification based on
edge computing and blockchain
technology

CF verification is a metric of the product life cycle level, a

bottom-up carbon accounting system. It is the carbon emission

of products or services in the life cycle. For example, the CF of a

book considers all carbon emissions generated in the process of

paper making, printing, transportation, sales, disposal, and

natural decomposition. The British Standards Institute issued

the CF calculation standard and elaborated CF’s calculation

methods and principles. CF calculation can let consumers know

the greenhouse gas emissions during the whole life cycle of

commodities and encourage consumers to choose low-carbon

commodities. In addition, calculating CF can help

manufacturers fully understand the carbon emissions of

goods in production, transportation, and consumption. It

helps explore improvements to guide the reduction of energy

consumption and costs (Ray et al., 2019). In short, it is the total

amount of greenhouse gases released by products or services in

the life cycle. With the continuous improvement of the

international market’s understanding of the product CF, CF

verification is a key condition for obtaining orders from

multinational companies. CF can be verified through the

enterprise CF of the whole company or the product CF,

including the complete life cycle of a specific product or

service, the supply chain, and pollutant emission control

technology (Monrat et al., 2019).

At the same time, the blockchain can be divided into public,

private, and alliance chains according to the range distribution of

blockchain nodes. The public chain is entirely open to the public,

which anyone can directly access without authorization. A

private chain is established by an organization and accessible

to only specific authorized users. An alliance chain is a mixture of

public and private chains visited by users who join the alliance.

The public chain has reliability and privacy security problems,

and the alliance chain is difficult to deploy due to its large scale.

Thus, this work selects a private blockchain with a small scale to

record and store relevant event information, such as CF

verification of power enterprises. Also, the private blockchain

is deployed on the local platform, so the initial blockchain is safe

and reliable. EC processes data at the network’s edge or near the

data source. According to the research data, the deployed edge

node computing and processing capacity canmeet the processing

requirements of the equipment used for CF verification of power

enterprises (Gao et al., 2022). Based on this, this work further

analyzes the CF verification of power enterprises by fusing EC

and BCT.

2.4 Calculation of total carbon footprint

The CF verification system of power enterprises is studied.

The specific calculation method is as follows:

2.4.1 Calculation method of direct carbon
dioxide emission

The direct CDE is calculated based on EC by Eq. 1:

Cdir � ∑
ij

CO2ij �∑
ij

(Eij × CFj × (1 − Sj) × CCj × COFj × 44/22) (1)

In Eq. 1, Cdir is the total amount of carbon dioxide emitted

by fossil fuel consumption; Eij represents the consumption of

FIGURE 2
Infrastructure of blockchain.
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fuel j in sector i; CFj represents the average low calorific value

of the fuel j; Sj represents the proportion of the j-th fuel that is

not used for combustion but used as raw material in the

product. CCj represents the carbon emission coefficient of

the j-th fuel, which is the carbon emission per unit heat of the

j-th fuel; COFj represents the oxidation factor of the j-th fuel,

and represents the oxidation rate level of the fuel; 44/22 is the

conversion coefficient of carbon atom mass to carbon dioxide

molecular mass; i is the source consumer sector; j is the type of

fuel (Belotti et al., 2019).

2.4.2 Calculation of indirect carbon dioxide
emission

Consuming the products or services of other sectors will emit

carbon dioxide, which is the indirect CDEs. The carbon emission

coefficient should be calculated as follows (Efanov and Roschin,

2018):

a. Calculation of indirect carbon dioxide emission

coefficient

dj � fj × ⎛⎝∑n
i�1
ei × bij⎞⎠ (2)

dj is the indirect CDE coefficient of sector j, with the unit of t

CO2/10000 RMB; fj is the CDE coefficient per unit of energy in

sector j, with the unit of t CO2/tce; ei is the energy intensity of

sector I, with the unit of tce/10,000 RMB; bij is the complete

consumption coefficient, which is the total consumption of j

sector to i sector; ∑n
i�1
ei × bij is the indirect energy consumption of

all n intermediate products per unit product of j department

(Gatteschi et al., 2018).

b. Calculation of indirect carbon dioxide emission

The following equation calculates the indirect emissions of

each sector after the coefficient calculation.

Cindj � dj × Xj (3)

Xj is the total output of sector j (Halaburda, 2018).

According to the input-output method, the cost of power

input and the amount of carbon dioxide indirectly emitted by the

power enterprise is calculated by Eq. 4:

R � K/IN (4)

Here, R is the proportion of input. K denotes the total

investment amount. IN represents the sum of output added

value.

(3) This research cites foreign scholars’ definitions of direct

and indirect CDEs. It calls the CDEs related to the direct

combustion of fossil energy the direct CDEs of power

enterprises, namely, the CDEs generated by the direct

combustion of coal, oil, and other energy sources in the

power industry’s production. Indirect CDEs are the CDEs

of non-energy products or services in their life cycle. That

is, the energy consumption of other industrial sectors of

the national economy and the CDEs generated to

maintain the production needs of consumers in the

power sector (Reyna et al., 2018; Al-Jaroodi and

Mohamed, 2019).

The direct CDE of power enterprises is mainly due to the

excessive consumption of thermal power generation and electric

heating energy. The indirect CDE is mainly the services

consumed by the thermal power sector. CDEs of the product

refer to the CDEs of commodities in the whole life cycle of

exploitation, production, power and heat distribution,

consumption, and recycling of raw materials (Andoni et al.,

2019).

The sum of direct and indirect CDEs is the total CF (Salah

et al., 2019) that is:

C � Cdir + Cind (5)

2.5 Data setting

This work mainly uses the method of data set to evaluate

the model of EC and BCT, to explore the comprehensive

performance of this model. The used dataset is the Dash

dataset, which is a Python data visualization library for

building web applications. It is based on the Python web

framework Flask and the Javascript drawing library Plotly.js

and the Javascript library React.js for building user

interfaces, so it is very suitable for building web pages

with Flask-based backend and front-end data

visualization. The Dash application consists of two parts.

The first part is the layout, which describes the design style of

the application, and it is used to display data and guide users;

the second part describes the interactivity of the application.

The specific settings for evaluating the models are illustrated

in Table 1.

As portrayed in Table 1, experimental evaluations of three

models are set up, and the models are evaluated from different

perspectives, making the evaluation results more valuable.

TABLE 1 Information for data settings.

Model BCT EC EC and BCT

The amount of data 600

Type of data Economy Sports Education

Evaluation method Accuracy Calculation rate —
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3 Results and discussion

3.1 Performance evaluation of edge
computing and blockchain technology

Based on the progress of science and technology, data processing

has become a key requirement of the current society for various

technologies. The development of EC technology and BCT can not

only satisfy the demands of data processing efficiency but also meet

the requirements of data security. Therefore, this vision is fulfilled by

the design of EC and BCT. Figure 3 demonstrates the performance

evaluation results of the EC and BCT model.

In Figure 3, the design uses EC and BCT to analyze the CF of

power enterprises, and the designed model can well meet this

requirement. The accuracy rate of the designed model is more

than 92%, which is almost the same as the data processing effect

of EC and BCT, but the data processing rate of this work far

exceeds that of blockchain technology, and the duration of data

processing is about 70 ms. It means that the designed model not

only has good data processing effect but also has security and

efficiency. In addition, the work also evaluates the model under

100 experiments with different types of data. Table 2 presents the

average accuracies of the models evaluated using different types

of data. Table 2 Denotes that the accuracy rates of the three

models are basically the same in different types of data

processing. Therefore, it can be found that the designed

model of EC and BCT is relatively successful.

3.2 Analysis of carbon footprint of power
enterprises

The total CF is the sum of the total amount of carbon

dioxide emitted directly and indirectly. Direct CDE is

obtained through EC, and indirect CDE accounting is

based on input-output analysis and BCT. On this basis,

the change and characteristic structure of direct and

indirect CDE of China’s power enterprises in 2005, 2010,

2015, and 2020 are studied by using the data of power

enterprises from 2005 to 2020. Then, the BCT is used to

quantitatively analyze the influencing factors of direct CDEs

from thermal power consumption (Niranjanamurthy et al.,

2019).

The total CF of the power industry in 2005, 2010, 2015, and

2020 is obtained by the sum of direct CDEs and indirect CDEs in

the above 4 years. Tables 3; Figure 4 are the calculation results.

Table 3 shows that power enterprises’ total CF has rapidly

increased in the past 20 years.

The comprehensive analysis of the data in Figure 4 reveals the

following results.

a. Regarding the total amount of CDEs in 2005, the direct

CDEs were 2,363,908,700 tons, and the indirect CDEs

were 405,530,900 tons. By 2020, the direct CDEs had

reached 15,685,676,900 tons, and the indirect CDEs had

reached 770,912,080 tons. It suggests that the total CF of

China’s power industry is growing rapidly. Regarding the

structure, direct CDEs account for a large proportion of

the total CF. Proportion of direct CDE in 2005, 2010,

FIGURE 3
Performance evaluation of EC and BCT (A) refers to the accuracy of data processing, (B) stands for the duration of data processing).

TABLE 2 Evaluation of different performances of the models.

Type of data BTC EC EC and BCT

Economy 90.8% 91.7% 91.4%

Sports 91.6% 89.7% 92.1%

Education 91.1% 88.5% 90.5%
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2015 and 2020 was 85%, 88%, 90% and 95%. The proportion of

direct CDE is rising yearly, while the proportion of indirect CDE

is declining yearly. In the final analysis, the power industry and

other related industries are gradually decoupling due to the

continuous improvement of technology levels. The investment

in intermediate technology is added, resulting in a substantial

increase in indirect CDEs.

b. China’s energy demand for industrial, civil, and heating has

proliferated from 2005 to 2020, resulting in an obvious upward

trend in power and heat production. Both energy input and

direct CDE have an obvious upward trend. The CDE of the

power industry is the main contributor to China’s CDE growth.

The main factors affecting the emission reduction effect of

China’s power industry are the input structure of energy, the

structure of power sources, the technology in the power

generation process, and the scale of the industry.

c. The power industry CF has risen from 2005 to 2020, with

direct CDE and indirect CDE accounting for 95% and 5%,

respectively. It reveals that the direct CDEs are very large,

accounting for a significant proportion of power

enterprises’ total CF. In the indirect CDEs, thermal

power production is closely related to heavy

manufacturing, mining, transportation, warehousing,

postal, and other service industries. Service industries

consume the intermediate services and products of

other industries and greatly impact the CDEs of these

industries.

4 Conclusion

The CDE of the power industry is analyzed from the

perspective of CF verification. The results reveal that the

power industry needs to focus on adjusting the power supply

structure and expanding the proportion of clean power in

electric power production. Clean power generation using

wind, nuclear, and other low-carbon technologies should

be encouraged. The investment structure of power

generation and heating energy should be adjusted

accordingly to control the growth of CDEs from the source

TABLE 3 Direct CDEs and growth rate of the power industry.

Time Direct CDEs (10,000 tons) Growth rate (%) Direct CDEs (10,000 tons) Growth rate (%)

2005 236390.87 — 40553.09 —

2010 406454.97 0.72 56606.64 0.39

2015 616208.73 0.52 70669.788 0.25

2020 1568567.69 1.55 77091.208 0.091

The direct and indirect CDEs, and their proportion in power enterprises are shown in Figure 4.

FIGURE 4
Direct and indirect CDEs and emission ratio of power enterprises. (A) Direct and indirect CDEs from power enterprises; (B) Proportion of direct
and indirect CDEs in power enterprises.
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and optimize CF verification. The energy intensity of China’s

power industry may continue to decline. Its effect on ECER

will gradually appear. Hence, power enterprises must

improve energy utilization to implement CF verification

and control the production’s power consumption and

heat loss.

The research deficiency is that no specific industry-

oriented CF research is explored. Currently, China’s CF

verification research is in the demonstration and promotion

stage. CF analysis is very crucial for enterprise CF verification

systems. Enterprises should contain the CDE within the

international standard and constantly improve the CF

verification indexes in the future. This work hopes

enterprises can focus on the full use of energy and better

verify the CF. It is expected to help power enterprises control

the power consumption index and heat loss in production,

thereby achieving ECER.
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