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ABSTRACT 
 

Risks are always present in agriculture for a variety of reasons. Climate-related risks are the most 
significant among them since they can occur unexpectedly and cannot be avoided. The main 
climatic factors influencing crop productivity are rising temperatures, altered precipitation patterns, 
and rising atmospheric CO2. The average global temperature is expected to rise by 2oC until 2100, 
which would result in significant global economic losses. The average global temperature is 
currently rising steadily. The concentration of CO2, which makes up a large amount of greenhouse 
gases, is rising alarmingly. Climate change, with rising temperatures and increased greenhouse 
gas emissions, impacts agriculture significantly, leading to varied crop yields and potentially 
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catastrophic economic consequences. While some regions may experience favorable effects, 
overall, climate variability poses challenges such as reduced crop productivity, increased pest 
activity, and elevated food costs, particularly affecting underdeveloped nations. Environmental 
policies must be adaptable and flexible to mitigate these impacts effectively. Farmers' responses to 
climate change, influenced by perceptions and data accessibility, drive both mitigation and 
adaptation efforts. Sustainable agriculture, conservation practices, and technological innovations 
play key roles in mitigating climate change impacts and enhancing resilience in farming 
communities, though success depends on multiple factors including local perceptions, technical 
feasibility, and economic viability. This paper reviews the causes of climate change, the climate 
variables affecting crop production and the mitigation and adaptation strategies against climate 
change. 
 

 
Keywords: Climate change; agriculture; climate variability; mitigation; adaptation. 
 

1. INTRODUCTION 
 
There's mounting evidence that the earth's 
temperature has increased during the past 
century, leading to unequalled and unpredictable 
variations in the climate and negative effects on 
people's lives everywhere. Due to agriculture's 
heavy reliance on weather, climate change has 
slowed down agricultural growth globally and is 
predicted to have a major impact on crop 
production [1]. The numerous documented 
instances of ongoing crop yield declines 
worldwide serve as evidence of the severe 
effects of the global climate on crop production 
[2,3]. 
 
The rise in global air temperature brought on by 
higher greenhouse gas concentrations is an 
impending change in the climate [4]. Numerous 
studies have demonstrated that India has 
experienced an unparalleled rise in surface 
temperature over the past century. Compared to 
the previous century, the average global 
temperature has risen by 0.8°C [5]. 
Approximately 7.3 billion people live on Earth 
today; by 2050, that number is predicted to rise 
to 9.7 billion, and by 2100, it will reach 11.2 
billion. By 2100, food production will need to 
increase several times over current levels in 
order to ensure food security for the world's 
rapidly growing population. Both the Indian and 
South Asian regions are heavily populated, have 
poor economies, and rely heavily on 
agriculture—which is susceptible to the effects of 
climate change. India's population could reach 
1.66 billion by 2050 [6]. 
 
In South Asia, climate change poses a threat to 
sustainable development because of the region's 
high population density, extreme poverty, and 
lack of resources for adaptation. Thus, climate 
change is expected to severely harm the region's 

economy, society, and environment, undermining 
prospects for growth and initiatives to combat 
poverty [7]. Because climate change affects crop 
growth and output, hydrologic balances, input 
sources, and other management methods, 
agriculture is particularly sensitive [8]. The 
impacts of climate change on agriculture are 
numerous and include variations in sea level, 
pest and disease conditions, average 
temperatures, rainfall, and weather extremes, 
among other things [9,10]. Increased 
temperatures cause early flowering and a shorter 
grain- filling period, which shorten crop cycles 
and lower yield per unit area. High 
temperatures during the day and at night are 
expected to increase in the near future and pose 
a serious environmental threat to food production 
and security worldwide [11,12,13]. Future 
climatic variability will also result in more frequent 
extreme weather events, such as unpredictable 
monsoons and an increase in the frequency and 
severity of drought and flooding, which will have 
an impact on both rainfed and irrigated 
agriculture systems. With the minimum 
temperature rising at twice the rate of the 
maximum temperature, the diurnal temperature 
range has likewise shrunk throughout India [14]. 
Over the Indian subcontinent, climate forecasts 
suggest an annual mean temperature increase 
between 3.5OC and 5.5OC by the 2080s, with the 
relative increase being smaller in the rabi 
(winter) season than in the kharif (monsoon) 
season [15]. 
 
Rainfall is expected to increase in the kharif 
season by 2050, despite a tendency to decline in 
the rabi season [16,17]. Consequently, it is 
anticipated that rising temperatures and erratic 
rainfall will have a variety of effects on agriculture 
in India, endangering the food security and 
means of subsistence for over 700 million rural 
residents [18,19]. Global climate change has 
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occurred, although its effects frequently differ 
from place to place and even from region to 
region [20,21]. 
 
Therefore in this paper we discuss the 
relationship between effect climate variability and 
extremes on crop production. The relationship is 
discussed under the following headings; the 
unpredictability of climate change and its causes, 
the relationship between agriculture and climate 
change, climate variability versus crop 
production, climate change related stressors and 
their effects on crop adaptation, effect of climate 
change on physiological, metabolic and 
morphological processes in plants and climate 
change mitigation and adaptation. The paper 
therefore helps to understand the effect of 
climate change on agriculture and the mitigation 
strategies as well. 
 

2. THE UNPREDICTABILITY OF THE 
CLIMATE AND ITS CAUSES 

 
Many studies have been conducted on the 
significant climate variability (mean computation 
and variability of linked parameters of variables, 
such as temperature, rainfall, and wind during 
certain periods of time). According to estimates, 
climatic variability is rising as a result of rising 
temperatures. In many respects, the physiology 
of plants is significantly impacted by climate 
fluctuation. While most tropical and subtropical 
regions have seen a drop in precipitation, high 
latitudes have seen an increase. Animals as well 
as crop plants are under more stress due to 
climate variability and extreme weather events 
[22]. 
 
The implications of climate change, especially its 
biological effects, have become abundantly clear 
in the last several years. Due to human activity 
and natural sources, there is an increase in the 
emission of gases such as carbon dioxide, 
methane, nitrous oxide, and halocarbons. These 
gases absorb solar radiation and contribute to 
the greenhouse effect [24]. Drought is caused by 
high temperatures, little precipitation, salt stress, 
and intense light [25]. 
 

3. THE RELATIONSHIP BETWEEN 
AGRICULTURE AND CLIMATE 
CHANGE 

 
Due to its vast scope and extreme weather 
sensitivity, agriculture is the industry most 
susceptible to climate change, with potentially 

catastrophic economic consequences [26]. The 
amount of crop output is greatly impacted by 
variations in meteorological events like 
temperature and rainfall. The crop, location, and 
degree of parameter change all affect the effects 
of rising temperatures, fluctuating precipitation, 
and CO2 fertilization. It has been discovered that 

rising temperatures lower yields, while rising 
precipitation is likely to neutralize or lessen the 
effects of rising temperatures [27]. Crop 

productivity is dependent on crop type, climate 

scenario, CO2 fertilization effect, and 

adaptability skills when it comes to climate 
variables as observed in Iran [28]. 
 
Depending on the region and irrigation 
technique, agricultural yields are affected 
differently by climate change. Extending irrigated 
regions can boost crop yields, but doing so may 
have negative environmental effects [30]. As a 
result of their shorter lifetime, several crops are 
expected to yield less due to temperature rise 
[31]. If both the temperate and tropical regions 
undergo a warming of 2OC, the total production 
of wheat, rice, and maize is anticipated to decline 
[32]. Because tropical crops stay closer to their 
high-temperature optima and so face high-
temperature stress under rising levels of 
temperature, climate change generally has a 
greater impact on tropical regions. 
 
Furthermore, humid and warmer regions tend to 
have higher rates of disease and insect pests 
[33]. Crop yields are also affected by other 
factors like humidity, wind speed, temperature, 
and rainfall; in the absence of these factors, 
there has been a potential for overestimating the 
cost of climate change.Reduced crop yields 
have the potential to drive up food costs and 
have a disastrous impact on agricultural 
wellbeing worldwide, with an estimated 0.3% 
yearly loss of future global GDP by 2100 [34]. 
 
However, [35] discovered that while climate 
change has little impact on the world's food 
supply, underdeveloped nations will suffer greatly 
as a result. The agriculture industry in India may 
suffer as a result of expected temperature 
increases of 2.33 to 4.78OC, a doubling of CO2 
concentration, and longer heat waves [36]. 
 
Temperature and precipitation variations have a 
significant impact on plant-water relations, and 
physiological changes are more likely to be 
affected by abrupt shifts in these variables than 
by variations in the average climate [37]. The 
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way that different plant species and 
developmental stages react to climate change is 
evident. Different plant species have different 
thresholds, and different plant species respond 
differently—for example, by elongating their 
roots, altering their root development angle, or 
producing less of a crop [38]. Plant 
transpiration was shown to be reduced with 
increased CO2 level in the environment, 

resulting in an increase of 0.42 ± 0.02 K in air 
temperature. Land surfaces can warm by 3.33 ± 
0.03 K due to a direct radiative effect and the 

indirect physiological effect of increased CO2 
[39]. Harvestable crop yields are predicted to rise 
in response to rising atmospheric CO2 levels, 

and plant developmental changes vary 
depending on the kind of crop. While higher 
yields are anticipated for C3 crops, decreased 
water requirements are anticipated for both C3 
and C4 crops in the absence of stressful 
situations. However, higher temperatures and 

changed precipitation are expected to 

counterbalance these positive effects of 
increased CO2 [40]. 

 
On the other hand, some regions also show that 
climate change has a favourable effect on 
agricultural productivity. However, these regional 

variations—whether they were increases or 
decreases—would not cause significant 
alterations, and they would only become more 
noticeable in a few low latitudes. On the other 
hand, significant economic losses may result 
from temperature increases greater than those 

caused by doubling CO2 [41]. The tropical 

regions of developing countries will bear a heavy 
burden from climate change, however the exact 
impact will primarily depend on local climate 
conditions. According to Zilberman et al. [42], 
environmental policies need to be dynamic and 
executed with adaptability and flexibility, as the 
pace of climate change influences its impact and, 
in turn, the cost of adjustment. 
 

4. CLIMATIC VARIABLES VERSUS CROP 
PRODUCTION 

 

Research clearly demonstrated that an increase 
in global temperature would have a negative 
impact on agriculture in the Indian subcontinent. 
According to Joshi and Kar [43], temperature 
fluctuations, precipitation, carbon dioxide 
fertilization, short-term weather variability, and 
surface water runoff are the primary climatic 
elements that could impact agricultural output. 
Both good and negative effects on agricultural 

 

 
 

Fig. 1. Causes of climate change [23] 
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Fig. 2. Impact of climate change on agriculture [29] 
 
Productivity are attributed to these factors. 
Temperature and precipitation trends in the 
climate have had, and will continue to have, a 
major influence on agriculture. Individuals of the 
same or different species will respond differently 

to changes in light, nutrients, water, or CO2 [44]; 

as a result, heterogeneity within or between 
species can be expected when atmospheric CO2 
levels rise globally. With the right fertilization, 
variety selection, and optimal nutrient supply, 
adverse agro-ecological weather effects can be 
mitigated. 
 
Temperature and crop production: Higher 
average temperatures in all major cropping 
zones have been and will continue to be the most 
pervasive aspect of climate change. In most 
places, the temperature thresholds for crops, 
such as 35°C or 40°C, will be exceeded on more 
days due to this increase in average 
temperatures alone. Global agriculture will 
typically suffer from temperature increases 
exceeding 2.5°C [45]. Compared to precipitation, 
the growing trend towards global warming over 

the 20th century has been remarkably 
noticeable. Global warming is predicted to cause 
a 9–21% decrease in total agricultural 
productivity in developing nations, according to 
[46]. Increases in temperature in mid- to high-
latitude regions lead to higher yields; however, 

the impacts become less pronounced when 
temperature fluctuations above 30°C. 
Temperature variations may result in air vapour 
pressure deficits, which may have an effect on 
how much water is used in agricultural 
landscapes [47]. 
 
This may result in changes in temperature and 
water loss, as well as an impact on the rate of 
transpiration. According to reports, soil warming 
may have a deleterious impact on the growth, 
shape, and longevity of roots [48]. Numerous 
studies have shown that variations in soil 

temperature can affect the way that NH4+, NO3, 

P2O5, and K+ are transported by roots, hence 

having a direct impact on plant nutrient 
absorption. Soil warming may promote plant 
nutrient acquisition by improving root uptake 
kinetics, as seen by improved plant nutritional 
status when root development and morphological 
traits are severely affected [49]. High 
temperatures impair the processes that                     
allow light to be absorbed and transformed                
into energy, which causes photorespiration to 
rise. 
 
It is possible for the light-harvesting chlorophyll 
protein complex to irreversibly split apart from the 
nucleus of the photochemical reaction centre, 
and there may also be harm to the oxygen-
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producing water splitting mechanism. Higher 
temperatures so typically result in lower yields 
since they accelerate a plant's growth to maturity 
earlier, thereby shortening the time available for 
yield generation. They also frequently exacerbate 
the stress on water resources, which are crucial 
for crop growth. Since the air's capacity to store 
water increases non linearly with temperature, 
higher average temperatures will also result in 

higher rates of evapo-transpiration (ET). Higher 
ET rates will therefore tend to dry up the soil, 
increasing the frequency of low moisture 
extremes. If the yearly variability of the climate 
were to rise, extremes might also become more 
frequent in addition to variations in the average 
temperature. Pests, illnesses, and weeds are 
also more likely to be present in areas that are 
warmer and wetter. 

 
Table 1. Plant growth affected by various stresses caused by climate change 

 

Stress Induced Secondary 
Stresses 

Effects in Plant References 

Chilling/fre 
ezing stress 

Nutritional imbalance, 
osmotic and oxidative 
stress 

• Buildup of reactive oxygen species 
(ROS) and oxidative damage; suppression of 
enzyme function and imbalance in metabolism. 
• Reduced photosynthetic activity, 
senescence, delayed maturity, increased cell 
starvation and dehydration, and damage to PS II. 
• Reduced development and efficiency 

[70,71] 

Drought Osmotic, heavy metal, 
and oxidative stress 

• Increased ROS production and ion leakage; 
induced dehydration and turgor loss. 

• Decrease in absorption and translocation of 
mineral nutrients. 

[72,73] 

  • Protein denaturation, loss of enzyme 
activities, reduced photosynthetic activity due to 
abridged chlorophyll content and CO2 
assimilation. 

• Elevated leaf temperature, necrosis, early 
abscission, and slowed plant development. 

 

Flooding/ 
waterlogging 

Water and nutrient 
deficiency 
stress, oxidative stress 

• Reduced absorption and translocation of 
mineral nutrients; increased generation of 
reactive oxygen species (ROS) and ion leakage; 
induced dehydration and turgor loss. 

• Denaturation of proteins, loss of enzyme 
activity, and decreased photosynthetic activity as 
a result of lower CO2 absorption and chlorophyll 
concentration. 

• Stunted plant development, early abscission, 
necrosis, and elevated leaf temperatures. 

[74,75] 

Heat stress Water scarcity, osmotic 
and 
oxidative stress 

• Increased oxidative damage, 
denaturation, misfolding of proteins, and 
generation of ROS. 

• Reduced CO2 fixation, foliar senescence and 
abscission, growth inhibition, fruit and leaf 
discolouration, disturbance of PS I and PS II, and 
disrupted ion transport. 

[76,77,78] 

Light/radiat ion 
stress 

Oxidative stress • Increased oxidative damage and ROS 
generation, interrupted photosynthesis ETC, 
and/or increased activity of membrane- bounded 
NADPH oxidase, degraded chlorophyll, 
decreased photosynthetic activity, and 
suppression of epidermal cell growth. 

• Condensed inflorescence stem with an 

[79] 
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Stress Induced Secondary 
Stresses 

Effects in Plant References 

increased number of flowering stems, decreased 
rosette diameter, and leaf senescence. 

Nutrient 
imbalance 

Oxidative stress • Reduced antioxidants leading to a buildup 
of reactive oxygen species (ROS); increased 
ion and 

[80,81] 

  solute leakage; decreased metalloenzyme 
activity; and decreased photosynthesis. 

• Vulnerability to additional biotic and 
abiotic factors.  

• Growth retardation, chlorosis, necrosis,
 little fruit and flowering, and decreased 
output 

 

Ozone (O3 
) stress 

Oxidative stress • The generation of ROS results in oxidative 
damage, reduced stomatal conductance, 
decreased photosynthesis, slowed enzyme 
activity, and degradation of chlorophyll and 
xanthophyll. 

• Reduced plant biomass and productivity, 
early senescence, and chlorosis and necrosis of 
the leaves 

[82,83] 

Salinity Water scarcity, ionic 
imbalance, nutrient, 
osmotic 
and oxidative stress 

• The generation of ROS results in 
oxidative damage, decreased K+, Ca2+, and 
Mg2+ content, restricted water and mineral 
nutrient uptake and translocation leading to Na+ 
toxicity, and decreased soil water potential. 
Reduced photosynthesis, disordered thylakoid 
ultrastructure and decreased stomatal opening. 

• Decreased seed germination, premature leaf 
withering, as well as reduced productivity and 
growth 

[84,95,86] 

 

Radiation and crop production: The only 
known source of energy for the universe's 
ecology, either directly or indirectly, is solar 
radiation. Photosynthesis and crop productivity 
are significantly impacted by radiation [50]. Crop 
development and production are derived from 
photosynthesis and are reliant on the receipt and 
absorption of solar energy, as demonstrated by 
Reynolds et al. [51]. According to Richards [52], 
seasonal fluctuations in solar radiation have a 
significant impact on yield. This notable crop 
response trend to solar radiation could be the 
result of a change in photosynthesis' duration. 
Due to the unequal partitioning of light, sowing 
time can be used to introduce variability in solar 
radiation, which eventually affects the duration of 
crop growth. 
 
A longer period of time spent exposing a crop to 
favourable environmental conditions may also 
result in good seed establishment and yield. 
On the other side, owing of cloud cover's 
reduction of solar radiation, growth and 

development would turn negative. Solar 
radiation is a significant environmental element 
that modifies light partitioning and leaf 
architecture, promoting favourable alterations 
in crop growth. Any decrease in solar radiation 
will significantly lower agricultural productivity 
because it is closely linked to crop growth. 
The concomitant rise in minimum 
temperatures causes the crops to require more 
respiration, which lowers net growth and 
productivity [53]. Additional research points to a 
declining trend in solar radiation. Recently, it has 
been shown that gases and particulate matter 
(aerosols) released into the atmosphere by 
human activity have disrupted the earth's 
surface's ability to intercept solar radiation [54]. 
 
Precipitation and crop Production: Thirty 
percent of the world's population lives in areas of 
the globe that are water stressed [55]. With 
global warming, the hydrological regimes in 
which crops flourish will undoubtedly alter. The 
availability of water is a significant factor in 
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agricultural output fluctuation in various situations 
[56]. Variations in the amount of precipitation 
throughout the year, within-season patterns, and 
seasonal variations may also have an impact on 
the crop water regime. Stronger convection cells 
and more air moisture are expected to result in 
increased convective rainfall, especially in the 

tropics. Over the course of the 20th century, 
precipitation has most likely grown by 5–10% 
over the majority of the mid- and high-latitude 
continents in the northern hemisphere, whereas 
it has declined by 3% on average over the 
majority of the subtropical land area. 
Precipitation is widely acknowledged to be a 
major element influencing crop productivity, 
particularly for rainfed crops [57]. While 
insufficient precipitation can harm crop output, 
particularly if dry spells happen during crucial 
developmental stages, excessive precipitation 
can lead to disease infestation in crops. Changes 
in the precipitation and seasonal and yearly 
evapotranspiration regimes will have an impact 
on the availability and quantity of water held in 
the soil, which is an essential component of crop 
growth. The need for irrigation water is projected 
to increase due to global climate change [58]. 
 

CO2 increase and crop production: Since 

carbon dioxide is a fundamental resource for 
plant growth, the continuous rise in its 
concentration would enable breeders to start 
choosing the best cultivars from the existing crop 
lines. It is the belief of breeders and agronomists 
that empirical selection for the fastest-growing, 

highest-yielding cultivars under current 

environmental conditions will lead to CO2 
responsiveness; these conditions will eventually 
reflect changes in the background concentration 

of CO2 [59]. 
 

According to projections made by the 
Intergovernmental Panel on Climate Change 
[45], atmospheric CO2 concentrations will rise 

from 368 µmol/mol in 2000 to a range of 540 to 
970 µmol/mol in 2100. Temperature rises are 

predicted to coincide with increases in the 

atmospheric concentration of CO2. According to 

IPCC predictions, air temperatures will rise by 

1.4 to 5.80C between 2000 and 2100 as a result 
of greenhouse gas accumulation in the 

atmosphere. These worldwide trends will be 

supported by significant regional variances [60]. 
Higher CO2 concentrations cause plants to 
develop at faster rates of net photosynthesis 
and/or smaller stomatal diameters [61]. 
Positively, some crops are predicted to benefit 

from the increased atmospheric concentration of 
carbon dioxide. Reduced transpiration per unit 
leaf area caused by partial stomatal closure, 
when combined with increased photosynthesis, 
frequently results in improved WUE [62]. 
 
As a result, higher CO2 concentrations can 

boost productivity while lowering water 
consumption. Under conditions of doubled CO2, 

these C3 crops can experience growth rates of 
up to 50% [63]. Compared to tropical crops, 

temperate crops might gain more from higher 

CO2. It has been demonstrated that CO2 
enrichment reduces photorespiration, or the 
quick oxidation of recently generated sugars in 
the light, in crop species that have the C3 
pathway characteristic of non-tropical plants 
(such as wheat, soybean and cotton). This 

reduces the efficiency of photosynthesis as a 

whole. Because C4 crops fix CO2 into malate in 

their mesophyll cells before transferring it to the 
RuBP enzyme in the bundle-sheath cells, they 

are more photosynthetically efficient than C3 

plants under current CO2 levels. C4 crops are 

particularly characteristic of tropical and warm 

arid regions (e.g., maize, sorghum, and millet). 

Experimental studies indicate that C4 plants 
are less susceptible to CO2 enrichment 

because of this CO2-concentrating and 

photorespiration-avoiding mechanism [64]. 
 

5. CLIMATE CHANGE-RELATED 
STRESSORS AND THEIR EFFECTS ON 
CROP ADAPTATION 

 
Because of climate fluctuations, the impacts of 
abiotic pressures on crop adaptability and 
productivity have been reported [65]. Abiotic 
variables cause abiotic stressors in plants. 
Extremes in temperature (stress from heat or 
cold), light, radiation, water (stress from flooding 
and drought), chemicals (metals and pH), and 
gaseous pollutants (ozone, sulphur dioxide) are 
some of these causes. According to Pereira [66], 
heat and drought are two common field stressors 
that significantly affect plant performance and 
that of their progeny. They can also cause a 
plant's persistent problems. 
 

Because plants need an ideal range of 
temperatures for both growth and adaptation, the 
range of temperatures surrounding any species' 
plants determines how much of that species' 
output there is. Temperature changes have an 
equally important impact on plant phenology 
[67]. Drought stress negatively impacts plant 
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physiology, morphology, and biology. Heat stress 
decreases grain production and grain-filling 
duration. Frost causes sterility and abortion of 
grains [68]. 
 

While climate change may benefit agriculture in 
certain parts of the world where the temperature 

is above 55OC, many plants, particularly those 
that are native to warm environments, are 
negatively impacted by these changes. Severe 
summertime weather events pose major risks to 
crop adaptability and productivity. For example, a 
rise in temperature, evaporation, and 
transpiration causes a wheat plant to shorten its 
flowering period from planting to emergence. A 

1OC temperature increase shortens flowering by 
5 days. Temperature increases also affect the 
grain filling period, which ultimately results in a 
decrease in biomass [69]. 
 

6. EFFECTS OF CLIMATE CHANGE ON 
PHYSIOLOGICAL, METABOLIC, AND 
MORPHOLOGICAL PROCESSES IN 
PLANTS 

 
Plants are experiencing unique ecological 
settings that fall outside of their optimal range for 
adaptation as a result of the rapid changes in 
climate conditions. The significant variations in 
temperature and precipitation patterns may make 
plant migration an impractical strategy. Despite 
the fact that plants have modified their 
physiology for benefit in unique settings, but 
according to Becklin [87], climate change might 
be just as harmful as pushing plants over their 
tolerance limits. Many plant species' morpho-
biochemical processes are significantly impacted 
by abiotic stressors [88]. However, according on 
agricultural physiology responses to anticipated 
climatic conditions for the next few years, crops 
will grow more quickly and, depending on the 
crop variety and specie, may see modest 
changes in blooming and fruiting [40]. For plants, 
10 to 35OC is the ideal temperature range. 
According to Tkemaladze and Makhashvili [89], 
plants can only create a limited amount of energy 
as temperatures rise. After that, photosynthesis 
in the leaves drastically declines and is 
irreversibly lost. 
 
Plant turgor pressure is lowered during drought, 
which eventually restricts cell development. Lack 
of water affects photosynthetic enzyme activity, 
lowers metabolic process efficiency and 
ultimately causes failure in the photosynthetic 

apparatus [90]. A rise in CO2 concentration 

brought by shifting weather patterns causes a 
decrease in plant respiration and an increase in 
temperature. Temperature increases cause crop 
respiration to rise up to a maximum of 15–40ºC 
before declining [91]. The enzyme Rubisco is a 
component of the carbon fixation process, which 
transforms atmospheric carbon dioxide into 
molecules with high energy content in 
photosynthetic organisms. Rubisco activase 
removes metabolites to maintain Rubisco active 
within typical temperature ranges. Rubisco 
deactivates at low temperatures because it 
produces chemicals that are inhibitory (xylulose-
1, 5- bisphosphate). Rubisco activase also 
denatures over the optimal range of species 
temperature, forming insoluble aggregates that 
are unable to remove inhibitors and activate 
Rubisco. Temperature elevation has been shown 
to cause a very quick drop in the activation state 
of Rubisco in cotton [92]. Enzymatic and non- 
enzymatic antioxidant defence mechanisms 

regulate reactive oxygen species (ROS), which 

are byproducts of cellular metabolisms and 
include hydrogen peroxide (H2O2), super oxides 

(O2), hydroxyl ions (OH), and singlet oxygen 

(O2). ROS are predominantly produced by cells 
and organelles at low concentrations under 
normal environmental settings, but their 
concentration rises under stressful 
circumstances [93]. Plants that produce too much 
reactive oxygen species (ROS) pose a threat to 
proteins, lipids, and DNA, ultimately causing 
cellular damage and death [94]. 
 

7. CLIMATE CHANGE MITIGATION AND 
ADAPTATION 

 
Farmers' perceptions of the severity and threat of 
climate change are the primary drivers of 
voluntary mitigation. However, the adaption is 
contingent upon the accessibility of pertinent 
data [95]. The anticipated rise in extreme 
weather events, alongside diminishing soil health 
and biodiversity, may elevate the cost of food 
production. The United Nations advocates for 
global intervention through 17 sustainable 
development goals (SDGs), four of which pertain 
to food production and security. These include 
tackling biodiversity decline (SDG 15), 
addressing ecosystem service loss and 
agroecosystem instability due to heightened 
stress from intensified food production and 
climate change (SDG 13), combatting soil health 
deterioration stemming from agricultural methods 
(SDGs 2 and 6), and reducing reliance on 
synthetic fertilizers and pesticides for enhanced 
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productivity (SDG 2). Achieving these SDGs 
necessitates the agricultural sector's proactive 
engagement in reversing prevalent negative 
environmental trends. This entails implementing 
significant changes in agricultural practices to 
ensure resilience and adaptation to climate 
change by 2030 and beyond [96]. 
 
Additionally, fewer individuals will be subjected to 
water stress thanks to mitigation methods; 
nevertheless, those who remain will still require 
adaptation strategies because their stress levels 
will be elevated [97]. Farmers can embrace 
climate-resilient technologies with the assistance 
of agroecological and traditional management 
techniques, such as biodiversification, soil 
management, and water collection [98]. 
According to Lal et al. [99], these management 
techniques guarantee improved soil health, 
reduced soil erosion, enhanced carbon 
sequestration, and resilient agricultural systems 
that will ultimately guarantee food security in the 
face of climate change. The most effective 
educational interventions for promoting climate 
change awareness for ecological development 
are those that centre on local, palpable, and 
doable issues that can be observed through 
individual behaviour [100]. The majority of 
farmers supported adaptations, but only a small 
percentage supported reducing greenhouse gas 
emissions. This indicates the need to 
concentrate on programmes that include 
mitigation and adaptation elements [101]. [102] 
have grouped the primary adaptation strategies 
of mitigation into three categories: resource-
conservation technologies, cropping-system 
technologies, and socio- economic or policy 
initiatives. Small and marginal farmers are 
particularly vulnerable to losses because they 
lack the awareness necessary to adapt to climate 
change [103]. A few easy ways to reduce 
greenhouse gas emissions are rice that is 
alternately dried and drained in the middle of the 
season, better animal nutrition, increased N-use 
efficiency, and soil carbon. It may be possible to 
lessen the effects of climate change by 
implementing straightforward adaptation 
techniques such altering planting dates and 
types [104]. Technology diffusion has a 
significant impact on how farmers react to 
climate change. According to Lybbert and 
Sumner [105], the primary areas of focus are 
capacity building, market integration, and support 
for public research. Because conservation 
agriculture promotes minimal soil disturbance, 
crop diversity, and soil cover management, it has 
the ability to undo the damage caused by 

conventional ploughing over time. Additionally, 
conservation agriculture increases terrestrial 
carbon absorption, decreases fertilizer 
consumption, and reduces greenhouse gas 
emissions [106]. Sustainable agriculture 
approaches are made possible by conservation 
agriculture, which is based on the fundamental 
concepts of minimum soil disturbance, crop 
rotation, and soil cover. Farmers in south Asia 
are cultivating wheat with zero tillage mainly due 
to a 15–16% decrease in cultivation costs. 
Furthermore, according to [107], zero tillage 
produces higher yields of wheat and maize with 
less variability. No-till farming was also promoted 
as a substitute for traditional tillage, which 
reduces the effects of climate change by 
sequestering carbon. However, this claim is 
overstated because no- till farming adds very 
little additional organic carbon to the soil [108]. 
The adoption of conservation agriculture (CA) 
can be attributed to a number of factors, 
including the perception of personal benefits, the 
development of farmer organizations to support 
local adaptation, the use of functional market 
exchange techniques to supply the necessary 
resources for CA implementation, and the 
alliances between farmer organizations and 
institutions to create appropriate environments 
[109]. 
 
Modified farming methods are the primary means 
of adapting to climate change. These practices 
are heavily influenced by policy decisions that 
take into account social, political, and economic 
factors as well as climate extremes and 
variability [110]. Nutrient management is crucial 
since the conventional intensification of 
agriculture results in enormous economic losses, 
of which over 80% are attributable to nutrient 
mismanagement [111]. Soil restoration, nitrogen 
management, cover crops, manuring, no-till 
farming, and agroforestry can all promote carbon 
sequestration, or an increase in soil organic 
carbon (SOC). One irrigation method that is 
being promoted to lessen groundwater overdraft 
and shocks brought on by climate change is drip 
irrigation. It lessens the need for groundwater for 
irrigation and has the potential to be climate 
change resilient. However, farmers are 
employing drip irrigation in their intensive farming 
practices, which is producing more groundwater 
over extraction and the Jevons dilemma [112]. 
Sprinkler and drip irrigation are two examples of 
water-saving irrigation methods that can both 
reduce and adapt to climate change and offer 
long-term economic benefits. Reduced N 
application can be achieved through agricultural 
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practices that take into account site-specific 
information without compromising profitability. 
For this reason, precision farming is thought to 
be more profitable than field management [113]. 
One strategy for adjusting to environmental 
challenges in plants is to breed them to create 
new types. In order to test a variety's 
appropriateness for the target environment, 
multilocation experiments, breeding cycle 
shortening, and germplasm selection will be 
necessary [114,115]. 
 
It is crucial to create stress-tolerant cultivars as a 
mitigating measure because it is anticipated that 
climate change will increase the frequency and 
severity of abiotic stress. By accumulating 
evidence, boosting the efficacy of local 
institutions, advocating for climate-smart 
agricultural policies, and connecting         
agricultural financing to climate, climate-smart            
agriculture increases resilience to climate change 
[116]. 
 
The most effective climate-smart technologies 
are those that either support soil structure or 
supply water or nutrients. These mitigation 
techniques offer enormous potential for both 
adaptation and mitigation. But they also rely on 
factors like people's perceptions, technical 
complexity, economic viability, and a 
technology's suitability for the area. Furthermore, 
these tactics function best when several 
interventions are applied in tandem and in 
support of one another. 
 

8. CONCLUSION 
 
The world's most serious issue right now is 
climate change. Climate has a well-known impact 
on crop quality and quantity, making it a 
significant and independent component in 
agriculture. The burden of maintaining global 
food and nutritional security due to population 
growth has placed significant strain on 
agriculture, a situation that is made worse by 
climate change. In a typical climate, the weather 
during the growing season mostly determines 
crop growth, development, and production. Little 
variations from the typical weather have a 
significant negative impact on food output, 
applied input efficiency, and weather. Climate 
change will reduce agricultural productivity in the 
coming years, according to a number of studies, 
not withstanding the uncertainty surrounding the 
future climate scenario and its potential effects. 
The primary determinants of climate, which are 
temperature, precipitation, and greenhouse gas 

emissions, have a substantial negative impact on 
plant physiology, pest infestation, soil fertility, 
irrigation resources, and metabolic processes. 
Agronomic choices, tactics, and interventions 
that result in climate-resilient farming systems 
can be guided by an understanding of how the 
climate is changing and will change locally, as 
well as the degree of the change and the 
opportunities and hazards it presents. 
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