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Abstract

Let G = (V (G), E(G)) be a nontrivial connected graph. A nonempty set of vertices
T ⊆ V (G) is defined as an offensive alliance in G if, for every v ∈ ∂(T ), it holds that
|N [v] ∩ T | ≥ |N [v] r T |. Equivalently, this can be expressed as degT (v) ≥ degV (G)rT (v) + 1. The set
T is termed a total offensive alliance in G if it is an offensive alliance and every vertex in T has at least one
neighbor within T . The minimum cardinality of a total offensive alliance set in G is called the total offensive
alliance number, denoted by ato(G). This paper presents a characterization of total offensive alliance sets and
provides the corresponding minimum cardinality for various graph families, including path, cycle, complete,
star, fan, and wheel graphs.
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1 Introduction

In the real world, an alliance is an association or collection of entities formed for mutual benefit such that the
union is stronger than the individual. Formally, it is affiliated as a formal agreement or treaty between two or
more nations to collaborate for specific purposes [1] or joining of efforts and interests within families, states,
parties, or individuals. This has motivated the study of Kristiansen et al. [2] which employed the concept of
alliances in graphs and in the context of alliance of nations in war, the vertices of graph represent the nations
and the edges correspond to possible relation between them. They defined three kinds of alliances, the defensive,
offensive, and dual or powerful alliance. A defensive alliance in a graph G is a set S of vertices of G with the
property that every vertices in S has atmost one more neighbor outside of S than it has in S. Also, an offensive
alliance in a graph G is a set S of vertices with the property that every vertex in the neighborhood of S has at
least one more neighbor in S than it has outside of S [3]. With these definitions, we say that vertices within
a defensive alliance can be defended from possible attack by outside vertices and vertices in the neighborhood
of an offensive alliance is vulnerable to possible attack by vertices in an offensive alliance [4]. Dual or powerful
alliance, on the other hand, is both defensive and offensive. Variations of these defensive alliances can also be
found in [5], [6] and variations of offensive alliances can be found in [7].

Throughout the years, researchers generate significant development on these three kinds of alliances. [3]
Moreover, studying alliances in its broad sense continues to offer distinguished contributions specifically its
variety of applications in business and social network modeling, bioinformatics,
distributed computing, web communities, security and defense, biological networks, data clustering, etc. that
are discussed in studies [1] and [2]. That said, the alliances in graphs remain an interesting study over the years.

In this paper, we focus on offensive alliances in graphs. We introduce the concept of total offensive alliance,
an extension of the offensive alliance, with additional condition that may potentially be more useful in certain
applications. Here, we present the total offensive alliances to some graph families particularly path, cycle,
complete, star, fan, and wheel graphs. We examine the properties and nature of total offensive alliances within
these graph structures to determine their characterizations. Also, we identify the corresponding total offensive
alliance number of each graphs. The same method of finding characterizations can also be examined in [8], [9],
[10].

2 Preliminary Notes

Some definitions of the concepts covered in this study are included below. You may refer on the remaining terms
and definitions in [1], [2], [4], [3], [11].

Definition 2.1. The join of graphs G and H is a graph formed by the disjoint union, denoted by G ∪H, of
G and H connecting every vertex of G to every vertex of H. For n ≥ 2, the fan graph Fn of order n + 1 is a
graph join Pn ∪GT where Pn denotes the path graph of order n and GT denotes the trivial graph. Every vertex
in Pn is connected to the vertex in GT which we refer to as the universal vertex. For n ≥ 3, the wheel graph
Wn of order n + 1 is a graph join Cn ∪ GT where Cn denotes the cycle graph of order n and GT denotes the
trivial graph. Every vertex in Cn is connected to the universal vertex in GT .

Definition 2.2. Let G = (V (G), E(G)) be a nontrivial graph and let u, v ∈ V (G). The subgraph of a graph G
induced by a nonempty set T of vertices of G, is the induced subgraph with vertex set, T , denoted by G[T ],
such that whenever u and v are vertices of T and uv is an edge of G, then uv is an edge of G[T ] as well.
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Definition 2.3. [11] Let G be a simple graph and let T ⊆ V (G). Then the boundary set of T ⊆ V (G),
denoted by ∂(T ), is the set of all vertices of G which are adjacent to T , but not in T , i.e., N(T )r T .

Definition 2.4. [1] Given a nontrivial connected graph G, a nonempty set of vertices T ⊆ V (G) is an offensive
alliance in G if for every v ∈ ∂(T ), we have |N [v]∩T | ≥ |N [v]rT | or equivalently, degT (v) ≥ degV (G)rT (v)+1.

Example 2.1. Consider the graph in Fig. 1. Take T = {v1, v3} ⊆ V (G). Then vertices v2, v4 ∈ ∂(T ). Now,
for v2 ∈ ∂(T ), |N [v2] ∩ T | = 2 > |N [v2] r T | = 1. Similarly for v4 ∈ ∂(T ). Hence, T is an offensive alliance of
G.

v1 v2

v3

v4

G :

Fig. 1. A graph G and its offensive alliance

Definition 2.5. A nonempty set of vertices T ⊆ V (G) is called a total offensive alliance in G if T is an
offensive alliance in G and every vertex in T has at least one neighbor in T . Moreover, the minimum cardinality
of a total offensive alliance in G is called the total offensive alliance number of G, denoted by ato(G).

Example 2.2. Consider the graph H in Fig. 2. Here, the set of vertices T = {v2, v4, v5, v6} ⊆ V (H) is an
offensive alliance set in H. Observe that ∂(T ) = {v1, v7}. For v1 ∈ ∂(T ), |N [v1]∩ T | = 2 ≥ |N [v1]r T | = 2 and
for v7 ∈ ∂(T ), |N [v7] ∩ T | = 2 ≥ |N [v7]r T | = 1. However, T is not a total offensive alliance set in H. Notice
that the induced subgraph of T in H has an isolated vertex, as shown in graph H1.

v1

v3

v4

v2
v5

v6

v7 v4

v2
v5

v6

H : H1 :

Fig. 2. A graph H and its induced subgraph H1 of an offensive alliance T

Example 2.3. Let G be a graph as shown in Fig. 3. Here, T = {v2, v3} ⊆ V (G) is a total offensive alliance in
G. In fact, T is the minimum total offensive alliance in G.
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v1

v2

v3

v4

v5 v3

v2

G : G1 :

Fig. 3. A graph G and its total offensive alliance

Remark 2.1. If T = V (G), then T is not a total offensive alliance in G.

3 Main Results

In this section, the characteristics of a total offensive alliance for paths, cycles, complete graphs, star graphs, fan,
and wheel graphs are provided. Moreover, the total offensive alliance number for each graph is also established.
The term TOA is used to represent total offensive alliance.

Theorem 3.1. Let G be a nontrivial connected graph with 4(G) = 2. If ∅ 6= T ⊆ V (G), then T is a TOA in
G if and only if no two vertices in ∂(T ) are neighbors in ∂(T ) and G[T ] has no isolated vertex.

Proof. Let ∅ 6= T ⊆ V (G) be a TOA in G. Suppose that there exists two vertices, say u, v ∈ ∂(T ), with u ∈ N(v)
and v ∈ N(u) or G[T ] has an isolated vertex. Since u, v ∈ ∂(T ) are neighbors, |N [u]r T | = 2. And since T is a
TOA in G, |N [u] ∩ T | ≥ 2. However, |N [u] ∩ T | = 1, a contradiction to the assumption that T is a TOA in G.
Thus, u, v ∈ ∂(T ) in G are not neighbors in ∂(T ). On the other hand, if G[T ] has an isolated vertex, then there
exists a vertex w ∈ T such that w /∈ N [x] for some x ∈ T , a contradiction. Thus, G[T ] has no isolated vertex.
Therefore, no two vertices in ∂(T ) are neighbors in ∂(T ) and G[T ] has no isolated vertex.

Conversely, suppose that no two vertices in ∂(T ) are neighbors in ∂(T ) and G[T ] has no isolated vertex. Then
for every v ∈ ∂(T ), |N [u] ∩ T | = 1 ≥ |N [u]r T | = 1. Thus, T is an offensive alliance in G. Also, since G[T ] has
no isolated vertex, clearly, T is a TOA in G.

Corollary 3.2. For a path graph Pn of order n ≥ 3,

ato(Pn) =



2n
3
, if n ≡ 0(mod 3)

2n−2
3

, if n ≡ 1(mod 3)

2n−1
3

, if n ≡ 2(mod 3)
.

Proof. Let Pn = {v1, v2, ..., vn}, n ≥ 3, and ∅ 6= T ⊆ V (Pn) be a TOA in Pn. Consider the following cases:

Case 1: n ≡ 0 (mod 3)

Choose T = {v2, v3, ..., v3k+2, v3k+3, ..., vn−1, vn}, where k = n−3
3

, k ∈ Z+. Then |T | = 2n
3

. Now, ∂(T ) =
{v1, v4, ..., vn−2}. Clearly, no two vertices of ∂(T ) are neighbors in ∂(T ). Also, Pn[T ] has no isolated vertex
since for every v ∈ T , degT (v) = 1. By Theorem 3.1, T is a TOA in Pn. It remains to show that T is the
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minimum TOA in Pn. Suppose T is not the minimum TOA in Pn. Then there exists a ∅ 6= T0 ⊆ V (Pn) such
that |T0| < |T | = 2n

3
. Without loss of generality, suppose |T0| = 2n

3
− 1. Then there exists v ∈ T0 such that

degT0(v) = 0 or there exists w ∈ ∂(T0) such that deg∂(T0)(w) = 1. If degT0(v) = 0, then Pn[T0] has an isolated
vertex, a contradiction to our assumption about T0. Hence, T0 is not a TOA in Pn. If deg∂(T0)(w) = 1, then
|N [w] ∩ T0| = 1 � |N [w] r T0| = 2, a contradiction. Thus, T0 is not an offensive alliance in Pn. Therefore,
ato(Pn) = |T | = 2n

3
.

Case 2: n ≡ 1 (mod 3)

Choose T = {v2, v3, ..., v3k+2, v3k+3, ..., vn−2, vn−1}, where k = n−1
3
− 1, k ∈ Z+. Then |T | = 2n−2

3
. Now,

∂(T ) = {v1, v4, ..., vn}. Clearly, no two vertices of ∂(T ) are neighbors in ∂(T ). Also, Pn[T ] has no isolated vertex
since for every v ∈ T , degT (v) = 1. By Theorem 3.1, T is a TOA in Pn. It remains to show that T is the
minimum TOA in Pn. Suppose T is not the minimum TOA in Pn. Then there exists a ∅ 6= T0 ⊆ V (Pn) such
that |T0| < |T | = 2n−2

3
. Without loss of generality, suppose |T0| = 2n−2

3
− 1. Then there exists v ∈ T0 such that

degT0(v) = 0 or there exists w ∈ ∂(T0) such that deg∂(T0)(w) = 1. If degT0(v) = 0, then Pn[T0] has an isolated
vertex, a contradiction to our assumption about T0. Hence, T0 is not a TOA in Pn. If deg∂(T0)(w) = 1, then
|N [w] ∩ T0| = 1 � |N [w] r T0| = 2, a contradiction. Thus, T0 is not an offensive alliance in Pn. Therefore,
ato(Pn) = |T | = 2n−2

3
.

Case 3: n ≡ 2 (mod 3)

Choose T = {v2, v3, ..., v3k+2, v3k+3, ..., vn−3, vn−2, vn−1}, where k = n−2
3
− 1, k ∈ Z+. Then |T | = 2n−1

3
. Now,

∂(T ) = {v1, v4, ..., vn}. Clearly, no two vertices of ∂(T ) are neighbors in ∂(T ). Also, Pn[T ] has no isolated vertex
since for every v ∈ T , either degT (v) = 1 or degT (v) = 2. By Theorem 3.1, T is a TOA in Pn. It remains
to show that T is the minimum TOA in Pn. Suppose T is not the minimum TOA in Pn. Then there exists a
∅ 6= T0 ⊆ V (Pn) such that |T0| < |T | = 2n−1

3
. Without loss of generality, suppose |T0| = 2n−1

3
− 1. Then there

exists v ∈ T0 such that degT0(v) = 0 or there exists w ∈ ∂(T0) such that deg∂(T0)(w) = 1. If degT0(v) = 0, then
Pn[T0] has an isolated vertex, a contradiction to our assumption about T0. Hence, T0 is not a TOA in Pn. If
deg∂(T0)(w) = 1, then |N [w] ∩ T0| = 1 � |N [w] r T0| = 2, a contradiction. Thus, T0 is not an offensive alliance
in Pn. Therefore, ato(Pn) = |T | = 2n−1

3
.

Corollary 3.3. For a cycle graph Cn of order n ≥ 3,

ato(Cn) =



2n
3
, if n ≡ 0(mod 3)

2n+1
3

, if n ≡ 1(mod 3)

2n+2
3

, if n ≡ 2(mod 3)
.

Proof. Let Cn = {v1, v2, ..., vn, v1}, n ≥ 3, and ∅ 6= T ⊆ V (Cn) be a TOA in Cn. Consider the following cases:

Case 1: n ≡ 0 (mod 3)

Choose T = {v1, v2, ..., v3k+1, v3k+2, ..., vn−2, vn−1}, where k = n−3
3

, k ∈ Z+. Then |T | = 2n
3

. Now, ∂(T ) =
{v3, v6, ..., vn}. Clearly, no two vertices of ∂(T ) are neighbors in ∂(T ). Also, Cn[T ] has no isolated vertex
since for every v ∈ T , degT (v) = 1. By Theorem 3.1, T is a TOA in Cn. It remains to show that T is the
minimum TOA in Cn. Suppose T is not the minimum TOA in Cn. Then there exists a ∅ 6= T0 ⊆ V (Cn) such
that |T0| < |T | = 2n

3
. Without loss of generality, suppose |T0| = 2n

3
− 1. Then there exists v ∈ T0 such that

degT0(v) = 0 or there exists w ∈ ∂(T0) such that deg∂(T0)(w) = 1. If degT0(v) = 0, then Cn[T0] has an isolated
vertex, a contradiction to our assumption about T0. Hence, T0 is not a TOA in Cn. If deg∂(T0)(w) = 1, then
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|N [w] ∩ T0| = 1 � |N [w] r T0| = 2, a contradiction. Thus, T0 is not an offensive alliance in Cn. Therefore,
ato(Cn) = |T | = 2n

3
.

Case 2: n ≡ 1 (mod 3)

Choose T = {v1, v2, ..., v3k+1, v3k+2, ..., vn−3, vn−2, vn−1}, where k = n−1
3
− 1, k ∈ Z+. Then |T | = 2n+1

3
. Now,

∂(T ) = {v3, v6, ..., vn}. Clearly, no two vertices of ∂(T ) are neighbors in ∂(T ). Also, Cn[T ] has no isolated vertex
since for every v ∈ T , either degT (v) = 1 or degT (v) = 2. By Theorem 3.1, T is a TOA in Cn. It remains to
show that T is the minimum TOA in Cn. Suppose T is not the minimum TOA in Cn. Then there exists a
∅ 6= T0 ⊆ V (Cn) such that |T0| < |T | = 2n+1

3
. Without loss of generality, suppose |T0| = 2n+1

3
− 1. Then there

exists v ∈ T0 such that degT0(v) = 0 or there exists w ∈ ∂(T0) such that deg∂(T0)(w) = 1. If degT0(v) = 0, then
Cn[T0] has an isolated vertex, a contradiction to our assumption about T0. Hence, T0 is not a TOA in Cn. If
deg∂(T0)(w) = 1, then |N [w] ∩ T0| = 1 � |N [w] r T0| = 2, a contradiction. Thus, T0 is not an offensive alliance
in Cn. Therefore, ato(Cn) = |T | = 2n+1

3
.

Case 3: n ≡ 2 (mod 3)

Choose T = {v1, v2, ..., v3k+1, v3k+2, ..., vn−4, vn−3, vn−2, vn−1}, where k = n−2
3
− 1, k ∈ Z+. Then |T | = 2n+2

3
.

Now, ∂(T ) = {v1, v4, ..., vn}. Clearly, no two vertices of ∂(T ) are neighbors in ∂(T ). Also, Cn[T ] has no isolated
vertex since for every v ∈ T , either degT (v) = 1 or degT (v) = 2. By Theorem 3.1, T is a TOA in Cn. It remains
to show that T is the minimum TOA in Cn. Suppose T is not the minimum TOA in Cn. Then there exists a
∅ 6= T0 ⊆ V (Cn) such that |T0| < |T | = 2n+2

3
. Without loss of generality, suppose |T0| = 2n+2

3
− 1. Then there

exists v ∈ T0 such that degT0(v) = 0 or there exists w ∈ ∂(T0) such that deg∂(T0)(w) = 1. If degT0(v) = 0, then
Cn[T0] has an isolated vertex, a contradiction to our assumption about T0. Hence, T0 is not a TOA in Cn. If
deg∂(T0)(w) = 1, then |N [w] ∩ T0| = 1 � |N [w] r T0| = 2, a contradiction. Thus, T0 is not an offensive alliance
in Cn. Therefore, ato(Cn) = |T | = 2n+2

3
.

Theorem 3.4. Let G be a complete graph Kn, n ≥ 3, and ∅ 6= T ⊆ V (Kn). Then T is a TOA in Kn if and
only if dn

2
e ≤ |T | ≤ n− 1.

Proof. Let ∅ 6= T ⊆ V (Kn) be a TOA in Kn. Clearly by Remark 2.1, |T | ≤ n− 1. Now, we want to show that
dn
2
e ≤ |T |. Suppose on contrary that |T | < dn

2
e. Without loss of generality, suppose |T | = dn

2
e−1. If |T | < dn

2
e,

let v ∈ ∂(T ), then |N [v] ∩ T | ≤ dn
2
e - 1 and |N [v]r T | ≤ dn

2
e. Thus, |N [v] ∩ T | � |N [v]r T |, a contradiction to

our assumption that T is a TOA in Kn. Therefore, dn
2
e ≤ |T |.

Conversely, suppose dn
2
e ≤ |T | ≤ n − 1. It suffices to show that if |T | = dn

2
e or |T | = n − 1, then T is a

TOA in Kn. If |T | = dn
2
e, then for every v ∈ ∂(T ), |N [v] ∩ T | = dn

2
e = |N [v] r T | = dn

2
e when n is even or

|N [v]∩ T | = dn
2
e ≥ |N [v]r T | = dn

2
e − 1 when n is odd. Also, if |T | = n− 1, then for every v ∈ ∂(T ), it is clear

that degT (v) ≥ degV (Kn)\T (v) + 1. Thus, T is an offensive alliance in Kn. To this point, since every vertex in
Kn is connected, for dn

2
e ≤ |T | ≤ n − 1, every vertex in T has at least one neighbor in T . Therefore, T is a

TOA in Kn.

Corollary 3.5. If G = Kn, n ≥ 4, then ato(Kn) = dn
2
e.

Proof. Let ∅ 6= T ⊆ V (Kn) be the minimum TOA in Kn. Then by Theorem 3.4, |T | ≥ dn
2
e. Thus, |T | = dn

2
e.

Therefore, ato(Kn) = |T | = dn
2
e.

Theorem 3.6. Let G be a star graph K1,n of order n + 1, n ≥ 2, and ∅ 6= T ⊆ V (K1,n) such that T = T1 ∪ T2,
T1 = K1, T2 ⊆ V (Kn). Then T is a TOA in K1,n if and only if 1 ≤ |T2| ≤ n− 1.
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Proof. Let ∅ 6= T ⊆ V (K1,n) such that T = T1 ∪T2, T1 = K1, T2 ⊆ V (Kn) be TOA in K1,n. Clearly by Remark
2.1, |T2| ≤ n − 1. Now we want to show that 1 ≤ |T2|. Suppose on contrary, |T2| < 1. Obviously, K1,n[T ]
has an isolated vertex, i.e., the central vertex u ∈ T1 ⊆ T . A contradiction since T is a TOA in K1,n. Hence,
1 ≤ |T2| ≤ n− 1.

Conversely, suppose 1 ≤ |T2| ≤ n − 1. Then 1 ≤ |T2| and |T2| ≤ n − 1. For every vertex v ∈ ∂(T ) in T2,
|N [v] ∩ T | = 1 ≥ |N [v] r T | = 1 since every leaf vertex in T2 ⊆ V (Kn) is connected to the central vertex in
T1 = K1. Hence, T is an offensive alliance in K1,n. Also, since 1 ≤ |T2|, then the central vertex in T has at
least one neighbor in T . Therefore, T is a TOA in K1,n.

Corollary 3.7. If G = K1,n, n ≥ 2, then ato(K1,n) = 2.

Proof. Let ∅ 6= T ⊆ V (K1,n) such that T = T1 ∪ T2, T1 = K1, T2 ⊆ V (Kn) be the minimum TOA in K1,n. By
Theorem 3.6, 1 ≤ |T2| and T contains the central vertex u ∈ T1. Therefore, ato(K1,n) = 2.

For the next theorems, we consider two scenarios for fan and wheel graphs. For the first scenario, we examine
a total offensive alliance T such that T ⊆ V (Pn) ⊆ V (Fn) for fan graphs and T ⊆ V (Cn) ⊆ V (Wn) for wheel
graphs. Here, T must only contain vertices in V (Pn) and V (Cn) respectively. For the second scenario, we take
T ⊆ V (Fn) such that T = T1 ∪ T2, T1 ⊆ V (Pn), T2 ⊆ GT for fan graphs and T ⊆ V (Wn) such that T = T1 ∪
T2, T1 ⊆ V (Cn), T2 ⊆ GT for wheel graphs. Here, T must contain the universal vertex in GT and vertices in
V (Pn) and V (Cn) respectively.

Theorem 3.8. Let G = Fn of order n + 1, n ≥ 3, and ∅ 6= T ⊆ V (Pn) ⊆ V (Fn). Then T is a TOA in Fn if
and only if one of the following holds:

(i) T = V (Pn)
(ii) {v1, v2, vn−1, vn} ⊆ T and Fn[V (Pn) r T ] is an empty graph in Pn provided that

Fn[T r {v1, v2, vn−1, vn}] in T has no isolated vertex.

Proof. Let ∅ 6= T ⊆ V (Pn) ⊆ V (Fn) be a TOA in Fn. Clearly, T = V (Pn). Now, suppose {v1, v2, vn−1, vn} * T
or Fn[V (Pn)r T ] is an empty graph in Pn provided that Fn[T r {v1, v2, vn−1, vn}] in T has an isolated vertex.
If {v1, v2, vn−1, vn} * T , then for every end-vertex v1 ∈ V (Pn) r T, |N [v1] r T | = 3. Same as with end-vertex
vn ∈ V (Pn)rT . Since T is a TOA in Fn, |N [v1]∩T | ≥ 3 but |N [v1]∩T | = 0, a contradiction. Hence, (i) holds.
If Fn[V (Pn) r T ] is an empty graph in Pn provided that Fn[T r {v1, v2, vn−1, vn}] in T has an isolated vertex,
then clearly, there exists vi ∈ T r {v1, v2, vn−1, vn} for i = 1, 2, ..., n such that vi has no neighbor in T , again, a
contradiction. Hence, (ii) holds.

For the converse, suppose (i) holds. Then for the universal vertex u ∈ ∂(T ) in GT , |N [u]∩T | = n ≥ |N [u]rT | = 1.
Hence, T is an offensive alliance in Fn. Also, since T = V (Pn), then clearly, T is a TOA in Fn. Now, suppose
(ii) holds. Since Fn[V (Pn) r T ] is an empty graph in Pn, then for every vertex v ∈ V (Pn) r T , |N [v] ∩ T | = 2
and |N [v] r T | = 2, which is itself and the universal vertex u ∈ ∂(T ) in GT . Thus, T is an offensive alliance in
Fn. Also, since {v1, v2, vn−1, vn} ⊆ T and Fn[T r {v1, v2, vn−1, vn}] in T has no isolated vertex, clearly, T is a
TOA in Fn.

Theorem 3.9. Let G = Fn of order n + 1, n ≥ 3, and ∅ 6= T ⊆ V (Fn) such that T = T1∪T2, T1 ⊆ V (Pn), T2 ⊆
GT . Then T is a TOA in Fn if and only if the following hold:

(i) for every end-vertex v ∈ ∂(T ) of V (Pn), degT (v) = 2; and
(ii) every vertex in ∂(T ) that is not an end-vertex of V (Pn) has at most one neighbor in ∂(T ).

Proof. Let ∅ 6= T ⊆ V (Fn) be a TOA in Fn. Suppose there exists an end-vertex v ∈ ∂(T ) of V (Pn) such that
degT (v) 6= 2 or there exists a vertex w ∈ ∂(T ) that is not an end-vertex of V (Pn) such that it has two neighbors
in ∂(T ). If there exists an end-vertex v ∈ ∂(T ) of V (Pn) such that degT (v) 6= 2, then clearly, degT (v) = 1, since
it has at least one neighbor in T , which is immediately the universal vertex in T2 ⊆ GT . Thus, |N [v] ∩ T | = 1
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but |N [v] r T | = 2, which is itself and its adjacent vertex in V (Pn). This is a contradiction since T is a TOA
in Fn. On the other hand, if there exists a vertex w ∈ ∂(T ) that is not an end-vertex of V (Pn) such that it has
two neighbors in ∂(T ), then |N [v] r T | = 3, but |N [v] ∩ T | = 1, which is the universal vertex in T2 ⊆ GT only,
a contradiction. Thus, both (i) and (ii) hold.

Conversely, suppose (i) and (ii) hold. Then for every end-vertex v ∈ ∂(T ) of V (Pn) such that degT (v) = 2,
|N [v] ∩ T | = 2 ≥ |N [v] r T | = 1. Also, for every vertex w ∈ ∂(T ) that is not an end-vertex of V (Pn)
with |N(w)| = 3 in V (Pn), |N [w] ∩ T | = 3 ≥ |N [w] r T | = 1 if w ∈ ∂(T ) has no neighbor in ∂(T ) or
|N [w] ∩ T | = 2 ≥ |N [w]r T | = 2 if w ∈ ∂(T ) has one neighbor in ∂(T ). Hence, T is an offensive alliance in Fn.
Moreover, since the universal vertex, say u ∈ T2 ⊆ GT is in T , every vertex in T has a neighbor in T . Therefore,
T is a TOA in Fn.

Corollary 3.10. For a fan graph Fn of order n + 1 where n ≥ 3,

ato(Fn) =



n+3
3

, if n ≡ 0(mod 3)

n+5
3

, if n ≡ 1(mod 3)

n+4
3

, if n ≡ 2(mod 3)
.

Proof. Let ∅ 6= T ⊆ V (Fn) such that T = {v1, v2, ..., vn−1, vn} ∪ {u} where {v1, v2, ..., vn−1, vn} ∈ T1 ⊆ V (Pn)
and {u} ∈ T2 ⊆ GT for n ≥ 3 be a TOA in Fn. Consider the following cases:

Case 1: n ≡ 0 (mod 3)

Choose T = {v2, v5, ..., v3k−1, ..., vn−1} ∪ {u} where k = n
3

, k ∈ Z+. Then |T | = n+3
3

. Now, ∂(T ) =
{v1, v3, v4, v6, v7, ..., vn}. Clearly, every end-vertices v1, vn ∈ ∂(T ) of V (Pn), degT (v1) = 2 =degT (vn), which is
its adjacent vertex in T ⊆ V (Pn) and the universal vertex u. Also, every vertex in ∂(T ) that is not an end-vertex
of V (Pn) has at most one neighbor in ∂(T ). By Theorem 3.9, T is a TOA in Fn. Now, we want to show that T
is the minimum TOA in Fn. Suppose T is not the minimum TOA in Fn. Then there exists a ∅ 6= T0 ⊆ V (Fn)
such that |T0| < |T | = n+3

3
. Without loss of generality, suppose |T0| = n+3

3
− 1. Consider the following cases:

(i) vn−1 /∈ T0 for some vn−1 ∈ V (Pn)

If vn−1 /∈ T0 for some vn−1 ∈ V (Pn), then there exists vn−1 ∈ ∂(T0) such that degV (Fn)rT0
(vn−1) = 2, its

adjacent vertices in ∂(T0) ⊆ V (Pn), or there exists an end-vertex vn ∈ ∂(T ) of V (Pn) such that degT (vn) = 1. If
vn−1 ∈ ∂(T0) such that degV (Fn)rT0

(vn−1) = 2, then |N [vn−1]∩T0| = 1 but |N [vn−1]rT0| = 3, a contradiction.
Also, if end-vertex vn ∈ ∂(T ) of V (Pn) such that degT (vn) = 1, then |N [vn] ∩ T0| = 2 but |N [vn] r T0| = 1, a
contradiction as well. Hence, T0 is not an offensive alliance in Fn.
(ii) u /∈ T0

If u /∈ T0, then Fn[T0] contains isolated vertices of V (Pn), a contradiction to the assumption that T0 is a TOA
in Fn. Hence, T0 is not a TOA in Fn.
Therefore, ato(Fn) = |T | = n+3

3
.

Case 2: n ≡ 1 (mod 3)

Choose T = {v2, v5, ..., v3k−1, ..., vn−2, vn} ∪ {u} where k = n−1
3

, k ∈ Z+. Then |T | = n+5
3

. Now, ∂(T ) =
{v1, v3, v4, v6, v7, ..., vn−3, vn−1}. Clearly, for end-vertex v1 ∈ ∂(T ) of V (Pn), degT (v1) = 2, which is its adjacent
vertex in T ⊆ V (Pn) and the universal vertex u. Also, every vertex in ∂(T ) that is not an end-vertex of V (Pn)
has at most one neighbor in ∂(T ). By Theorem 3.9, T is a TOA in Fn. Now, we want to show that T is the
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minimum TOA in Fn. Suppose T is not the minimum TOA in Fn. Then there exists a ∅ 6= T0 ⊆ V (Fn) such
that |T0| < |T | = n+5

3
. Without loss of generality, suppose |T0| = n+5

3
− 1. Consider the following cases:

(i) v /∈ T0 for some v ∈ V (Pn)

If v /∈ T0 for some v ∈ V (Pn), then there exists v ∈ ∂(T0) such that degT0(v) = 1, the universal vertex u, if
v ∈ ∂(T0) is an end-vertex of V (Pn) or degV (Fn)rT0

(v) = 2, its adjacent vertices in ∂(T0) ⊆ V (Pn), if v ∈ ∂(T0)
is not. And so, |N [v]∩ T0| = 1 but |N [v]r T0| = 2 if v ∈ ∂(T0) is an end-vertex of V (Pn) or |N [v]∩ T0| = 1 but
|N [v]r T0| = 3 if v is not. But both are contradictions. Hence, T0 is not an offensive alliance in Fn..

(ii) u /∈ T0

If u /∈ T0, then Fn[T0] contains isolated vertices of V (Pn), a contradiction to the assumption that T0 is a TOA
in Fn. Hence, T0 is not a TOA in Fn.

Therefore, ato(Fn) = |T | = n+5
3

.

Case 3: n ≡ 2 (mod 3)

Choose T = {v2, v5, ..., v3k−1, ..., vn} ∪ {u} where k = n−2
3

, k ∈ Z+. Then |T | = n+4
3

.
Now, ∂(T ) = {v1, v3, v4, v6, v7, ..., vn−2, vn−1}. Clearly, for an end-vertex v1 ∈ ∂(T ) of V (Pn), degT (v1) = 2,
which is its adjacent vertex in T ⊆ V (Pn) and the universal vertex u. Also, every vertex in ∂(T ) that is not
an end-vertex of V (Pn) has at most one neighbor in ∂(T ). By Theorem 3.9, T is a TOA in Fn. Now, we want
to show that T is the minimum TOA in Fn. Suppose T is not the minimum TOA in Fn. Then there exists a
∅ 6= T0 ⊆ V (Fn) such that |T0| < |T | = n+4

3
. Without loss of generality, suppose |T0| = n+4

3
− 1. Consider the

following cases:

(i) v /∈ T0 for some v ∈ V (Pn)

If v /∈ T0 for some v ∈ V (Pn), then there exists v ∈ ∂(T0) such that degT0(v) = 1, the universal vertex u, if
v ∈ ∂(T0) is an end-vertex of V (Pn) or degV (Fn)rT0

(v) = 2, its adjacent vertices in ∂(T0) ⊆ V (Pn), if v ∈ ∂(T0)
is not. And so, |N [v] ∩ T0| = 1 but |N [v] r T0| = 2 if v is an end-vertex of V (Pn) or |N [v] ∩ T0| = 1 but
|N [v]r T0| = 3 if v is not. But both are contradictions. Hence, T0 is not an offensive alliance in Fn.

(ii) u /∈ T0

If u /∈ T0, then Fn[T0] contains isolated vertices of V (Pn), a contradiction to the assumption that T0 is a TOA
in Fn. Hence, T0 is not a TOA in Fn.

Therefore, ato(Fn) = |T | = n+4
3

.

Theorem 3.11. Let G = Wn of order n + 1, n ≥ 3, and ∅ 6= T ⊆ V (Cn) ⊆ V (Wn). Then T is a TOA in Wn

if and only if one of the following holds:

(i) T = V (Cn)

(ii) Wn[V (Cn)r T ] is an empty graph in Cn and Wn[T ] has no isolated vertex.

Proof. Let ∅ 6= T ⊆ V (Cn) ⊆ V (Wn) be a TOA in Wn. Clearly, T = V (Cn). Now, suppose Wn[V (Cn) r T ] is
not an empty graph in Cn or Wn[T ] has an isolated vertex. If Wn[V (Cn)rT ] is an not empty graph in Cn, then
there exist vertices u, v ∈ V (Cn)r T such that u and v are neighbors in V (Cn)r T . And so, |N [v]∩ T | = 1 but
|N [v] r T | = 3, a contradiction to our assumption that T is a TOA in Wn. Thus, Wn[V (Cn) r T ] is an empty
graph in Cn. On the other hand, if Wn[T ] has an isolated vertex, then there exists a vertex w ∈ T such that
w /∈ N [x] for some x ∈ T , a contradiction. Thus, Wn[T ] has no isolated vertex. Therefore, Wn[V (Cn)rT ] is an
empty graph in Cn and Wn[T ] has no isolated vertex.
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Conversely, suppose (i) holds. Then for the universal vertex u ∈ ∂(T ) in GT , |N [v] ∩ T | = n ≥ |N [v] r T | = 1.
Hence, T is an offensive alliance in Wn. Also, since T = V (Cn), clearly, every vertex in T has at least one
neighbor in T . Thus, T is a TOA in Wn. On one hand, suppose (ii) holds. Since Wn[V (Cn) r T ] is an empty
graph in Cn, then for vertex v ∈ V (Cn) r T , |N [v] ∩ T | = 2 ≥ |N [v] r T | = 2. Thus, T is an offensive alliance
in Wn. Also, Wn[T ] has no universal vertex, clearly, T is a TOA in Wn.

Theorem 3.12. Let G = Wn of order n + 1, n ≥ 3, and ∅ 6= T ⊆ V (Wn) such that T = T1 ∪ T2, T1 ⊆
V (Cn), T2 ⊆ GT . Then T is a TOA if and only if every vertex in ∂(T ) has at most one neighbor in ∂(T ).

Proof. Let ∅ 6= T ⊆ V (Wn) be a TOA in Wn. Suppose on contrary that every vertex in ∂(T ) has more than
one neighbor in ∂(T ). Let v ∈ ∂(T ) such that degV (Wn)rT (v) = 2. Then |N [v] ∩ T | = 1 since T1 = GT . But
|N [v]r T | = 3 which is itself and its adjacent vertices in ∂(T ) ⊆ V (Cn), a contradiction. Thus, every vertex in
∂(T ) has at most one neighbor in ∂(T ).

Now, conversely, suppose every vertex in ∂(T ) has at most one neighbor in ∂(T ). If vertex v ∈ ∂(T ) has no
neighbor in ∂(T ), then clearly, |N [v] ∩ T | = 3 ≥ |N [v] r T | = 1. If vertex v ∈ ∂(T ) has one neighbor in ∂(T ),
then clearly, |N [v]∩T | = 2 ≥ |N [v]rT | = 2. Thus, T is an offensive alliance in Wn. Moreover, since the isolated
vertex u ∈ T2 ⊆ GT is in T , every vertex v ∈ T1 ⊆ V (Cn) in T has at least one neighbor in T . Therefore, T is a
TOA in Wn.

Corollary 3.13. For a wheel graph Wn of order n + 1 where n ≥ 3,

ato(Wn) =



n+3
3

, if n ≡ 0(mod 3)

n+5
3

, if n ≡ 1(mod 3)

n+4
3

, if n ≡ 2(mod 3)
.

Proof. Let ∅ 6= T ⊆ V (Wn) such that T = {v1, v2, ..., vn−1, vn, v1} ∪ {u} where {v1, v2, ..., vn−1, vn, v1} ∈ T1 ⊆
V (Cn) and {u} ∈ T2 ⊆ GT for n ≥ 3 be a TOA in Wn. Consider the following cases:

Case 1: n ≡ 0 (mod 3)

Choose T = {v1, v4, ..., v3k−2, ..., vn−2} ∪ {u} where k = n
3

, k ∈ Z+. Then |T | = n+3
3

. Now, ∂(T ) =
{v2, v3, v5, v6, ..., vn−1, vn}. Clearly, every vertex in ∂(T ) has at most one neighbor in ∂(T ). By Theorem
3.12, T is a TOA in Wn. Now, we want to show that T is the minimum TOA in Wn. Suppose T is not the
minimum TOA in Wn. Then there exists a ∅ 6= T0 ⊆ V (Wn) such that |T0| < |T | = n+3

3
. Without loss of

generality, suppose |T0| = n+3
3
− 1. Consider the following cases:

(i) v3k−2 /∈ T0 for some v3k−2 ∈ V (Cn)

If v3k−2 /∈ T0 for some v3k−2 ∈ V (Cn), then v3k−2 ∈ ∂(T0) such that degV (Wn)rT0
(v3k−2) = 2. And so,

|N [v3k−2] ∩ T0| = 1 but |N [v3k−2]r T0| = 3, a contradiction. Hence, T0 is not an offensive alliance in Wn.

(ii) u /∈ T0

If u /∈ T0, then Wn[T0] contains isolated vertices of V (Cn), a contradiction to the assumption that T0 is a TOA
in Wn. Hence, T0 is not a TOA in Wn.

Therefore, ato(Wn) = |T | = n+3
3

.
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Case 2: n ≡ 1 (mod 3)

Choose T = {v1, v4, ..., v3k−2, ..., vn−3, vn−1} ∪ {u} where k = n−1
3

, k ∈ Z+. Then |T | = n+5
3

. Now,
∂(T ) = {v2, v3, v5, v6, ..., vn−2, vn}. Then, every vertex in ∂(T ) has at most one neighbor in ∂(T ). By Theorem
3.9, T is a TOA in Wn. Now, we want to show that T is the minimum TOA in Wn. Suppose T is not the
minimum TOA in Wn. Then there exists a ∅ 6= T0 ⊆ V (Wn) such that |T0| < |T | = n+5

3
. Without loss of

generality, suppose |T0| = n+5
3
− 1. Consider the following cases:

(i) v3k−2 /∈ T0 for some v3k−2 ∈ V (Cn)

If v3k−2 /∈ T0 for some v3k−2 ∈ V (Cn), then v3k−2 ∈ ∂(T0) such that degV (Wn)rT0
(v3k−2) = 2. And so,

|N [v3k−2] ∩ T0| = 1 but |N [v3k−2]r T0| = 3, a contradiction. Hence, T0 is not an offensive alliance in Wn.

(ii) u /∈ T0

If u /∈ T0, then Wn[T0] contains isolated vertices of V (Cn), a contradiction to the assumption that T0 is a TOA
in Wn. Hence, T0 is not a TOA in Wn.
Therefore, ato(Wn) = |T | = n+5

3
.

Case 3: n ≡ 2 (mod 3)

Choose T = {v1, v4, ..., v3k−2, ..., vn−1} ∪ {u} where k = n−2
3

, k ∈ Z+. Then |T | = n+4
3

. Now, ∂(T ) =
{v2, v3, v5, v6, ..., vn−2, vn}. Then, every vertex in ∂(T ) has at most one neighbor in ∂(T ). By Theorem 3.9, T is
a TOA in Wn. Now, we want to show that T is the minimum TOA in Wn. Suppose T is not the minimum TOA
in Wn. Then there exists a ∅ 6= T0 ⊆ V (Wn) such that |T0| < |T | = n+4

3
. Without loss of generality, suppose

|T0| = n+4
3
− 1. Consider the following cases:

(i) v3k−2 /∈ T0 for some v3k−2 ∈ V (Cn)

If v3k−2 /∈ T0 for some v3k−2 ∈ V (Cn), then v3k−2 ∈ ∂(T0) such that degV (Wn)rT0
(v3k−2) = 2. And so,

|N [v3k−2] ∩ T0| = 1 but |N [v3k−2]r T0| = 3, a contradiction. Hence, T0 is not an offensive alliance in Wn.

(ii) u /∈ T0

If u /∈ T0, then Wn[T0] contains isolated vertices of V (Cn), a contradiction to the assumption that T0 is a TOA
in Wn. Hence, T0 is not a TOA in Wn.
Therefore, ato(Wn) = |T | = n+4

3
.

4 Conclusions

In this article, total offensive alliances in path graphs, cycle graphs, complete graphs, star graphs, fan graphs,
and wheel graphs are characterized. Moreover, the total offensive alliance number is also identified. As future
line of research, we intend to investigate the total offensive alliances and total offensive alliance number for other
graph families.
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