
Journal of Software Engineering and Applications, 2024, 17, 172-201
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2024.174010 Apr. 28, 2024 172 Journal of Software Engineering and Applications

Optimized CUDA Implementation to Improve
the Performance of Bundle Adjustment
Algorithm on GPUs

Pranay R. Kommera, Suresh S. Muknahallipatna* , John E. McInroy

Department of Electrical Engineering and Computer Science, University of Wyoming, Laramie, Wyoming, USA

Abstract
The 3D reconstruction pipeline uses the Bundle Adjustment algorithm to re-
fine the camera and point parameters. The Bundle Adjustment algorithm is a
compute-intensive algorithm, and many researchers have improved its per-
formance by implementing the algorithm on GPUs. In the previous research
work, “Improving Accuracy and Computational Burden of Bundle Adjust-
ment Algorithm using GPUs,” the authors demonstrated first the Bundle
Adjustment algorithmic performance improvement by reducing the mean
square error using an additional radial distorting parameter and explicitly
computed analytical derivatives and reducing the computational burden of
the Bundle Adjustment algorithm using GPUs. The naïve implementation of
the CUDA code, a speedup of 10× for the largest dataset of 13,678 cameras,
4,455,747 points, and 28,975,571 projections was achieved. In this paper, we
present the optimization of the Bundle Adjustment algorithm CUDA code on
GPUs to achieve higher speedup. We propose a new data memory layout for
the parameters in the Bundle Adjustment algorithm, resulting in contiguous
memory access. We demonstrate that it improves the memory throughput on
the GPUs, thereby improving the overall performance. We also demonstrate
an increase in the computational throughput of the algorithm by optimizing
the CUDA kernels to utilize the GPU resources effectively. A comparative
performance study of explicitly computing an algorithm parameter versus
using the Jacobians instead is presented. In the previous work, the Bundle
Adjustment algorithm failed to converge for certain datasets due to several
block matrices of the cameras in the augmented normal equation, resulting
in rank-deficient matrices. In this work, we identify the cameras that cause
rank-deficient matrices and preprocess the datasets to ensure the convergence
of the BA algorithm. Our optimized CUDA implementation achieves con-
vergence of the Bundle Adjustment algorithm in around 22 seconds for the

How to cite this paper: Kommera, P.R.,
Muknahallipatna, S.S. and McInroy, J.E.
(2024) Optimized CUDA Implementation
to Improve the Performance of Bundle
Adjustment Algorithm on GPUs. Journal of
Software Engineering and Applications, 17,
172-201.
https://doi.org/10.4236/jsea.2024.174010

Received: March 28, 2024
Accepted: April 25, 2024
Published: April 28, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2024.174010
https://www.scirp.org/
https://orcid.org/0000-0003-4153-524X
https://doi.org/10.4236/jsea.2024.174010
http://creativecommons.org/licenses/by/4.0/

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 173 Journal of Software Engineering and Applications

largest dataset compared to 654 seconds for the sequential implementation,
resulting in a speedup of 30×. Our optimized CUDA implementation pre-
sented in this paper has achieved a 3× speedup for the largest dataset com-
pared to the previous naïve CUDA implementation.

Keywords
Scene Reconstruction, Bundle Adjustment, Levenberg-Marquardt,
Non-Linear Least Squares, Memory Throughput, Computational
Throughput, Contiguous Memory Access, CUDA Optimization

1. Introduction

In the previous article [1], the authors presented the use of the second radial
distorting coefficient and explicitly computed analytical derivatives to modify
the Adjustment (BA) algorithm to reduce the mean square error. Using the
second radial distorting parameter to reduce the mean square error resulted in
additional computations. A naïve CUDA implementation on graphics processing
units (GPUs) addressed the increased computational burden. The computational
performance of the modified BA algorithm [1] for the largest dataset with the
naïve CUDA implementation resulted in a speedup of 10×. The naïve CUDA
implementation performance of the modified BA algorithm was insufficient for
large datasets due to not addressing the computational and memory throughput
issues associated with execution on GPUs.

The performance of the GPU execution greatly depends on the computational
and memory throughput. The computational throughput depends on the level of
concurrency that can be achieved in computing different mathematical opera-
tions asynchronously. The memory throughput depends on the rate at which the
data can be accessed from the memory and the total number of memory transac-
tions. The time taken to access data from memory is around two orders of mag-
nitude compared to the time taken to perform a mathematical computation,
which is less than one order of magnitude. This paper proposes techniques to
improve the computational and memory throughput of the modified BA algo-
rithm [1].

We demonstrate an optimization technique that employs shared memory on
GPUs to compute intermediate mathematical operations asynchronously before
obtaining the final output from the intermediate results. This optimization tech-
nique, which improves computational throughput, is widely used to distribute
the workload effectively across threads in the blocks on GPUs, thereby improv-
ing GPU utilization.

We also propose a new data layout for all the mathematical variables repre-
sented as block matrices and vectors. The proposed data layout will have ele-
ments of each vector/matrix of each mathematical variable distributed across
the memory. Accessing the data from the proposed memory layout will signif-

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 174 Journal of Software Engineering and Applications

icantly reduce the overall memory transactions, thereby improving the memory
throughput.

In addition to the proposed new data layout and CUDA kernel optimization,
we also analyze the datasets provided in [2] to address the non-convergence is-
sue mentioned in [1]. Thirty-two datasets in the large datasets [2] do not con-
verge from their initial mean square error. This paper investigates the reasons
for the non-convergence and proposes modifications to the datasets so that the
modified BA algorithm can converge. In addition, we extend our performance
studies to datasets with 10,000 images and millions of points and projections.

The rest of the paper is organized as follows. Section 2 talks about various im-
plementations of the BA algorithm on GPUs. Section 3 briefly introduces the BA
algorithm, its mathematical representation, and the modified BA algorithm from
[1]. Section 4 provides an introduction to the GPU hardware and performance.
Section 5 details the CUDA optimization and the proposed data layout. Section 6
provides information about the datasets and the proposed modifications to en-
sure all the datasets converge from their initial mean square error. Section 7 de-
monstrates the results and provides information about the performance of the
implementation compared to the sequential and GPU versions. Finally, the pa-
per summarizes the findings and puts forward the scope of future work in the
conclusion and future work section.

2. Literature Review

Implementation in [3] developed a GPU version of the BA algorithm that em-
ploys the exact-step Levenberg-Marquardt (LM) method [4] using Compressed
Column Storage (CCS) format. The computationally intensive left-hand side of
the augmented normal equations is calculated on the GPU. In contrast, the equ-
ations’ relatively less computationally intensive right-hand side is computed on
the central processing units (CPU). The computationally intensive linear sys-
tems are solved using the MAGMA library [5]. The implementation has stored
all the mathematical parameters on the GPUs, resulting in higher memory re-
quirements. In addition, Ceres Solver [6], a C++ library to solve the non-linear
least squares problem for the exact-step LM method, is used. The Ceres Solver
library only has CUDA support for the dense Cholesky decomposition variant
and the Schur complement. The library does not support CUDA sparse compu-
tations in the exact-step LM method; instead uses third-party libraries like Ap-
ple’s Accelerate framework [7] and Eigen’s sparse linear solvers [8]. The ex-
act-step method is found to be optimal for smaller datasets but was found to be
computationally expensive for larger datasets due to the use of Cholesky factori-
zation.

A GPU version of the inexact-step LM method [2] [9] [10] using a block Jaco-
bi preconditioner is developed in Parallel Bundle Adjustment (PBA) [11]. In the
PBA implementation, only eight camera parameters are refined, consisting of
three rotational elements, three translational elements, one focal length, and one

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 175 Journal of Software Engineering and Applications

radial distortion parameter. The sparse matrices in the PBA implementation are
stored in Block Compressed Sparse Row (BCSR) format. The implementation
extensively uses texture object functions of the CUDA runtime application pro-
gramming interface (API). The PBA implementation has shown a significant
performance boost compared to single-core executions.

Ceres solver [6] library also computes the inexact-step LM method with the
CUDA-enabled preconditioner conjugate gradient (PCG) method. The library
supports GPU implementation of a few preconditioners, like Jacobi and Schur
Jacobi. The library can refine around six to nine camera parameters. The library
does not explicitly compute the augmented normal equation; instead, it uses the
Jacobians stored in Compressed Row Sparse (CSR) format.

Implementation in [12] has refined 11 camera parameters, consisting of three
rotational elements, three translational elements, one focal length, two correc-
tions of the principal point, and two radial distortions using the inexact-step LM
method. The time-consuming portions of the algorithm are simulated on the
GPU, and the performance is evaluated on datasets with fewer points and pro-
jections, demonstrating performance improvement compared to the PBA im-
plementation.

Unlike in PBA implementation, our previous work has implemented the BA
algorithm on CPUs and improved the accuracy of the minimization by using
additional radial distortion and explicit Jacobian computation. The PBA imple-
mentation [11] exploited the block structure in the BA algorithm with texture
memory fetching and shared memory. The texture reference management func-
tions are deprecated in the latest CUDA runtime APIs [13]. As a result, the PBA
implementation cannot be executed using the texture memory. In this paper, we
adopt a similar strategy from the PBA implementation for using shared memory
and extend our previous work [1] by further optimizing the CUDA kernels.

In addition, we also extend our previous work [1] by improving the memory
throughput. Our previous implementation and implementations in PBA and
Ceres Solver all store the mathematical parameters in block structures. Elements
of each mathematical variable represented in the form of block vectors/matrices
are stored per the spatial locality. In this paper, we demonstrate the drawback of
storing the matrices/vectors of each block element in continuous memory, re-
sulting in lower memory throughput. We propose a new data memory layout to
reduce the total memory transactions and improve the algorithm’s performance.
In addition, we also illustrate the impact of the proposed memory layout on the
algorithm’s overall performance by a comparative study of the optimized CUDA
with the naïve CUDA implementation in [1].

3. Brief Discussion of the Modified Bundle Adjustment
Algorithm

Minimizing the reprojection error involves solving the augmented normal equa-
tion, as shown in Equation (1), which can be represented as a linear system of

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 176 Journal of Software Engineering and Applications

equations as in Equation (2).

 ()T T Tµ+ = −J J D D J eδ (1)

 =Ax b (2)

where,
()f= ∂ ∂J P P is a Jacobian of the projection function ()f P [1];

δ is the change in the parameter vector;
e is the error vector computed as the difference between the computed pro-

jection and observed projection;
D is a non-negative diagonal matrix formulated as the square root of the di-

agonal of the matrix TJ J [2].
μ is the positive damping parameter used to control the regularization;

T Tµ= +A J J D D is a symmetric positive-definite matrix;
T= −b J e is a gradient vector;

=x δ is a solution vector.
The augmented normal equation can be represented [1] [4] of the camera and

points sections in the matrix notation as in Equation (3).

 T
c c

p p

µ

µ

    
=    

     

U W
W V

δ
δ




 (3)

T T T T T T T; ; ; ;c c c c p p p p c p c c c p p pµ µµ µ= + = + = = − = −U J J D D V J J D D W J J J e J e 

where,
c represents the camera section;
p represents the point section.

µU and µV are block diagonal matrices; W is a block sparse matrix; cδ ,

pδ , c , and p are the block vectors.
The preconditioned conjugate gradient (PCG) method is an iterative solver

used to solve the system of linear equations. The PCG method employs a pre-
conditioner for better and faster convergence and involves a significantly higher
number of vector-vector and matrix-vector computations per iteration [12]. The
PCG method is employed on the augmented normal equation represented by
Equation (3). The PCG method can also be applied to a matrix with reduced di-
mensions by multiplying both sides of Equation (3) with a block matrix, as illu-
strated in [4], which results in Equation (4) and Equation (5).

 ()1 T 1
c c pµ µ

− −− = −U WV W WVδ   (4)

 T
p p cµ = −V Wδ δ (5)

In this research, similar to the representation in [1], solving Equation (3) di-
rectly for the solution vector is called Without-Schur complement, and solving
for the solution vector using the Schur complement representation in Equation
(4) and Equation (5) is called With-Schur complement.

The modified BA algorithm proposed in [1] uses an additional radial distor-
tion coefficient as part of the camera parameters. An additional camera parame-

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 177 Journal of Software Engineering and Applications

ter increases the dimension of the camera section of the Jacobian as represented
in Equation (6) (additional radial distortion coefficient parameter is represented
in bold).

() 3 31 2 1 2 1 2

21 2 3 1 2 3 1

ij ijij ij ij ij ijijij
j jj j j j j jjjij

j
ij ij ij ij ij ij ij ij ij

jj j j j j j j j j

x xx x x x xxx
f k tk k t t Kfc

y y y y y y y y y
c k k k t t t f K

∂ ∂∂ ∂ ∂ ∂ ∂∂ ∂∂ 
  ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂∂∂   = =  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂  
   ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

x
P K

yc
K

 (6)

where,

(),ij ijx y is the projection in the camera system for point i and camera j;
jc is the camera parameter vector of camera j;

()1 2 3, ,j j j jk k k k= is the rotation matrix of camera j in axis-angle representa-
tion;

()1 2 3, ,j j j jt t t t= is the translation vector of camera j;
jf is the focal length of camera j.

1
jK and 2

jK are the first and second radial distortion coefficients of camera j
The increase in the dimension of the camera section of the Jacobian, in turn,

increases the size of all the parameters in the augmented normal equation, as
represented in [1]. In addition, the modified BA algorithm uses a rotation vector
in the axis-angle representation directly in the Jacobian computation without
computing the rotational matrix using Rodrigues’ formula and without any
cross-product of partial derivatives. The Jacobian is derived using explicit ana-
lytical derivatives without approximations using the “diff” command in Matlab
Symbolic Math Toolbox [14] and hardcoding the projection function into the
code.

4. GPU Hardware and Performance

Central processing units (CPUs) and graphics processing units (GPUs) are two
different types of processors widely used for computational purposes. The
hardware configurations of CPUs and GPUs differ significantly, making them
ideal for specific problems. CPUs have fewer cores with higher clock rates, whe-
reas GPUs have a larger number of cores with slower clock rates than CPUs. In
addition, the CPUs’ cores contain complex pipelines, making them ideal for de-
cision-making instructions like conditional loops. Whereas the cores in GPUs
are lightweight and ideal for basic mathematical operations. A large number of
simple cores and their ability to execute instructions concurrently make the
GPUs ideal for large independent mathematical operations. A fewer number of
complex cores with higher clock rates make CPUs ideal for branching and con-
ditional loops and input/output operations.

As mentioned, the concurrency offered by the GPUs makes them ideal for
large-scale independent mathematical operations. In addition, the fundamental
properties of the GPUs offering concurrency and memory throughput are the
same across different GPU architectures. The differences across the GPU archi-
tectures are mainly in the level of concurrency, memory throughput, and a few

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 178 Journal of Software Engineering and Applications

additional features. The number of computing cores in the A30 GPU is 3584,
whereas the total number of cores in the latest NVIDIA GPU H100 is 7296, re-
sulting in approximately twice the level of concurrency compared [15] to an A30
GPU. The difference across the GPUs is also in the memory bandwidth. The A30
GPU [15] has a memory bandwidth of 933.1 GB/s, whereas the H100 GPU has
around 1280 GB/s. This difference in the memory bandwidth results in higher
memory throughput in the H100 GPU compared to the A30 GPU. In addition,
there are several other differences, such as the total streaming multiprocessors
(SMs), memory bus width, increased size of different memory categories, and
boost clock speed, that are improved in the latest GPU architectures. The in-
creased size of different memory on the GPUs would result in increased caching
and improved bandwidth, but the core functionality is the same across different
GPU architectures. The latest GPUs also include new features [16], like tensor
cores and multi-instance GPUs (MIG), which are beyond the scope of the paper
and do not impact the proposed methodologies in this paper. Nonetheless, the
total number of cores and the memory throughput play a vital role in perfor-
mance improvement across different GPU architectures. Irrespective of the dif-
ference in the GPU architectures, the underlying principles of the computational
throughput and the memory throughput across the GPU architectures are the
same. As a result, the same code base that was executed on an older GPU can be
readily executed on the latest GPUs without any changes to the code and achieve
a significant performance boost based on the hardware improvements alone.

GPUs are equipped with thousands of cores that can execute operations con-
currently. On the other hand, the number of independent computations availa-
ble in the algorithm allows to take advantage of the concurrency on the GPUs.
As mentioned in the implementation [1], the independent nature of the camera
and point sections in the algorithm enables the execution of each mathematical
operation concurrently, thereby reducing the total time taken for all computa-
tions. In addition, the block-based structures across both the camera and point
sections of each matrix and vector enable further concurrency in the matrix-
vector multiplications.

In addition to the computational concurrency, memory throughput also plays
a vital role in achieving better performance on the GPU. The memory through-
put depends on the access time and the total number of memory transactions
required for the computations. Effective utilization of the caching techniques on
the GPU using a register shared, and global memory will reduce the total time
taken to access the data. In addition to the caching techniques, reducing the total
number of memory transactions required for the computations also reduces the
total computational time. A detailed understanding of the memory access pat-
terns is required to utilize the required memory transactions effectively.

4.1. Memory Access Patterns

The computational and memory operations are issued per warp in the CUDA
programming model. A warp is a group of 32 threads that concurrently issues

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 179 Journal of Software Engineering and Applications

and executes the same instruction. While executing the memory instructions,
each thread in a warp issues a request to access a memory address. All the re-
quests from 32 threads in the warp are grouped and processed as a single mem-
ory transaction. Whenever a memory transaction is requested, based on the spa-
tial locality, the first memory address is accessed and loads contiguous data from
that address. The amount of contiguous memory segments transferred in a sin-
gle memory transaction depends on the granularity of the cache line which is
mostly 128-bytes or 32-bytes. In this research work, we assume the granularity to
be 128 bytes, and each thread in a warp is requesting 4-byte data, and consider
two basic access patterns that could arise in any memory access.

4.1.1. Coalesced Memory Access
In the coalesced memory access pattern, each thread in a warp accesses conti-
guous memory. As a result, all 32 threads access 128 bytes, which is contiguous
in memory, as in Figure 1.

As the granularity is assumed to be 128 bytes, the entire 128 bytes requested
by the warp are addressed in a single memory transaction. This is an ideal case
where one memory request fulfills the data requests by all 32 threads in a warp.

4.1.2. Strided Memory Access
In the strided memory access pattern, each thread in a warp accesses data from a
different locality in the memory. As a result, multiple memory transactions are
required to fetch all the data requested by the 32 threads in a warp. Figure 2
provides an example of a strided access pattern in which the first 16 threads
access data from one memory segment, and the next 16 threads access data from
a different memory segment.

In this example of strided access, the first 16 threads access 64 bytes of conti-
guous memory from a 128-byte memory segment in the memory, and the next
16 threads access the remaining 64 bytes of contiguous memory from the next
128-byte memory segment. As a result, two memory transactions are required to
fetch the data requested by all the 32 threads in a warp.

There are many different strided access patterns possible. In the worst-case
scenario, each thread in the warp will access data from different 128-byte mem-
ory segments, requiring 32 memory transactions to access the data requested by
all 32 threads in a warp.

Figure 1. Pictorial representation of the coalesced memory access pattern.

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 180 Journal of Software Engineering and Applications

Figure 2. Pictorial representation of the strided memory access pattern accessing two
memory segments.

Overall, the ideal case results in one memory transaction, whereas the strided
access results in 2 - 32 memory transactions based on the degree of data distri-
bution in the memory. In this paper, we propose a new data layout to improve
the access pattern and reduce the total memory transactions.

5. Proposed Implementations

In the BA algorithm, all the elements of each matrix and vector are represented
as blocks. For example, the block-matrix µU and µV are represented as in
Equation (7).

1 1

2 2

0 0 0 0 0 0
0 0 0 0 0 0

;
0 0 0 0 0 0
0 0 0 0 0 0m m

µ µ

   
   
   = =
   
   
   

U V
U V

U V

U V
 

 (7)

where,
, 1,2, ,i i m=U  are the blocks of m cameras each of size 9 × 9;
, 1,2, ,j j n=V  are the blocks of n points each of size 3 × 3.

Similarly, each vector element is stored in the form of blocks, as shown in Eq-
uation (8).

11

22

;

pc

pc
c p

m n
c p

  
  
  = =   
  
     

 




 

 

 (8)

where,
, 1,2, ,i

c i m=  are the blocks of m cameras each of size 9 × 1;
, 1,2, ,i

p i n=  are the blocks of n points each of size 3 × 1.
In the BA algorithm, formulation of the augmented normal equation as in

Equation (3) results in significant matrix-matrix and matrix-vector computa-
tions. In addition, the PCG method involves matrix-vector and vector-vector

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 181 Journal of Software Engineering and Applications

computations. The highly optimized cuBLAS executes vector-vector operations
[17] library, whereas the sparse nature of the matrix-matrix and matrix-vector
operations restrict the use of the cuBLAS library. As a result, CUDA kernels are
developed to compute the matrix-matrix and matrix-vector operations. In our
previous work [1], we implemented basic CUDA optimization techniques to
improve the BA performance on the GPUs. In this paper, we demonstrate addi-
tional optimization techniques to improve the performance of the CUDA ker-
nels involving matrix-vector multiplications.

5.1. CUDA Kernel Optimization

In the previous implementation [1], we observed that the use of atomic opera-
tions introduced race conditions in higher datasets due to the sensitivity of the
data precision. To address the sensitivity of the data precision, we propose eli-
minating the use of atomic operations. However, eliminating atomic operations
will not allow navigation through each projection, obtain the camera and point
information of that projection, and compute all the parameters of a specific
camera and point configuration as implemented in [1]. Instead, to compute a
particular parameter belonging to a specific camera, we gather all the points and
projections information about that camera and compute it on a single block. Si-
milarly, we gather all the camera and projection information about a point to
compute a particular parameter. This change does not cause any race conditions
and produces accurate results.

Naïve CUDA implementation [1] describes the optimal thread and block con-
figurations that can be employed based on the computation of the camera, point,
and projection sections. Unlike in [1], where the computation of each camera is
distributed across each thread, we perform the computation of each camera on a
block with threads computing intermediate results. As the number of cameras is
fewer and the number of points is significantly higher, assigning computations
of each camera to a block is found to be optimal. In this configuration, each
thread of a block computes a temporary solution of an operation. The solutions
from all the threads are aggregated in the end to compute a parameter for a
camera.

For example, let us compute the first camera block-matrix 1U in the aug-
mented normal equation, which can be represented [1] as in Equation (9).

 T
1 1 1

1

n

i i
i=

= ∑U J J (9)

where,

1, 1,2, ,i i n=J  are the block-Jacobian matrices of n points each of size 2 × 9.
Computing the 1U block matrix of the camera section involves iterating

through n points. As a result, all the points are divided among the threads in a
block, and each thread computes the summation of the T

1 1i iJ J for those set of
points assigned to it. And in the end, all the intermediate solutions are aggre-
gated on a single thread. Figure 3 provides a pictorial representation of compu-
ting 1U with 9 points on a block that has 3 threads.

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 182 Journal of Software Engineering and Applications

Figure 3. Pictorial representation of computing 1U with 9 points on a block and 3
threads.

The above optimization is ideal for computing the parameters of the camera
section, as it iterates through a larger number of points. The same methodology
is found to be non-optimal for computing parameters of the point section as we
have a higher number of points and fewer cameras to iterate through. A higher
number of points invokes more blocks, which in turn serializes the execution. As
a result, all the parameters of the points section are computed directly on each
thread across the blocks. In addition, unrolling the points on each thread is em-
ployed to compute the parameters of multiple points on a single thread, thereby
reducing the total number of blocks.

The CUDA kernel optimization studied in this paper aims at improving the
concurrency of computing the camera parameters by distributing the computa-
tions across threads in a block and by effective utilization of shared memory.
These properties of performance improvement using concurrency and the use of
shared memory are the same across different GPU architectures. The difference
only lies in the level of concurrency and the size of shared memory. As a result,
the CUDA kernel optimization studied in this paper is applicable across differ-
ent GPU architectures without any changes to the code implementation.

In the current implementations [1], each block of a matrix is stored in a con-
tiguous memory, as represented in Figure 4. In turn, all the elements of each
block are contiguous in memory.

In the above figure, the dimension of each block-Jacobian matrix is 2 × 9. This
layout results in more memory transactions due to the strided access pattern. In
this paper, we analyze the current memory layout and propose a new data layout
that would reduce the degree of strided access and reduce the total memory
transactions.

5.2. Proposed Memory Layout

The data layout, as mentioned above, results in strided access as each element of
respective blocks is in memory addresses far from each other. For example, con-
sider a multiplication operation [1] between a block matrix and a block vector,
as in Equation (10).

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 183 Journal of Software Engineering and Applications

Figure 4. Layout of Jacobian-matrices 1 , 1, ,i i n=J  in memory.

1
1

2
2

0 0 0
0 0 0
0 0 0
0 0 0

c

k c
c

m
m c

µ

  
  
  =   
  
    

U p
U p

U p

U p




 (10)

where,
, 1,2, ,i i m=U  are the block-matrices each of size 9 × 9;
, 1,2, ,i

c i m=p  are the block-vectors each of size 9 × 1.
In the current implementation, all the elements of each block of matrix and

vector are stored in contiguous memory, as in Figure 5.
In the CUDA kernel, each block multiplication can be assigned to a single

thread. As a result, thread 0 will access 1U , thread 1 will access 2U and so on.
Analyzing further, when thread 0 accesses the first element in 1U , thread 1 will
access the first element in 2U which is 9 × 9 memory spaces away from the first
element of 1U . As all the elements of each block-matrix iU are stored in con-
tiguous memory, each thread will end up having strided access to fetch the ele-
ment from memory, as shown in Figure 6. This results in multiple memory
transactions per request from a warp.

In this paper, we propose to modify the data placement in memory so that
adjacent threads can access contiguous memory, thereby reducing the strided
access and memory transactions required per request. To access contiguous
memory, we propose the continuous-element data layout where each element
from a particular index across the blocks is stored in contiguous memory, as de-
picted in Figure 7 and Figure 8.

Using the proposed continuous-element data layout, computing the matrix-
vector multiplication in Equation (10) will result in a contiguous memory access
pattern, as shown in Figure 9. We propose to change the data layout to the con-
tinuous-element format for all the matrix and vector variables in the BA algo-
rithm. The use of the proposed continuous-element format would reduce the
total memory transactions per request and improve the GPU performance.

The proposed continuous-element data layout aims at improving the memory
throughput which employs similar fundamental principles across different GPU
architectures. As mentioned earlier, the difference lies in the magnitude of the
memory access, i.e., the memory bandwidth, which describes the time required
to access the memory. Whereas the functional properties describing the total
number of memory transactions per request are the same across different GPU
architectures. With this proposed data layout, we are reducing the total number

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 184 Journal of Software Engineering and Applications

Figure 5. Memory layout of block-matrix iU and block-vector i
cp .

Figure 6. Strided access of the block-matrix iU and block-vector i
cp .

Figure 7. Memory layout of the proposed continuous-element layout for block-matrix

iU .

Figure 8. Memory layout of the proposed continuous-element layout for block-vector
i
cp .

Figure 9. Contiguous access pattern of the block-matrix iU and block-vector i
cp .

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 185 Journal of Software Engineering and Applications

of memory transactions per request whose functionality is the same across dif-
ferent GPU architectures. As a result, the proposed data layout can be applicable
across different GPU architectures without any code changes and improve the
performance of the application.

Overall, the studied CUDA kernel optimization and the proposed continuous-
element data layout can be universally applicable across different GPUs as they
affect the fundamental principles which are the same across the different GPUs
and are not targeted towards a specific feature of a particular GPU architecture
and be constrained to those GPUs only.

6. Data Processing

As mentioned earlier, the use of atomic operations in implementation [1] re-
sulted in precision differences for larger datasets. As a result, in this paper, the
atomic operations are eliminated resulting in the requirement of additional in-
itialization data for computing the augmented normal equations and matrix-
vector multiplications in the PCG method. In addition, the datasets used are
processed to address the non-divergence of a few datasets.

6.1. Additional Initialization Data

Atomic operations were heavily used [1] while computing the augmented nor-
mal equation and the matrix-vector multiplication in the PCG method. Using
atomic operations allows us to sweep through the entire projections once and
compute each of the mathematical variables which are part of the augmented
normal equation and the matrix-vector multiplication in the PCG method.
While generating a parameter of the augmented normal equation on the GPU,
different threads might end up loading from or writing to the same memory.
This would result in accessing incorrect data from the memory if the memory is
not updated appropriately. Atomic operations are used to avoid reading from or
writing to the same memory while other threads in the GPU are using that
memory.

As mentioned earlier, computations on GPUs are processed per warp, and the
warps can be issued and executed in any order across different runs. For exam-
ple, in an execution, if a parameter computation on GPU executes warps 1, 5,
and 7 in the order, then the next execution may or may not follow the same or-
der. As the algorithm is precision sensitive, this results in a difference in output
for each execution. As a result, atomic operations are eliminated from compu-
ting the augmented normal equation and the matrix-vector multiplications.

As the atomic operations are eliminated, the parameters cannot be computed
by sweeping through the projections. Instead, detailed information about the
number of points in a camera, the number of cameras that contain the same
point, the start and end index of each camera, and the point with respect to the
projections are required during the computation of each parameter in the aug-
mented normal equation and the matrix-vector multiplications.

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 186 Journal of Software Engineering and Applications

The datasets [2] provide information about the total number of cameras,
points, and projections and the information about parameters of each camera
and point. In addition, they contain the camera index, point index, and the ob-
served projection of that camera-point configuration grouped in a single line, as
shown in Figure 10. In addition, all the cameras for each point are grouped
along with the projection information about the point in the camera in consecu-
tive lines.

As the Jacobian are computed for each projection with respect to the camera
and point, they are stored in the same order as the observed projections. While
computing the point parameters like jV [4], we need to sweep through all the
cameras that contain the point j and identify the point Jacobian of that projec-
tion. As the current dataset contains all the cameras for each point grouped, we
only need the start and the end index of the point as they correspond to the Ja-
cobian stored in the memory. In this paper, we compute the start and end of
each point using the prefix sum [18].

In addition, to compute the camera parameters like iU [4], we need to sweep
through all the points in the respective camera. However, as the datasets are
grouped in terms of cameras that contain a particular point, we would need to
sweep through the entire dataset to identify the camera. This process takes a sig-
nificant amount of time. As a result, in this paper, we also store the camera and
point indexes such that all the points of each camera are grouped. As the camera
and point indexes are reordered, we also need to reorder the observed projec-
tions. Instead of reordering the observed projections that contain two coordi-
nates for each projection, we generate an index of the projections with respect to
points on a single camera being grouped. So, now, the index can be used to point
to the respective projection. In addition, similar to the point parameters, we also
need to compute the start and end of each camera using the prefix sum.

For example, let us consider we have three points and three cameras, where all
three cameras contain all the points. The camera index, point index, and ob-
served projections with respect to the dataset format [2] are shown in Figure 11.

Figure 10. Format of the camera index, point index, and projection coordinates.

Figure 11. Format of the camera, point, and projections in the dataset files.

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 187 Journal of Software Engineering and Applications

In this paper, we modify the format in the datasets, as in Figure 12, to contain
the camera-point indexes with each camera, points grouped, followed by the
projection index, and the observed projections, as shown in Figure 13.

In Figure 13, the first set of camera-point indexes in the first and second
columns has all the cameras of each point grouped, and the second set of cam-
era-point indexes in the third and fourth columns has all the points of each
camera grouped. The fifth column has the projection index with respective to
the second set of camera-point indexes. Reading this additional information
from the data files is found to be more optimal than computing them in the in-
itialization phase of each execution. In addition, it is also found that computing
the start and end indexes for both the cameras grouped and points grouped us-
ing prefix sum is time consuming. As a result, the prefix sum values are also
stored in the data files, thereby eliminating the need to compute them for every
execution.

In addition to the above modifications to the dataset, we also address the
non-divergence of a few datasets.

6.2. Dataset Processing

A few of the datasets from [2] are not converging from their initial mean square
error. Both the modified BA implementation in [1] and the PBA [11] imple-
mentation show similar non-convergent behavior on a few datasets. In a few
other datasets that converge, different executions produce different final mean
square errors, taking different numbers of PCG iterations. In this paper, we ana-
lyze the datasets and propose the removal of a few of the cameras from certain
datasets.

From the augmented normal equation, the addition of a regularization term
results in a non-singular and positive definite matrix that ensures convergence.
As a few of the datasets are not converging, it would mean that the regulariza-
tion term added was not ensuring convergence due to the matrix being singular.

Figure 12. Modified format of the camera index, point index, and projection coordinates.

Figure 13. Modified format of the camera, point, and projections in the dataset files.

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 188 Journal of Software Engineering and Applications

As the regularization term [2] added is a diagonal matrix, the inverse of each
block diagonal matrix in the augmented normal equation can be computed and
checked for singularity.

In this paper, we have computed the matrix inverse for all block matrices of
augmented normal equations across different camera-point configurations in the
datasets [2]. Computing the matrix inverse of each block matrix in the aug-
mented normal equation resulted in a few of the matrices having linearly de-
pendent rows, resulting in a rank deficiency. This leads to the matrices being
singular. All the block matrices in the point section of the augmented normal
equation µV are found to be non-singular. In contrast, few of the block matric-
es in the camera section of the augmented normal equation µU are found to be
singular matrices. As a result, specific cameras that result in singular matrices
were removed, and the datasets were rearranged accordingly. Table 1 provides
information about each camera that was removed from the datasets and is cate-
gorized as per the different locations [2].

After removing the specified cameras in Table 1, all the datasets converge
from their initial mean square error and produce identical results across differ-
ent executions.

7. Results and Analysis

The proposed continuous-element data layout is implemented on the framework
adapted from [1]. The framework has been modified to load the additional in-
itialization data as proposed in this paper. In addition, the proposed data pro-
cessing has been applied to the datasets provided by the Bundle Adjustments in
Large [2], and the modified datasets are used in this paper. Similar to the im-
plementation in [1], the performance results and analysis are provided for ten
datasets. The performance study is extended to larger datasets that involve tens
of millions of projections. In [1], where few of the datasets were not converging,
in this implementation with the data processing, all datasets converge from their
initial mean square error. The parameters of the 10 datasets that are used in this
paper are provided in Table 2, which shows both the original and modified
number of cameras, points, and projections.

As in any optimizations, the accuracy of the algorithm is of utmost impor-
tance compared to the computational optimizations which can be achieved by
changing the algorithm implementation. As a result, in this paper, the initial
emphasis is on ensuring that the optimized CUDA code does not alter the con-
vergence of the algorithm. As a result, a detailed analysis of the convergence of
the mean square error and the final projections of the optimized CUDA imple-
mentation is studied and compared with the naïve CUDA and sequential im-
plementations. Then, the performance results from the optimized CUDA im-
plementation are presented with a comparative analysis of different profiler pa-
rameters between optimized and naïve CUDA implementation. Finally, a brief
analysis of the complexity of the CUDA optimization is provided.

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 189 Journal of Software Engineering and Applications

Table 1. Cameras were removed from datasets of different locations.

Location Cameras Removed

Dubrovnik 105, 125

Final 724, 460

Trafalgar Square 72

Venice 34, 49, 138, 584

Table 2. Original and modified dataset configurations.

Dataset
ID No.

Original Dataset Configurations Modified Dataset Configurations

Number
of

Cameras

Number
of

Points

Number
of

Projections

Number
of

Cameras

Number
of

Points

Number
of

Projections

1 21 11,315 36,455 21 11,315 36,455

2 88 64,298 383,937 88 64,298 383,937

3 182 116,770 668,705 182 116,770 668,705

4 245 198,739 1,091,386 243 198,340 1,084,136

5 744 543,562 3,058,863 741 543,163 3,050,099

6 951 708,276 3,748,892 947 707,877 3,738,748

7 1288 866,452 4,383,006 1284 866,053 4,373,425

8 1936 649,673 5,213,733 1936 649,673 5,213,733

9 4585 1,324,582 9,125,125 4584 1,324,582 9,123,988

10 13,682 4,456,117 28,987,644 13,678 4,455,747 28,975,571

7.1. Accuracy

As mentioned in [1], the algorithm is highly sensitive to floating point precision.
A comparison was shown between the accuracy of the sequential and naïve
CUDA implementation using the performance parameters described in our pre-
vious work [1]. Similarly, we have initially compared the final mean square error
across the naïve CUDA and optimized CUDA implementations. The percentage
difference in the final mean square error between the naïve and optimized CUDA
implementations is evaluated to ascertain the accuracy of the convergence, sta-
bility, and reliability of the optimized CUDA implementation. The percentage
difference was less than 0.1% for 87 datasets and less than 2.5% for the remain-
ing 8 datasets, indicating that the optimized CUDA has similar convergence to
naïve CUDA. Overall, the average percentage error for all 95 datasets is less than
0.22% across different configurations.

Further, similar to the analysis in [1], the stability of the convergence of the
optimized CUDA implementation is compared with the naïve CUDA imple-
mentation using pixel coordinates. Figure 14 provides a pictorial representation
of the final computed projection and observed projection for the maximum

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 190 Journal of Software Engineering and Applications

Figure 14. Final projections in pixel coordinates for all sequential, naïve CUDA, and optimized CUDA im-
plementations.

error across the ten datasets. In Figure 14, it can be seen that the optimized
CUDA implementation converges to the same pixel coordinates as the naïve
CUDA and sequential implementations.

From this analysis, it can be concluded that the optimized CUDA implemen-
tation does not deteriorate the accuracy of the algorithm and converges to the
same pixel coordinates as with the naïve and sequential implementations, indi-
cating that the optimized CUDA implementation of the BA algorithm is stable
and reliable.

7.2. Performance

Similar to the analysis in [1], we demonstrate the performance studies on both
the with-Schur and without-Schur complement algorithm configurations. In ad-
dition, we extended our analysis to understand the impact of computing and
using the block-matrix W explicitly and to compute the block-matrix W
implicitly by using the camera and point Jacobians in place [1] of the block-matrix
W in the different computations. Ongoing in this paper, Explicit-W indicates
computing block-matrix W explicitly, while Implicit-W indicates computing
block-matrix W implicitly. The performance study is implemented on a node
with a 64-core AMD EPYC 7713P CPU and 3584 cores NVIDIA A30 GPU. The
algorithm is executed for a maximum of 50 LM iterations and 100 precondi-
tioned conjugate gradient (PCG) iterations.

Figure 15 shows the computation time of the sequential, naïve CUDA [1] and
the optimized CUDA implementation using Implicit-W for the ten datasets. In
both the Without-Schur and With-Schur complement, the computation time of

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 191 Journal of Software Engineering and Applications

(a)

(b)

Figure 15. Computational time of sequential, naïve CUDA, and optimized CUDA implementations for Im-
plicit-W across different datasets using without-Schur and with-Schur complement. (a) Without-Schur
complement, (b) With-Schur complement.

the optimized CUDA implementation is significantly less compared to both the
sequential and naïve CUDA implementations. At the same time, the computa-
tional time of the naïve CUDA implementation is less compared to the sequen-
tial implementation only for larger datasets, i.e., for datasets with more than 700
cameras. Furthermore, the computation time of the sequential implementation
is significantly increasing for larger dataset sizes. Whereas the computation time
for both the CUDA versions increases for larger dataset sizes but not as signifi-
cantly as with the sequential implementation. This is because the CUDA imple-
mentations execute the mathematical operations concurrently.

Figure 16 shows the computation time for the sequential, naïve CUDA and
the optimized CUDA implementation using Explicit-W for the same 10 datasets.
Similar to the Implicit-W, the computation time for the optimized CUDA im-
plementation is significantly less compared to both the sequential and naïve

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 192 Journal of Software Engineering and Applications

(a)

(b)

Figure 16. Computational time of sequential, naïve CUDA, and optimized CUDA implementations for Ex-
plicit-W across different datasets using without-Schur and with-Schur complement. (a) Without-Schur
Complement, (b) With-Schur Complement

CUDA implementations. Also, like Implicit-W, the computational time of the
naïve CUDA implementation is less compared to the sequential implementation
only for larger datasets. Comparing Figure 15 and Figure 16, the sequential im-
plementation is taking significantly higher computation time in Explicit-W than
the Implicit-W. Also, for most of the datasets, it can be observed that the naïve
CUDA and optimized CUDA are taking slightly more computation time in the
Explicit-W configuration. This can be clearly observed in Figure 17, which pro-
vides the computational time of all the configurations for the largest dataset with
13,678 cameras.

In Figure 17, it can be observed that the computation time of the Explicit-W
is more compared to the Implicit-W for all the configurations of sequential and
CUDA versions. The Explicit-W configuration would take more computational
time compared to Implicit-W because of either having a higher number of PCG

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 193 Journal of Software Engineering and Applications

(a)

(b)

Figure 17. Computational time for the dataset containing 13,678 cameras for all the configurations. (a)
Without-Schur Complement, (b) With-Schur Complement.

iterations or a higher number of total computations per iteration. Furthermore,
the computational time of the Without-Schur and With-Schur complement con-
figurations are random with respect to dataset sizes, as shown in Figure 15 and
Figure 16.

In all the implementations, the total number of PCG iterations varies and is
based on the convergence of the algorithm. For example, in the dataset with
1936 cameras, the sequential implementation is better compared to the naïve
implementation for Without-Schur complement and Explicit-W, as shown in
Figure 16. This is because the sequential code has around 506 preconditioned
conjugate gradient (PCG) iterations compared to the 1400 iterations by the naïve
CUDA implementation. As a result, the naïve implementation has a significantly
higher computational time compared to the sequential implementation. Simi-
larly, in Figure 15 and Figure 16, it can be seen that the computational time
does not always increase with the increase of the dataset size. This is because

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 194 Journal of Software Engineering and Applications

some of the datasets with higher sizes are executing fewer PCG iterations, re-
sulting in fewer overall computations and computational time. The same beha-
vior can be observed in the speedup plot in Figure 18.

Figure 18 shows the speedup of the naïve CUDA and optimized CUDA im-
plementation with respect to the sequential implementation. The significant
performance improvement achieved by the optimized CUDA implementation in
comparison to the naïve CUDA implementation can be seen in the speedup
plots. The algorithm achieves the best speedup of approximately 30× on the
largest dataset on the With-Schur Implicit-W configuration. Overall, the opti-
mized CUDA implementation achieves a speedup of more than 25× on all dif-
ferent configurations of Schur complement and block-matrix W using the
largest dataset.

From the speedup plot, it can be seen that the speedup of the optimized
CUDA implementation is not steadily increasing with the increase of the dataset
size. As mentioned earlier, this is because of the different number of PCG itera-
tions across different implementations or the difference in the overall computa-
tions per iteration. As a result, comparing the performance for the complete

(a) (b)

(c) (d)

Figure 18. Speedup of the naïve CUDA and optimized CUDA implementations with re-
spect to the sequential implementation with 50 LM and 100 CG iteration. (a) With-
out-Schur Complement & Implicit-W, (b) Without-Schur Complement & Explicit-W, (c)
With-Schur Complement & Implicit-W, (d) With-Schur Complement & Explicit-W.

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 195 Journal of Software Engineering and Applications

convergence of the algorithm for 50 LM steps and 100 PCG iterations does not
provide us with sufficient information about the performance as they involve
different numbers of total PCG iterations. A common reference for the analysis
is required to understand the performance of all the configurations. In this pa-
per, to better understand the performance of different configurations, the total
number of LM steps and the total PCG iterations is set to one, and the speedup
for all the configurations is evaluated. With this approach, the performance of a
configuration can be analyzed based on the total computations per iteration.

Figure 19 shows the speedup of the naïve and optimized CUDA implementa-
tions with respect to the sequential implementation with 1 LM and 1 PCG itera-
tion. From the plot, it can be seen that the speedup of the optimized CUDA im-
plementation is monotonically increasing with the size of the datasets. This is
because larger datasets contain more computations which can leverage the par-
allelism offered by the GPUs. The speedup of the naïve CUDA implementation
is also increasing monotonically but at a lower rate compared to the optimized
CUDA implementation.

As mentioned earlier in Figures 15-17, the computational time of the Expli-
cit-W configuration is higher compared to the Implicit-W configuration for

(a) (b)

(c) (d)

Figure 19. Speedup of the naïve CUDA and optimized CUDA implementations with re-
spect to the sequential implementation with 1 LM and 1 PCG iteration. (a) With-
out-Schur Complement & Implicit-W, (b) Without-Schur Complement & Explicit-W, (c)
With-Schur Complement & Implicit-W, (d) With-Schur Complement & Explicit-W.

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 196 Journal of Software Engineering and Applications

both the Without-Schur and With-Schur complements. This is due to the Impli-
cit-W and Explicit-W configurations having a different total number of compu-
tations per iteration when using block-matrix W . In Table 3, we present the
total number of floating-point operations required for a matrix-vector multipli-
cation for both the Implicit-W and Explicit-W configuration using profiler me-
trics from the Nsight Compute [19] for the largest dataset. We profiled the code
to extract the total number of floating-point operations for the ij kW p computa-
tion [4] in the Explicit-W configuration, and for the T

c pij ij kJ J p in the Impli-
cit-W configuration for 1 LM and 1 CG iteration.

In Table 3, it can be seen that the Explicit-W computation requires more
floating-point operations compared to the Implicit-W configuration. In addi-
tion, we also need to compute the block-matrix W explicitly in the Explicit-W
configuration. As a result, the Explicit-W configuration has more computations
per iteration and would increase further with an increase in the total number of
iterations. Overall, Explicit-W configuration requires more operations compared
to Implicit-W configuration and this can also be observed in the overall timings
as in Table 4. A detailed study of the computational time for different mathe-
matical operations in the Implicit-W and Explicit-W configurations for 1 LM
and 1 PCG method is conducted and analyzed. Table 4 provides us with the
computation time for computing the elements of the augmented normal equa-
tion and one iteration of the preconditioned conjugate gradient algorithm for
the largest dataset.

In Table 4, it can be seen that the computational time for computing the
augmented normal equation and the conjugate gradient algorithm is higher in
the Explicit-W configuration compared to the Implicit-W configuration. In ad-
dition, storage of the block-matrix W would require huge memory. As a re-
sult, the Implicit-W computations provide better performance and memory
footprint compared to the Explicit-W implementations.

Table 3. Total number of floating-point operations for the CUDA implementations.

Dataset ID No.
Total floating-point operations

in Implicit-W configuration
Total floating-point operations

in Explicit-W configuration

1 1,203,015 1312,380

2 12,669,921 13,821,732

3 22,067,265 24,073,380

4 35,776,488 39,028,896

5 100,653,267 109,803,561

6 123,378,684 134,594,928

7 144,323,025 157,443,300

8 172,053,189 187,694,388

9 301,091,604 328,463,568

10 956,193,843 1,043,120,556

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 197 Journal of Software Engineering and Applications

Table 4. Computational time (milliseconds) to compute augmented normal equation and
PCG algorithm.

Configuration
Optimized CUDA Implementation

Augmented Normal Equation PCG Algorithm

1 50 70

2 135 74

3 49 55

4 135 57

In Figure 19, it can also be seen that the performance of the optimized CUDA

implementation is better compared to the naïve CUDA. One of the main differ-
ences between the naïve and the optimized CUDA implementations is the con-
tinuous-element data layout. We analyze the impact of the proposed data layout
on the performance of the algorithm using the Nsight Compute [19] profiler.
The profiler is used to extract performance metrics of the load and store func-
tionality of the GPUs.

Primarily, we have extracted the global load and store efficiency metrics that
provide a ratio of the requested global memory throughput to the required glob-
al memory throughput for both the load and store operations. In addition, the
global load and store transactions per request metrics are also extracted, which
provides information about the total number of load and store memory transac-
tions required to fulfill the data request. Higher load and store efficiencies closer
to 100% and lower transactions per request closer to 1 imply better memory
performance. We have extracted the metrics mentioned above from the CUDA
kernel that computes both the camera and point Jacobians. This CUDA kernel is
used for illustration of the metrics as it involves a significantly higher number of
floating-point operations compared to most of the other CUDA kernels. Table 5
provides information on the metrics for the largest dataset.

From the table, it can be seen that the global load and store transactions per
request have improved in the optimized CUDA implementation compared to
the naïve CUDA implementation. In fact, the global store transactions have sig-
nificantly improved from around 30 transactions to around 5 transactions per
request. This reduction in the transactions per request will greatly reduce the to-
tal load and store transactions required by the kernel. Similarly, improvement is
also evident in the global load and store efficiencies, where the global store effi-
ciency has improved to more than 80% compared to the 13.33% in the naïve
CUDA implementation. Improved efficiency shows that a majority of the trans-
actions are being utilized effectively. These improvements in the transactions per
request and efficiency have greatly improved the overall performance of the al-
gorithm.

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 198 Journal of Software Engineering and Applications

Table 5. Profiler metrics of the jacobian computation.

Dataset
ID No.

Naïve CUDA Implementation Optimized CUDA Implementation

Global Load
Efficiency

Global Load
Transactions
per Request

Global Store
Efficiency

Global Store
Transactions
per Request

Global Load
Efficiency

Global Load
Transactions
per Request

Global Store
Efficiency

Global Store
Transactions
per Request

1 31.21 4.82 13.33 29.98 52.75 2.83 82.75 4.83

2 28.16 8.47 13.33 30 41.57 5.74 82.76 4.83

3 28.14 8.58 13.33 30 38.71 6.24 82.76 4.83

4 28.18 8.54 13.33 30 38.85 6.19 100 4

5 28.07 8.79 13.33 30 34.08 7.24 82.76 4.83

6 28.22 8.45 13.33 30 33.83 7.07 88.89 4.5

7 28.32 8.26 13.33 30 33.77 6.92 82.76 4.83

8 27.47 10.41 13.33 30 32.65 8.65 82.76 4.83

9 27.81 9.34 13.33 30 30.01 8.47 88.89 4.5

10 27.68 9.85 13.33 30 29.96 8.92 82.76 4.83

7.3. Complexity

Further, we analyze the complexity of the BA algorithm. The BA algorithm in-
volves many sparse matrix-vector and dense vector-vector operations. As a re-
sult, the algorithm’s computational complexity is not straightforward and is a
combination of different mathematical operations. As a result, we made an effort
to analyze the computational complexity of the BA algorithm using the compu-
tational time and the different input parameters. The code is implemented for a
single LM and PCG iteration so that the total number of LM steps and the con-
jugate iterations are constant across all datasets. Also, the total number of cam-
era parameters and the 3D points are constant across all datasets.

Each dataset has a different number of images, points, and projections. A
smaller number of images and points can have a larger number of projections
and vice versa. As a result, the number of images and points alone would not
provide complete information about the complexity of the algorithm. Also, the
total number of projections is significantly larger compared to the number of
images and points. As a result, we have used the number of projections as the
parameters to compare the complexity. The optimized CUDA implementation
that proposes a memory data layout only alters the location of different elements
in the memory and does not alter the algorithm implementation. Similarly, the
CUDA kernel optimization does not change the algorithm implementation but
distributes and executes the algorithm in parallel. As a result, the complexity of
the algorithm does not change between the naïve and optimized CUDA imple-
mentation in terms of the algorithm execution. However, it does change in terms
of the time complexity between the naïve and optimized CUDA implementation.

In Figure 20, the trendline equations of the projections versus computational
times of the naïve and optimized CUDA implementations are shown. The slope

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 199 Journal of Software Engineering and Applications

Figure 20. Trendline equations of projections versus computation time of naïve and optimized CUDA.

of the optimized CUDA implementation trendline is approximately 3× of the
naïve implementation, correlating with the 30× speedup achieved. The differ-
ence in the slope demonstrates the decrease in time complexity for the optimized
CUDA implementation.

8. Conclusion and Future Work

In this paper, we proposed a new memory data layout that has improved the
memory throughput and reduced the total computational time of the algorithm.
We have demonstrated the performance benefits of the proposed data layout
through the profiler metrics. The proposed data layout can also be adapted
across the other state-of-the-art implementations and would improve their per-
formances. This has been illustrated by implementing the proposed data layout
on the framework from [1], and the timing profile has shown a performance
improvement. The proposed data layout can be used in applications in other
domains where the applications benefit from the spatial locality in the memory.

In addition, we have also studied the impact of computing the block-matrix
W explicitly and implicitly by using the camera and point Jacobians in place of
the block-matrix W . From the study, it is evident that the Implicit-W configu-
ration takes less computational time compared to the Explicit-W configuration.
Also, we have optimized a few of the CUDA kernels by distributing the compu-
tations related to camera sections across blocks and the point iterations across
threads generating intermediate results that are aggregated by a single thread in
the end. We have also preprocessed the datasets such that all the datasets con-

https://doi.org/10.4236/jsea.2024.174010

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 200 Journal of Software Engineering and Applications

verge from their initial mean square error. Overall, the CUDA implementation
with the proposed data layout and the optimizations has achieved a speedup of
approximately 30× for the largest dataset, which has 13,678 cameras, 4,455,747
points, and 28,975,571 projections. Overall, a speedup of more than 25× has
been achieved with all of the configurations.

The proposed data layout emphasizes on improving the spatial locality of the
data in memory, where the consecutive memory is accessed significantly. This
deteriorates the temporal locality of the memory, by using the same set of mem-
ory repetitively. In the BA algorithm improving spatial locality with deteriorat-
ing temporal locality still improved the overall performance of the algorithm.

In addition to the performance optimizations presented in the paper, further
studies on the use of complex preconditioners to reduce the total number of
conjugate gradient iterations should be researched. The increased computations
from generating and utilizing the complex preconditioner can be addressed by
asynchronously implementing the computations on the GPUs. In addition, the
proposed CUDA optimizations would further improve the computational time
in using the complex preconditioners.

Acknowledgements

We want to thank NVIDIA Corporation for providing access to the GPU cluster
for development purposes.

We would also like to thank Sameer Agarwal et al. for providing the datasets
and additional information through the online URL
https://grail.cs.washington.edu/projects/bal/ and Changchang Wu et al. for re-
leasing the software and additional information through the online URL
https://grail.cs.washington.edu/projects/mcba/.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Kommera, P.R., Muknahallipatna, S.S. and McInroy, J.E. (2023) Improving Accu-

racy and Computational Burden of Bundle Adjustment Algorithm Using GPUs.
Engineering, 15, 663-690. https://doi.org/10.4236/eng.2023.1510046

[2] Agarwal, S., Snavely, N., Seitz, S.M. and Szeliski, R. (2010) Bundle Adjustment in
the Large. In European Conference on Computer Vision, Springer, Berlin, Heidel-
berg, 29-42. https://doi.org/10.1007/978-3-642-15552-9_3

[3] Choudhary, S., Gupta, S. and Narayanan, P.J. (2010) Practical Time Bundle Ad-
justment for 3d Reconstruction on the GPU. In European Conference on Computer
Vision, Springer, Berlin, Heidelberg, 423-435.
https://doi.org/10.1007/978-3-642-35740-4_33

[4] Lourakis, M.I.A. and Argyros, A.A. (2009) SBA: A Software Package for Generic
Sparse Bundle Adjustment. ACM Transactions on Mathematical Software (TOMS),
36, 2. https://doi.org/10.1145/1486525.1486527

https://doi.org/10.4236/jsea.2024.174010
https://grail.cs.washington.edu/projects/bal/
https://grail.cs.washington.edu/projects/mcba/
https://doi.org/10.4236/eng.2023.1510046
https://doi.org/10.1007/978-3-642-15552-9_3
https://doi.org/10.1007/978-3-642-35740-4_33
https://doi.org/10.1145/1486525.1486527

P. R. Kommera et al.

DOI: 10.4236/jsea.2024.174010 201 Journal of Software Engineering and Applications

[5] Tomov, S., Dongarra, J., Volkov, V. and Demmel, J. (2009) MAGMA Library. Uni-
versity of Tennessee and University of California, Knoxville, TN, and Berkeley, CA.
https://icl.utk.edu/magma/

[6] Agarwal, S. and Mierle, K. (2012) Ceres Solver. http://ceres-solver.org/

[7] https://developer.apple.com/documentation/accelerate

[8] https://eigen.tuxfamily.org/dox/group__TopicSparseSystems.html

[9] Byröd, M. and Åström, K. (2009) Bundle Adjustment Using Conjugate Gradients
with Multiscale Preconditioning. 7-10 September 2009, British Machine Vision Con-
ference, BMVC 2009, London, 1-10.

[10] Byröd, M. and Åström, K. (2010) Conjugate Gradient Bundle Adjustment. Euro-
pean Conference on Computer Vision, Springer, Berlin, Heidelberg, 114-127.
https://doi.org/10.1007/978-3-642-15552-9_9

[11] Wu, C.C., Sameer, A., Brian, C. and Seitz, S.M. (2011) Multicore Bundle Adjust-
ment. In Computer Vision and Pattern Recognition (CVPR), 20-25 June 2011, Col-
orado Springs, 3057-3064. https://doi.org/10.1109/CVPR.2011.5995552

[12] Zheng, M.T. Zhou, S.P., Xiong, X.D. and Zhu, J.F. (2017) A New GPU Bundle Ad-
justment Method for Large-Scale Data. Photogrammetric Engineering & Remote
Sensing, 83, 633-641. https://doi.org/10.14358/PERS.83.9.633

[13] https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TEXREF__DEPRE
CATED.html

[14] MathWorks, I. (2022) Symbolic Math Toolbox. Massachusetts.
https://www.mathworks.com/help/symbolic/

[15] https://technical.city/en/video/A30-PCIe-vs-H100-PCIe

[16] https://www.nvidia.com/en-us/data-center/h100/

[17] https://docs.nvidia.com/cuda/cublas/index.html

[18] Blelloch, G.E. (1990) Prefix Sums and Their Applications.

[19] https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html

https://doi.org/10.4236/jsea.2024.174010
https://icl.utk.edu/magma/
http://ceres-solver.org/
https://developer.apple.com/documentation/accelerate
https://eigen.tuxfamily.org/dox/group__TopicSparseSystems.html
https://doi.org/10.1007/978-3-642-15552-9_9
https://doi.org/10.1109/CVPR.2011.5995552
https://doi.org/10.14358/PERS.83.9.633
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TEXREF__DEPRECATED.html
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TEXREF__DEPRECATED.html
https://www.mathworks.com/help/symbolic/
https://technical.city/en/video/A30-PCIe-vs-H100-PCIe
https://www.nvidia.com/en-us/data-center/h100/
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html

	Optimized CUDA Implementation to Improve the Performance of Bundle Adjustment Algorithm on GPUs
	Abstract
	Keywords
	1. Introduction
	2. Literature Review
	3. Brief Discussion of the Modified Bundle Adjustment Algorithm
	4. GPU Hardware and Performance
	4.1. Memory Access Patterns
	4.1.1. Coalesced Memory Access
	4.1.2. Strided Memory Access

	5. Proposed Implementations
	5.1. CUDA Kernel Optimization
	5.2. Proposed Memory Layout

	6. Data Processing
	6.1. Additional Initialization Data
	6.2. Dataset Processing

	7. Results and Analysis
	7.1. Accuracy
	7.2. Performance
	7.3. Complexity

	8. Conclusion and Future Work
	Acknowledgements
	Conflicts of Interest
	References

