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ABSTRACT 
 

A farm management system that uses information and technology to identify, analyze, and control 
the temporal and spatial variability within a field is known as precision farming or precision 
agriculture. Its goals are to maximize productivity and profitability, preserve the land resource, and 
minimize production costs. The public's growing environmental consciousness is forcing us to alter 
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agricultural management techniques in order to maintain economic profitability while preserving 
natural resources like water, air, and soil quality. The application of inputs (such as chemical 
pesticides and fertilizers) in accordance with the proper amount, timing, and location. "Site-Specific 
Management" is the term used to describe this kind of management. With over a third of the world's 
food now requiring irrigation for production, the productivity increase in the global food supply has 
depended more and more on the expansion of irrigation schemes in recent decades. The overall 
economic viability of traditional agricultural systems is being challenged by market-based global 
competition in agricultural products, which calls for the creation of new, flexible production systems. 
 

 

Keywords: GPS; GIS; precision agriculture; remote sensing; technology; techniques. 
 

1. INTRODUCTION 
 

“When compared to conventional cultivation 
methods, precision farming increases average 
yields by precisely calculating the amount of 
inputs used” [1]. “Thus, it is a comprehensive 
system created to maximize production through 
the application of essential information, 
technology, and management components in 
order to boost output, enhance product quality, 
optimize crop chemical use, conserve energy, 
and safeguard the environment” [2]. “Precision 
farming is therefore a compelling idea, and its 
principles naturally raise the expectation that 
farming inputs can be used more efficiently, 
improving profits and producing less that harms 
the environment” [3]. “The technological 
advancements in precision farming today can 
supply the means for tomorrow's environmentally 
sustainable agriculture. Precision farming offers 
significant yield improvements with low external 
input use, especially for small farmers in 
developing nations” [4].  
 

“The world's population is growing at a geometric 
rate, which means that smart farming techniques 
are required to feed everyone” [5]. “Growing 
more crops and raising more cattle won't be 
enough to meet the needs of the growing 
population” [6]. “Precision Agriculture (PA) 
technology can help with this. To put it simply, it's 
the process of integrating technologies into 
traditional farming practices in order to become a 
smarter farmer” [7]. “The use of precision 
agriculture is anticipated to boost productivity, 
which will ultimately benefit farmers and society 
by increasing sustainability and boosting the 
economy” [8]. “It is a fundamental strategy in the 
agriculture industry that connects economic and 
environmental interests” [9]. “The Global 
Positioning System (GPS), mobile devices, 
robotics, driverless tractors, Internet of Things, 
sensors, variable rate seeding, weather 
modeling, unmanned aerial vehicles (UAVs), etc. 
are some of the technologies integrated with 
precision agriculture” [10]. By incorporating these 

technologies, farming methods have become 
more efficient, the global food crisis can be 
controlled, crop and animal health can be 
monitored to increase yield, and smarter ways to 
grow food can be developed to control land use 
[11]. The weather, crop conditions, irrigation 
testing, and boundary of field remote sensing are 
all included in the data collection process [12]. In 
the analysis phase, the amount of variability, its 
potential causes, the degree to which soil and 
crop characteristics are measured, and the 
degree to which variations impact crop yield and 
crop quality are all determined [13]. During the 
management and decision-making phase, we 
determine whether or not variability can be 
changed, how to change yield and quality while 
reducing input, and how to put these changes 
into practice [14]. We put the decisions into 
practice during the farming phase, which is the 
fourth phase [15]. This paper provides an 
overview of the latest techniques in precision 
agriculture, including crop management, pest 
and disease management, soil and irrigation 
management, livestock farming, and the 
challenges associated with it [16]. The 
techniques are based on artificial intelligence and 
image processing. 
 

2. NEED OF PRECISION AGRICULTURE 
 

“The world food system is currently facing 
enormous challenges, and these will only get 
worse over the next forty years. With today's 
knowledge and technologies, a lot can be 
accomplished quickly with enough effort and 
money” [17]. “However, facing the challenges of 
the future will call for even more drastic 
adjustments to the food system as well as 
funding for research to produce fresh answers to 
original issues. Major concerns in agricultural 
growth and development now include the decline 
in overall productivity, the depletion and 
degradation of natural resources, stagnating farm 
incomes, a lack of an eco-regional approach, 
declining and fragmented land holdings, trade 
liberalization on agriculture, limited employment 
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opportunities in the non-farm sector, and global 
climatic variation” [18]. “Consequently, it is 
believed that utilizing recently developed 
technologies will be essential to raising 
agricultural productivity in the future” [19]. “A 
precision farming approach takes into account 
site-specific differences within fields and modifies 
management actions accordingly, as opposed to 
managing an entire field based upon some 
hypothetical average condition that might not 
exist anywhere in the field. Most farmers are 
aware that the yields in their fields vary 
depending on the terrain” [20]. “These 
differences can be linked to environmental 
factors, soil characteristics, and/or management 
techniques. Large sizes and yearly changes in 
the farm area's leasing arrangements make it 
challenging to maintain the current level of field 
knowledge” [21]. “Thus, all of the farmland must 
be split up into tiny farms that are worth no more 
than 50 cents each. The collection and analysis 
of data can be made simpler and more 
automated with precision agriculture” [22]. It 
makes it possible to swiftly and locally apply 
management decisions on smaller portions of 
larger fields. 
 

3. TOOLS AND EQUIPMENT 
 

3.1 Global Positioning System (GPS) 
 

With an accuracy of between 100 and 0.01 
meters, GPS is a navigation system that uses a 

network of satellites to record positional data 
(latitude, longitude, and elevation) [23]. Farmers 
can use GPS to pinpoint the precise location of 
field data, including the type of soil, the     
presence of pests, weed invasion, water holes, 
boundaries, and obstacles. With an antenna, 
receiver, and light or sound guiding panel 
(DGPS), there is an automatic controlling system 
[24]. GPS receivers can determine their position 
thanks to signals that GPS satellites broadcast. 
Based on performance criteria and past input 
applications, the system enables farmers to 
accurately locate fields so that inputs (seeds, 
fertilizers, pesticides, herbicides, and                  
irrigation water) can be applied to a specific field 
[25]. 

 

3.2 Sensor Technologies 
 
Many technologies are used to measure different 
aspects of life, including temperature, texture, 
structure, physical character, vapor, air,       
humidity, vegetation, and nutrient level.                 
These technologies include electromagnetic, 
conductivity, photoelectricity, and ultrasonic 
sound [26]. Data from remote sensing are used 
to identify pests and weeds, track drought, and 
assess soil and plant conditions, as well as to 
differentiate between different crop species. 
Sensors make it possible to gather vast amounts 
of data without the need for laboratory analysis 
[27]. 

 
 

 

Fig. 1. Sensor technologies in agriculture 
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3.3 Geographic Information System (GIS) 
 
In order to facilitate the collection, storage, 
retrieval, and analysis of feature attributes and 
location data for the purpose of producing maps, 
this system is composed of hardware, software, 
and procedures [28]. GIS connects data in a 
single location so that it can be expanded upon 
as needed. In contrast to traditional maps, 
computerized GIS maps are more detailed and 
include multiple layers of data (e.g. yield, soil 
survey maps, rainfall, crops, soil nutrient levels 
and pests). Although GIS is a type of 
computerized map, its true function is the 
analysis of characters and geography through 
the use of statistics and spatial methods [29]. 
Information on field topography, soil types, 
surface and subsurface drainage, irrigation, 
chemical application rates, soil testing, and crop 
yield can all be found in a farming GIS database. 
After analysis, this data is used to comprehend 
the connections among the different factors 
influencing a crop at a particular location [30]. By 
combining and modifying data layers to create an 
analysis of management scenarios, the GIS can 
be used for more than just storing and displaying 
data; it can also be used to assess current and 
alternative management [31]. 
 

3.4 Grid Soil Sampling and Variable-Rate 
Technology (VRT) Application 

 

Automatic in nature, variable-rate technologies 
(VRT) can be used in a wide range of agricultural 
applications. Using a soil map to identify the type 
of soil, VRT systems determine how quickly farm 
inputs are delivered [32]. Processes like seeding, 
fertilizer and pesticide application, herbicide 
selection and application at a variable rate in the 
right place at the right time can all be controlled 
with information extrapolated from the GIS. In the 
US, VRT is conceivably the most popular PFS 
technology [33]. The same principles of soil 
sampling are applied to grid soil sampling, but 
the level of sampling intensity is increased. Data 
mapping is made possible by the location 
information included in soil sample collections 
that follow a systematic grid [34]. An application 
map, or need map, is the end result of grid soil 
sampling. Samples can be taken from multiple 
fields within the same zone if they fall into the 
same range of yield, soil color, etc. [35]. In the 
laboratory, grid soil samples are analyzed, and 
each soil sample's crop nutrient requirements are 
interpreted. The complete set of soil samples is 
then used to plot the fertilizer application map. 
On a variable-rate fertilizer spreader, a computer 

is installed and loaded with the application map 
[36]. According to the application map, the 
computer directs a product-delivery controller 
that modifies the quantity and/or type of fertilizer 
product using the application map and a GPS 
receiver [37,38]. 
 

3.5 Crop Management 
 
Farmers can gain a better understanding of the 
topography and soil condition variations that 
affect crop performance in the field by using 
satellite data [39]. Therefore, maximize yield and 
efficiency, farmers can carefully control 
production factors like seeds, fertilizers, 
pesticides, herbicides, and water control. In order 
to forecast the tea yield in a tea farm using the 
energy input, Soheili-Fard and Salvatian [40] 
employed artificial neural networks to identify the 
energy inputs in a tea farm. Field manipulators 
and robots for agriculture have become essential 
components of many facets of smart farming 
[41]. The robot sweeper was designed to gather 
pepper fruit [42]. It uses its image sensor, which 
has been trained with deep learning algorithms, 
to detect ripe fruits. It then locates the fruit by 
following the path that is closest to the location 
[43]. A tool for measuring the continuous growth 
of a fruit's or plant's stem's perimeter is the 
optoelectronic reflex sensor and microcontroller 
board [44]. 
 

3.6 Soil and Plant Sensors 
 
Precision agriculture technology heavily relies on 
sensor technology, which has been reported to 
be able to provide information on plant fertility 
and water status as well as soil properties. A 
thorough inventory of available sensors as well 
as features that should be included in any future 
sensor development projects [45]. A widely used 
method for characterizing soil variability is to 
survey the field using sensors measuring soil 
apparent electrical conductivity (ECa), which 
continuously gathers data when pulled over the 
field surface [46]. Since ECa is sensitive to 
variations in salinity and soil texture, these 
sensors offer a great starting point for 
implementing site-specific management. The 
data collected by these sensors is often 
transmitted to a central system, where it can be 
analyzed to identify trends, assess crop health, 
and enhance overall farm efficiency [47]. By 
facilitating data-driven decision-making, soil and 
plant sensors contribute to sustainable 
agriculture practices, resource conservation, and 
increased productivity [48]. 
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3.7 Rate Controllers 
 

Rate controllers are tools used to regulate the 
rate at which chemical inputs, like liquid or 
granular pesticides and fertilizers, are delivered 
[49]. These rate controllers make delivery 
adjustments in real-time to apply a target rate by 
keeping an eye on the tractor/sprayer's speed as 
it crosses the field, as well as the material's flow 
rate and pressure, if it's liquid. Rate controllers 
are widely used as standalone systems and have 
been around for a while [50]. 
 

3.8 Precision Irrigation in Pressurized 
Systems 

 

New innovations that use GPS-based controllers 
to regulate the motion of irrigation machines are 
now available for commercial use in sprinkler 
irrigation [51]. Apart from motion control, efforts 
are underway to develop wireless communication 
and sensor technologies that can monitor soil 
and ambient conditions, as well as irrigation 
machine operation parameters like flow and 
pressure, with the goal of improving crop 
utilization of water and application efficiency [52]. 
Although these technologies have a lot of 
promise, more work needs to be done before 
they can be bought commercially. 
 

3.9 Software 
 

Using software to perform a variety of tasks, 
including display-controller interfacing, 
information layer mapping, pre- and post-
processing data analysis and interpretation, farm 
accounting of inputs per field, and many more, 
will often be necessary when implementing 
precision agriculture technologies [53]. The most 
popular ones are those that create maps (such 
as those for soil, yield, or chemicals); filter data 
collected; create maps with variable rate 
applications (such as those for chemicals, 
fertilizer, or lime); overlay different maps; and 
provide advanced geostatistical features [54]. 
 

To meet the demands of contemporary, 
information-intensive farming systems, all of 
these options are excellent choices for managing 
farms through precision agriculture and 
maintaining records. A small number of 
businesses with global operations offer 
integrated software packages that include tools 
for statistical analysis, record keeping, and the 
creation of various map types [55]. In addition to 
yield meters, machinery manufacturers also 
provide software for creating yield maps, and 
fertilizer manufacturers offer software for creating 

maps with variable rate applications [56]. While 
some of the packages are relatively expensive 
and difficult for farmers to use, others are much 
simpler and have fewer options. The farmer can 
use a variety of options and the packages are 
more user-friendly [57]. Data transfer issues still 
exist, though, particularly between farmers and 
between farmers, cooperatives, and consultants. 
It can be challenging to overlay maps, 
particularly soil and yield maps [58]. 
 

3.10 Yield Monitor 
 

Yield monitors are made up of multiple parts. 
They usually consist of several sensors and 
additional parts, such as a data storage device, a 
user interface (keypad and display), and a task 
computer housed in the combine cab that 
manages how these parts integrate and work 
together [59]. The separator speed, ground 
speed, mass or volume of grain flow, as well as 
grain, are all measured by the sensors. When it 
comes to grains, yield is measured continuously 
by observing the force of the grain flow as it 
strikes a sensible plate in the combine's clean 
grain elevator [60]. A new type of mass flow 
sensor measures the amount of energy that 
returns after impacting the stream of seeds going 
through the chutes. It operates on the basis of 
microwave energy beams [61]. GPS receivers 
are used in all yield monitors to track the location 
of yield data and produce yield maps. Devices 
used in forage crops to monitor weight, moisture 
content, and other data on a per-bale basis are 
examples of additional yield monitoring systems 
[62]. 
 

3.11 Precision Farming on Arable Land 
 

The most popular and sophisticated farming 
method is the application of PA techniques on 
arable land [63]. CTF is a whole farm approach 
designed to minimize costs associated with 
standard methods by preventing heavy 
machinery from inadvertently damaging crops 
and compacting soil. Using GNSS technology 
and decision support systems, controlled traffic 
methods limit all field vehicles to the minimum 
area of permanent traffic lanes [64]. Optimizing 
the application of fertilizers, starting with the 
three primary nutrients of nitrogen, phosphorus, 
and potassium, is another significant use of 
precision agriculture on arable land [65]. These 
fertilizers are evenly spread across fields at 
specific times of the year in conventional farming. 
This causes some situations to have over 
application while others have under application 
[66]. Over-application of fertilizer causes nitrogen 
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and phosphorus to leak from the field into 
surface and ground waters, as well as other parts 
of the field where they are not wanted,                   
which directly contributes to environmental costs 
[67]. 
 
Fertilizers can be applied more precisely and 
optimally in terms of both location and timing 
when using precision agriculture techniques. The 
Variable Rate Application (VRA) system, which 
combines a variable-rate (VR) control system 
with application equipment to apply inputs at a 
precise time and/or location to achieve site-
specific application rates of inputs, is the 
technology that gives farmers control over the 
number of inputs in arable lands. VRs are 
determined using pre-measured data, such as 
that from machine-mounted sensors or remote 
sensing [68]. 
 

3.12 Precision Farming within the Fruits 
& Vegetables and Viticulture 
Sectors 

 
With automation systems recording parameters 
related to product quality, growers are now able 
to grade products and monitor food safety and 
quality in fruit and vegetable farming thanks to 
the recent and rapid adoption of machine vision 
methods. These consist of sugar content, acidity, 
shape, size, color, external flaws, and other 
internal characteristics [69]. In addition, full fruit 
and vegetable processing methods may be 
provided by tracking field operations like the use 
of fertilizers and the chemicals sprayed. In order 
to help producers use precision agriculture to 
obtain higher quality and larger yields with 
optimized inputs, as well as to help consumers 
manage risk and ensure food traceability, this 
information may be made available [70]. A 
number of novel techniques have been 
developed recently that consider not only the 
crop's condition but also the environment and the 
tree's actual size [71]. Precision Viticulture, or 
PV, is a relatively new term for the development 
and application of PA technologies and 
methodologies in viticulture, compared to arable 
land. However, a number of research                    
projects are already underway in regions of the 
world that produce wine due to the high value of 
the crop and the significance of quality [72, 73]. 
Maps showing grape quality and yield are crucial 
for preventing the mixing of grapes with                      
varying potential wine qualities during harvest. 
The parcels showing a high degree of yield 
variation are the ones with the most PV     
potential. When compared to uniform 

management, a high degree of variation will 
result in higher VRA of inputs and, consequently, 
greater economic and environmental benefit   
[74]. 
 

3.13 Precision Livestock Farming (PLF) 
 
The management of livestock production through 
the application of precision agriculture 
technology and principles is known as precision 
livestock farming, or PLF for short. Animal 
growth, milk and egg production, disease 
detection and monitoring, and aspects of animal 
behavior and the physical environment, such as 
the thermal microenvironment and gaseous 
pollutant emissions, are among the processes 
that are appropriate for the precision livestock 
farming approach [75]. Systems include feed 
pushers, robotic cleaners, robotic feeding 
systems, weighing systems, robotic cleaners, 
and imaging systems that help stockmen avoid 
direct contact with animals [76]. Other systems 
include robotic cleaners and milk monitoring that 
checks fat and microbial levels, helping to 
indicate potential infections. There are new 
systems available that monitor feed and water 
consumption and can be used to detect 
infections early [77]. Other advancements 
include the tracking of the expanding herd,        
where real-time growth measurement is crucial to 
give producers information on feed conversion 
and growth rates. Pigs coughing more frequently 
is detected by acoustic sensors as a sign of a 
respiratory infection. These days, birthing                    
and fertility alerts are provided by other sensors 
[78]. 
 
A vaginal thermometer sends an SMS to the 
farmer, tracking temperature, time to delivery, 
and rupture of the waters. In addition, an oestrus 
indicator and fertilization readiness indicator are 
detected by parameters recorded by a sensor 
attached to an animal's collar. The farmer can 
then schedule insemination thanks to an SMS 
message [79]. 
 

3.14 On-line Resources for Precision 
agriculture 

 
On the internet, there is a plethora of information 
about new technologies for agricultural 
production. This medium is used by the majority 
of producers of agricultural machinery, GPS 
units, sensors, and other PA technologies to 
update growers on new offerings, technical 
details, troubleshooting guides, software 
updates, and other services [80]. 
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4. CHALLENGES OF PRECISION 
AGRICULTURE TECHNOLOGY 

 
Fakhruddin [16] lists the following 15 difficulties 
and problems with precision agriculture: The first 
is the compatibility of various standards. Different 
tools and technologies don't adhere to the same 
operational standards. The second is that the 
typical farmer faces a steep learning curve. The 
lack of a reliable internet connection in rural 
areas is the third [81]. Since it is impossible to 
track and manage every data point on a daily 
and weekly basis throughout the entire growing 
season, the fourth challenge is making sense of 
big data. The fifth is ignorance of the various 
roles that farming plays [82]. When you apply a 
specific amount of fertilizer to a given soil, it 
implies that another soil that contains the same 
plant requires the same amount of fertilizer due 
to the soil's nutrient content. The size of the 
management zones is the sixth. When dividing 
the management zones according to the 
requirement for soil sampling, there aren't many 
references available. Entry barriers for new firms 
make up the seventh. Since precision agriculture 
is still in its infancy, not many businesses are 
using this technology. Low competition may 
make it difficult for new businesses to enter the 
market. The eighth is a configuration issue and a 
lack of scalability. Small farms should employ the 
same methods as commercial ones. That isn't 
the case, though. The risk of energy depletion is 
the ninth. Although the goal of PA should be 
energy conservation, the use of various 
technologies, including data hubs and centers, 
sensors, and other devices, results in significant 
energy consumption over time. The tenth is that 
it makes indoor farming more difficult. The 
majority of PA techniques are best suited for 
outdoor farming. The eleventh involves   
damages from a technical malfunction. Crop 
failure or a low yield could result from a 
malfunction in the devices. E-waste is increasing 
in the twelfth. Older devices become outdated 
due to regular updates; disposing of them in a 
landfill eventually pollutes the land. The loss of 
manual labor ranks thirteenth. The people who 
were needed for that work will no longer be 
needed since technology has replaced them with 
PA, which lessens the need for a lot of manual 
labor. The security factor is number fourteen. 
Security issues will arise, just like in the real 
world, as long as a system is linked to the 
internet. Finally, the advantages are not 
instantaneous. The benefits of PA are not 
instantaneous, like anything good in life, so 
farmers are initially reluctant to take a financial 

risk. Robotics could lessen human-animal 
interaction in livestock farming, making it 
impossible for farmers to get to know their 
animals as they would in a traditional. The 
average farmer's mental workload increases 
when they use technology. Precision agriculture 
may face difficulties if the farm is situated in an 
area without adequate national infrastructure, 
such as power. 

 
5. DISCUSSION AND CONCLUSION 

 
Precision agriculture technology and techniques 
represent a significant evolution in the way we 
approach farming, with the potential to 
revolutionize the agricultural sector. This 
approach involves the integration of advanced 
technologies, such as GPS, sensors, drones, 
and data analytics, to optimize various aspects of 
farming operations. The use of these 
technologies enables farmers to make data-
driven decisions, leading to increased efficiency, 
reduced resource wastage, and improved yields. 
One key aspect of precision agriculture is the 
ability to collect and analyze data in real-time. 
This allows farmers to monitor crop health, soil 
conditions, and weather patterns, enabling timely 
interventions to address potential issues. The 
use of precision agriculture techniques also 
facilitates the implementation of variable rate 
technology, wherein inputs like water,                     
fertilizers, and pesticides are applied at                   
variable rates across a field based on specific 
needs. This not only optimizes resource 
utilization but also contributes to environmental 
sustainability. 
 

The evolution of precision agriculture is 
promising, and its prospects are even more 
exciting. As technology continues to advance, we 
can anticipate further integration of  artificial 
intelligence, machine learning, and automation in 
precision agriculture systems. These 
advancements hold the potential to further 
enhance decision-making processes, reduce 
labor requirements, and increase overall 
productivity. Precision agriculture is a 
transformative force in the agricultural industry. 
The current integration of technology and 
techniques is already providing tangible benefits 
to farmers, and the ongoing evolutionpromises 
even greater efficiency and sustainability. As we 
look ahead, the continued development and 
adoption of precision agriculture will play a 
crucial role in meeting the challenges of               
feeding a growing global population while                      
ensuring responsible resource management. 
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