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ABSTRACT 
 

Aims: To develop a rapid, non-invasive method for predicting Hass avocado maturity using near- 
infrared diffuse reflectance spectroscopy (NIR-DRS) combined with machine learning algorithms, 
and to identify the optimal NIR wavelength range for accurate dry matter content prediction. 
Study Design: An experimental design involving spectral data collection from Hass avocados and 
the development of machine learning models for dry matter prediction. 
Methodology: Spectral data from 200 Hass avocados were collected using near-infrared diffuse 
reflectance spectroscopy (900-2500 nm). To improve the quality of the spectral data and reduce 
noise, standard normal variate was used to correct for scattering and remove unwanted variability in 
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the spectral data. PCA was then performed to reduce the dimension of the spectral data while 
retaining the most significant variance. Following preprocessing, machine learning models, 
including Convolutional Neural Networks (CNN), were trained to predict dry matter content, and the 
optimal wavelength range was determined for accurate prediction. 
Results: The CNN model demonstrated superior performance for dry matter prediction with R² of 
0.91 in the testing set. The wavelength range of 1000-1500 nm was identified as optimal, offering 
accurate predictions while reducing computational complexity. This range shows potential for 
developing cost-effective NIR devices for real-time maturity assessment. 
Conclusion: NIR spectroscopy combined with machine learning offers a non-invasive, accurate 
method for predicting avocado dry matter, with potential applications for quality control in the 
avocado industry. The findings demonstrate that focusing on specific wavelength ranges can lead to 
more affordable and efficient NIR solutions. 
 

 
Keywords: Avocado maturity; convolutional neural networks; dry matter content; machine learning; 

near-infrared spectroscopy; non-destructive assessment; spectral analysis. 
 

1. INTRODUCTION 
 
Avocado, scientifically termed Persea Americana 
has emerged as a significant global crop, with an 
annual production of approximately 8.06 million 
tonnes. Kenya, ranked as the sixth-highest 
avocado producer globally, plays a crucial role in 
this market [1,2]. The main type of Avocado 
produced and exported by Kenya is the Hass 
Avocado, which is unique for its buttery and 
creamy texture and a sweet taste. The quality and 
market value of avocados, including Hass are 
largely determined by their maturity level at 
harvest, which significantly influences post-
harvest quality, shelf life, and consumer 
satisfaction [3,4]. The maturity phase of avocados 
is also a critical factor in decision-making 
throughout the supply chain, from harvesting to 
storage. Immature fruits may wither during 
storage and have unpleasant taste and texture, 
while overly mature fruits have shorter shelf lives 
and are more susceptible to post-harvest issues, 
resulting in economic losses [5,6]. However, the 
identification of optimal maturity phases for 
various avocado varieties poses significant 
challenges due to the lack of observable  
external morphological changes during the 
maturation process [7]. Conventional methods for 
assessing avocado maturity include measuring 
dry matter content, oil content, and fruit firmness. 
These methods, while effective, are destructive, 
time-consuming, and labor-intensive [8]. For 
instance, the assessment of dry matter                
content involves extracting and drying                       
fruit samples, a process that can take up to 72 
hours [9]. These traditional approaches                       
lead to significant post-harvest losses and 
inefficiencies, posing challenges for large-                
scale production and commercial operations 
[10,11]. 

Near-infrared diffuse reflectance spectroscopy 
(NIR-DRS) has emerged as a promising non-
destructive technique for assessing fruit maturity 
[12]. The method analyzes the light reflected 
from the fruit to provide information on internal 
characteristics such as moisture and oil content 
without causing damage [13]. NIR-DRS has been 
successfully applied to various fruits for quality 
assessment, including apples, peaches, and 
mangoes [14,15,16]. However, the technique has 
various limitations related to variability in fruit 
surface properties, external light interference, 
and the need for precise calibration. The complex 
nature of the NIR spectra, influenced by factors 
such as fruit moisture, tissue differences, and 
scattering coefficients, thus necessitates 
sophisticated data analysis techniques [17]. 
Moreover, selecting appropriate wavelength 
ranges and preprocessing methods can 
significantly impact the accuracy of predictions 
[18]. 
 
Recent advancements in machine learning and 
artificial intelligence offer potential solutions to 
enhance the accuracy and reliability of NIR-DRS 
measurements [19]. These algorithms can 
analyze complex spectral data to identify 
patterns or correlations that may not be readily 
apparent through conventional methods. Various 
machine learning techniques, including Artificial 
Neural Networks (ANN), Support Vector 
Machines (SVM), Random Forests (RF), and 
Convolutional Neural Networks (CNN), have 
shown promise in spectral data analysis 
[20,21,22]. The preprocessing of spectral data 
plays a crucial role in the performance of 
predictive models. Common preprocessing 
techniques include SavitzkyGolay smoothing, 
first and second derivatives, Multiplicative Scatter 
Correction (MSC), and Standard Normal Variate 
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(SNV) transformations [23]. These methods aim 
to reduce noise, correct for baseline shifts, and 
enhance relevant spectral features [24]. 
 
This study aims to address the practical 
limitations of traditional destructive methods by 
developing and optimizing a machine learning-
assisted NIR-DRS technique for rapid and non-
invasive assessment of Hass avocado maturity. 
It also aims to identify the optimal NIR 
wavelength regions for accurate dry matter 
content prediction in Hass avocados. By 
integrating machine learning techniques with NIR 
spectroscopy, achieving, this research seeks to 
establish a robust framework for accurate 
maturity prediction in avocados. The successful 
implementation of this technique could lead to 
substantial economic benefits for avocado 
producers by reducing post-harvest losses, 
improving efficiency in maturity determination, 
and enhancing competitiveness in the global 
market. 
 

2. MATERIALS AND METHODS 
 

2.1 Fruit Sampling and Spectral 
Measurements 

 
This study was conducted during the 2024 
harvest season using two varieties of Hass 
avocados: Giant Hass and Golden Hass. Fruit 
samples were harvested from five different 
orchards across three distinct regions in Kenya: 
Gachie in Kiambu County (1°13'S, 36°45'E), 
Mecheo in Nyamira County (0°56'S, 35°45'E), 

and near Melelo market in Narok County (0°49'S, 
34°59'E). A total of 200 fruits were harvested 
from five trees during the early (March) and mid 
(May) periods to incorporate location variability. 
After harvesting, the avocados were taken to the 
laboratory, where they were allowed to 
equilibrate at 24°C for 24 hours before spectral 
data acquisition. Spectral measurements were 
performed using a NIRQuest 512-2.5 
spectrometer (Ocean Optics, USA) with a 
wavelength range of 900-2500 nm. The 
spectrometer was equipped with a Hamamatsu 
G9208-512w GaAs linear array detector, 
providing an optical resolution of 6.3 nm and a 
signal-to-noise ratio of 10000:1. 
 
Samples were excited at a fixed 45° angle using 
an Ocean Optics TC-DR probe, which included a 
halogen tungsten light source and collection 
optics, as shown in Fig. 1. Spectral data were 
collected from three distinct spots on each fruit: 
the peduncle, the base, and the equator. Each 
spectrum was an average of 5 scans to obtain a 
more representative spectrum and reduce 
detector thermal noise [25]. A boxcar width of 
five scans was used for smoothing the spectra. 
Calibration was performed before each 
measurement using a Spectralon 99% white 
reflective reference standard. The integration 
time was automatically optimized using Ocean 
View software, with a typical value of 3          
seconds. The spectrometer and light source 
were allowed 30 minutes of warm-up time                                 
before measurements to stabilize the detector 
response. 

 

 
 

Fig. 1. Set-up for diffuse reflectance of Hass avocado samples 
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2.2 Destructive Analysis 
 
After conducting spectral measurements, core 
samples were extracted from the same areas 
analyzed spectroscopically. These samples were 
weighed, processed using a blender, and then 
dried in a hot air oven at 75°C for 72 hours until 
they achieved a stable weight [26]. Dry matter 
content was calculated as a percentage of the 
initial weight as per equation 1. 
 

                                    
(1)

 
 
Where 𝑊1 denotes the weight of the sample 
after it has been dried in the oven (measured in 
grams), while 𝑊2 is the weight before drying. 
 

2.3 Development of Machine Learning 
Models 

 

In this study, four machine learning models—
Convolutional Neural Network (CNN), Artificial 
Neural Network (ANN), Support Vector Machine 
(SVM), and Random Forest (RF)—were 
developed to predict dry matter content in 
avocado fruits using near-infrared (NIR) spectral 
data. These models were selected due to their 
effectiveness in handling regression problems 
with high-dimensional data, such as spectra, and 
their wide use in similar applications. The 
spectral data were preprocessed to enhance 
model performance, and data were split into 
training (70%) and testing (30%) sets. While other 
machine learning models, such as XGBoost, 
could also be effective, the models chosen here 
cover a diverse range of approaches, from deep 
learning to classical machine learning. Future 
studies may explore alternative models for further 
comparison. All statistical analyses were 
performed using R version 4.4.1 (2024) with the 
caret package [27]. 
 

2.3.1 Data preprocessing 
 

Before model development, the spectral data 
were preprocessed using several techniques to 
ensure robust performance. Principal Component 
Analysis (PCA) was first applied to reduce 
dimensionality and identify outliers. Baseline 
shifts and noise were addressed using Savitzky-
Golay smoothing with a five-point window and 
second-degree polynomial fitting. Finally, 
normalization was applied to standardize the 
data, ensuring equal weighting of all spectral 
features. These preprocessing steps were critical 
for reducing the impact of noise and scattering, 

which could otherwise degrade model 
performance. 
 
2.3.2 Convolutional neural network (CNN) 
 
A 1D Convolutional Neural Network (CNN) was 
implemented using the Keras library to handle the 
high dimensional nature of spectral data. CNNs 
are well-suited to this task because they can 
effectively extract local features from the spectral 
input, which is key for predicting dry matter 
content. The model architecture consisted of two 
convolutional layers with 64 and 128 filters, each 
using a kernel size of 3 and ReLU activation 
functions. Max pooling layers followed each 
convolutional layer to reduce dimensionality, 
while dropout layers (dropout rate = 0.5) were 
added to prevent overfitting. The model was 
trained over 1500 epochs with a batch size of 64. 
Despite the small dataset size (200 fruits), 
techniques like dropout regularization and data 
augmentation (by taking multiple spectral 
readings from different locations on each fruit) 
were employed to mitigate overfitting. Cross-
validation with three folds was used to optimize 
hyperparameters. 
 
2.3.3 Artificial neural network (ANN) 
 
A feedforward Artificial Neural Network (ANN) 
was constructed with three hidden layers 
containing 50, 30, and 10 neurons, respectively. 
Logistic activation functions were applied at each 
layer. This model was trained using resilient 
backpropagation, which adjusts weights based 
on error feedback, with a threshold of 0.01 and a 
maximum of 10 million steps. ANN was selected 
due to its flexibility and ability to model complex 
relationships, serving as a benchmark for deep 
learning approaches. 
 
2.3.4 Support vector machine (SVM) 
 
A Support Vector Machine (SVM) with a radial 
basis function (RBF) kernel was developed for 
predicting dry matter content. SVMs are known 
for their ability to handle non-linear regression 
problems and perform well with smaller datasets. 
The model’s hyperparameters, including the cost 
and sigma values, were optimized using three-
fold cross-validation. 
 
2.3.5 Random forest (RF) 

 
A Random Forest (RF) model was developed 
with 100 trees and 5 randomly selected predictor 
variables at each split. Random Forest models 
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are ensemble learning techniques that are robust 
to overfitting, particularly in small datasets. 
They also provide feature importance, offering 
insights into the most relevant spectral regions 
for predicting dry matter content. 
Hyperparameter tuning was performed using 
cross-validation to optimize the model for the 
given dataset. 
 

Due to the relatively small size of the dataset, the 
risk of overfitting, especially with deep learning 
models like CNNs and ANNs, was a concern. To 
mitigate this risk, dropout layers were 
incorporated into the CNN architecture, and data 
augmentation was used to artificially expand the 
dataset by capturing multiple spectral readings 
from each fruit. 
 

2.4 Optimization of NIR Wavelength 
Range 

 

To identify the optimal NIR wavelength range for 
dry matter prediction, the CNN model (which 
showed the best performance in initial tests) was 
trained and evaluated on different spectral 
regions: (a) Full spectrum: 1000-2350 nm, 
containing all overtone and combination bands, 
(b) Second overtone region: 1000-1500 nm, 
dominated by absorption features from water (H 
O), hydroxyl (ROH), and various hydrocarbon 
(CH) groups, (c) First overtone region: 1500-
1900 nm, where strong absorption of O-H, CH, 
and N-H bonds occurs, critical for measuring 
moisture and organic compounds, and (d) 
Combination band region: 1900-2350 nm, 
containing more complex molecular interactions 
like C-H, C=O, and N-H, which provide detailed 
information on the structural composition of 
organic materials. 
 

These specific wavelength regions were chosen 
because they capture distinct molecular 
vibrations. The second overtone region focuses 
on weaker but characteristic bonds, such as O-H 
and C-H, crucial for moisture detection. The first 
overtone region provides stronger signals for 
similar bonds, while the combination band region 
captures interactions that help to detect the 
overall composition of dry matter. Model 
performance for each spectral region was 
evaluated using Root Mean Square Error of 
Prediction (RMSEP), Mean Absolute Error (MAE), 
and coefficient of determination (R²). 
 

2.5 Model Evaluation 
 

The performance of all models was assessed 
using MAE, RMSEP, and R². These metrics were 

calculated for both the training and testing 
datasets to evaluate model accuracy and 
generalizability. MAE is calculated as the 
average of the absolute differences between the 
predicted and actual dry matter percentages, as 
per equation 2 and : RMSE, a variation of MAE, 
is calculated by squaring the individual errors 
before averaging, which is given by equation 3: 
 

                            
(2)

 
 

                   
(3)

 
 

where yi represents the predicted dry matter 
percentage, xi is the observed dry matter 
percentage and n the total sample number. R² 
was utilized to assess the overall correlation 
between the spectral data and the actual 
concentrations, calculated as per equation 4: 
 

                      
(4)

 
 

where x denotes the mean of the observed dry 
matter percentages. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Development of Machine Learning 
Models for Dry Matter Prediction 

 

Four machine learning models - Convolutional 
Neural Network (CNN), Artificial Neural Network 
(ANN), Support Vector Machine (SVM), and 
Random Forest (RF) - were developed to predict 
dry matter content in Hass avocados using NIR-
DRS data. The performance of these models 
was evaluated using Root Mean Square Error of 
Prediction (RMSEP), Mean Absolute Error 
(MAE), and coefficient of determination (R²) for 
both training and testing datasets. Table 1 
summarizes the performance metrics for all the 
four models. The CNN model demonstrated 
superior performance, achieving the lowest 
RMSEP (1.9) and MAE (1.4) values, along with 
the highest R² (0.91) in the testing set. This 
indicates that the CNN model had the best 
generalization ability and predictive accuracy 
among all tested models. The superior 
performance of the CNN can be attributed to its 
ability to automatically learn hierarchical features 
from the spectral data [28]. They are particularly 
effective in handling high-dimensional input data, 
such as NIR spectra, by leveraging their 
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convolutional layers to capture local patterns and 
spatial hierarchies [29]. CNNs can preserve the 
spatial relationships within the spectra that other 
models might overlook. In contrast, ANN models, 
despite their flexibility, lack the convolutional 
structure that helps CNNs isolate key features. 
Similarly, SVM models excel in finding the 
decision boundary between classes, but they 
may struggle with highly complex, non-linear 
relationships in the data. The Random Forest 
(RF) model, despite its high training 
performance, struggled in the testing phase, 
which indicates overfitting. This was likely due to 
the model's tendency to create overly specific 
decision trees based on the training data, which 
failed to generalize to new, unseen data. 
 
The ANN and SVM models showed comparable 
performance, with RMSEP values of 2.0 and 2.1, 
respectively, and R² values of 0.89 for both in the 
testing set. These results suggest that both 
models were able to capture the non-linear 
relationships between NIR spectra and dry 
matter content effectively, ANN models, despite 
their flexibility, lack the convolutional structure 

that helps CNNs isolate key features. Similarly, 
SVM models excel in finding the decision 
boundary between classes, but they may 
struggle with highly complex, non-linear 
relationships in the data. Interestingly, the RF 
model showed the best performance on the 
training set (R² = 0.98, MAE = 0.8), but its 
performance dropped considerably in the testing 
set (R² = 0.87, RMSEP = 2.5). This discrepancy 
between training and testing performance 
suggests that the RF model may have overfitted 
to the training data, limiting its generalization to 
new, unseen samples. Fig. 2 provides a visual 
comparison of the performance metrics for all 
four modules. The graph clearly illustrates the 
superior performance of the CNN model, as 
depicted by lower error rates (RMSEP and MAE) 
and higher R² value in the testing set. Fig. 3 
shows the regression plots comparing the actual 
versus predicted dry percentages for all four 
models. The plots are based on the PCA training 
and testing datasets in the 1000-2350nm range. 
The plots also confirm the superior performance 
of the CNN model, as evidenced by the tighter 
clustering of points around the 1:1 line. 

 
Table 1. Performance metrics for the four machine learning models. 

 

 T raining S et Testing Set 

Modelrm SEC R2 MAE RMSEP R2 MAE 

CNN 1.3 0.96 0.9 1.9 0.91 1.4 
ANN 1.6 0.93 1.2 2.0 0.89 1.5 
SVM 1.7 0.92 1.1 2.1 0.89 1.5 
RF 1.0 0.98 0.8 2.5 0.87 1.8 

 

 
 

Fig. 2. Comparison of CNN, SVM, DNN and RF models’ evaluation metrics 
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Fig. 3. Regression plots showing the comparison of actual versus predicted dry matter 
percentages for CNN, SVM, RF, and ANN models 

ANN 
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Table 2. Evaluation metrics of the machine learning models at different wavelength regions 
 

 Training Set Testing Set 

Model RMSEC MAE R2 RMSEP MAE R2 

1000-2350nm 1.1 0.83 0.97 1.52 1.17 0.94 
1000-1500nm 1.11 0.82 0.97 1.58 1.19 0.94 
1500-1900nm 1.44 1.1 0.94 2.02 1.51 0.89 
1900nm-2350nm 1.15 0.86 0.96 1.65 1.28 0.93 

 

The success of the CNN model in this study 
aligns with recent findings in spectral analysis. 
For instance, Acquarelli et al. [30] demonstrated 
that convolutional neural networks (CNNs) can 
efficiently classify vibrational spectroscopic data, 
even outperforming traditional methods like 
partial least squares (PLS). Their study showed 
that CNNs achieved an accuracy of 96% on 
preprocessed spectroscopic data, compared to 
89% for PLS, and also performed better on non-
preprocessed data. This capability mirrors the 
strength of CNNs observed in our study, where 
the model effectively learned hierarchical 
features from spectral data and achieved high 
predictive accuracy in assessing avocado dry 
matter content. 
 

3.2 Optimization of NIR Wavelength 
Range for Dry Matter Prediction 

 

To identify the optimal NIR wavelength range for 
dry matter prediction in Hass avocados, we 
evaluated the performance of the CNN model 
across different spectral regions. Table 2 
presents the performance metrics for each 
spectral region tested. The full spectrum (1000-
2350 nm) showed the best overall performance, 
with an R² of 0.94, RMSEP of 1.52, and MAE of 
1.17 in the testing set. This broad range captures 
a comprehensive set of molecular vibrations and 
combinations, providing detailed information for 
accurate predictions. Notably, the 1000-1500 nm 
region (second overtone region) showed 
comparable performance to the full spectrum, 
with an R² of 0.94, RMSEP of 1.58, and MAE of 

1.19. This region is particularly important due to 

its association with C-H, C-H2, and C-H3 bonds, 

which are related to the second overtone of C-H 
stretching vibrations [31]. These bonds are 
indicative of the organic content, particularly the 
lipid and carbohydrate structures in avocados, 
which are closely related to their dry matter 
content. This region offers strong absorption 
features that directly correlate with the lipid and 
moisture composition in the fruit, making it an 
important range for prediction. 
 

The 1500-1900 nm region (first overtone region) 
showed the lowest performance among all tested 

ranges, with an R² of 0.89, RMSEP of 2.02, and 
MAE of 1.51. This suggests that, although it 
contains important spectral information, it may 
also include noise or less informative features for 
dry matter prediction. It corresponds to water 
content, which is an important component but 
might not fully represent the variance needed for 
precise dry matter prediction. The 1900-2350 nm 
region (combination band region) showed good 
performance (R² = 0.93, RMSEP = 1.65, MAE = 
1.28), but not as strong as the full spectrum or the 
1000-1500 nm region. This region is typically 
associated with combination bands of fundamental 
vibrations and can provide valuable information 
about molecular structure [32]. But it did not 
perform as well as the 1000-1500 nm range due to 
the potential inclusion of more complex molecular 
interactions that introduce noise, reducing its 
predictive power. 
 

Fig. 4 illustrates the comparison between 
evaluation metrics and computational time for 
various wavelength regions. This visualization 
highlights an important practical consideration: 
while the full spectrum (1000-2350 nm) provides 
the best performance, the 1000-1500 nm region 
offers nearly equivalent predictive power with 
significantly reduced computational time (16 
minutes versus 47 minutes for model training). 
The strong performance of the 1000-1500 nm 
region is particularly noteworthy from an applied 
perspective. This narrower range could potentially 
allow for the development of simpler and more 
cost-effective NIR instruments for avocado 
maturity assessment, without significantly 
compromising prediction accuracy. This finding 
aligns with the growing interest in developing 
targeted, economically feasible NIRS 
applications in the food industry [33]. The 
regression plots showing predicted versus actual 
dry matter content for different NIR regions, as 
shown in Fig. 5, visually confirm the strong 
performance of both the full spectrum and the 
1000-1500 nm region, as evidenced by the tight 
clustering of points around the 1:1 line. Thus, the 
1000-1500 nm region offers a promising balance 
between prediction accuracy and practical 
considerations such as instrument complexity 
and computational efficiency. 
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Fig. 4. Comparison between evaluation metrics and computational time for various wavelength regions
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Fig. 5. Regression plots showing the predicted dry matter compared to actual dry matter for 
different NIR regions 
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The findings from this study have significant 
implications for the development of rapid, non-
destructive methods for assessing avocado 
maturity. By demonstrating the effectiveness of 
CNN models and identifying optimal spectral 
ranges, this research paves the way for more 
efficient and accurate quality control processes in 
the avocado industry. 
 

4. CONCLUSION 
 
This study has successfully demonstrated the 
feasibility of using near-infrared diffuse 
reflectance spectroscopy (NIR-DRS) in 
combination with machine learning models for 
the rapid and non-destructive assessment of 
Hass avocado maturity. The primary objective 
was to develop accurate predictive models for 
dry matter content and identify optimal NIR 
wavelength ranges to ensure efficient and 
reliable performance. Among the models tested, 
the Convolutional Neural Network (CNN) 
emerged as the most effective, achieving a high 
predictive accuracy with an R² of 0.91, a root 
mean square error of prediction (RMSEP) of 1.9, 
and a mean absolute error (MAE) of 1.4 on the 
test set. The superior performance of the CNN 
model underscores its capacity to learn 
hierarchical features from spectral data, which 
makes it particularly advantageous for analyzing 
complex NIR spectra. 
 
Despite its success, this study acknowledges 
certain limitations. The dataset used was 
relatively small, which may affect the 
generalizability of the model to different avocado 
varieties or environmental conditions, such as 
changes in humidity or temperature. Future 
research should focus on expanding the dataset 
and validating the model's robustness across 
diverse growing conditions. Additionally, while the 
full NIR spectrum (1000–2350 nm) provided the 
most comprehensive information for predicting 
dry matter content, we found that the narrower 
range of 1000–1500 nm offered comparable 
predictive accuracy with reduced computational 
demands, opening possibilities for more efficient, 
cost-effective NIR devices. The findings of this 
study have important practical implications for 
the avocado industry. By enabling rapid, non-
destructive assessments of avocado maturity, 
this technology can help optimize harvest timing, 
reduce post-harvest losses, and enhance the 
quality of fruit reaching consumers. Moreover, 
the strong performance of the CNN model 
demonstrates the potential of deep learning 
techniques in the spectroscopic analysis of 

agricultural products, laying the groundwork for 
broader applications. This approach could be 
extended to the assessment of other fruits and 
vegetables, advancing the development of non-
destructive quality assessment tools in the food 
industry. Future research could explore the use 
of advanced deep learning models, such as 
transformers or deep belief networks, which may 
offer even greater predictive power and 
efficiency. 
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