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Abstract 

 
In this paper, we applied the modified two-dimensional differential transform method to solve Laplace 

equation. Laplace equation is one of Elliptic partial differential equations. These kinds of differential 

equations have specific applications models of physics and engineering. We consider four models with two 

Dirichlet and two Neumann boundary conditions. The simplicity of this method compared to other iteration 

methods is shown here. It is worth mentioning that here only a few number of iterations are required to reach 

the closed form solutions as series expansions of some known functions. 
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1 Introduction 
 

“In real world, many physical and natural phenomena are illustrated as differential equations. Most of the 

differential equations are nonlinear. So there difficulties in finding the exact or analytical solutions caused by 

the nonlinear part” [1,2]. There is a need for a method that handled nonlinear terms easily without any 

restrictions and less size of computations. Most of the problems in physics and engineering often use partial 

differential equations. A linear second order partial differential equation can be written as 𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑦 +

𝐶𝑢𝑦𝑦 = 𝐹(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦), where A, B and C may be functions of x and y. (𝑥, 𝑦), denotes the independent 

variables and 𝑢(𝑥, 𝑦), the dependent variable, or solution of the PDE. If 𝐵2 − 4𝐴𝐶 < 0, then the equation is 

called Elliptic.  

 

Laplace equation is one of Elliptic partial differential equations. The Laplace equation, named after the French 

mathematician Pierre-Simon Laplace. It is a fundamental equation in classical field theories and plays a crucial 

role in various scientific and engineering applications. The Laplace equation is a second-order partial 

differential equation.  In two dimensions (2D):  ∇2𝑢 =
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0.  Here, u is the unknown function of the 

variables x, y and ∇² is the Laplacian operator, which is the divergence of the gradient of u. 

 

“Differential transform method [DTM] was first introduced in 1988 by Zhou. This method can be used to solve 

linear and non-linear ordinary differential equations. Chen and Ho developed this method as a two-dimensional 

differential transformation method for PDEs and obtains closure by rank solutions for linear and nonlinear initial 

value problems” [3]. “This method reduces the size of the computational domain and is easily applicable to 

many problems. The Dirichlet condition means the value of the function is prescribed, when 𝑢(𝑥, 𝑦) = 𝑔(𝑥, 𝑦) 
on the boundary ∂Ω” [4-6]. “The DTM is very effective numerical and analytical method for solving different 

types of differential equations as well as integral equations. This method converts the differential equations into 

recurrence relations, then by taylor series expansion with modified approach, we obtain convergent series 

solutions” [7-9]. Two dimensional DTM applied to solve initial value problems for pdes and compare the results 

with other methods and to get series solutions of partial differential equations [10]. 

 

Neumann condition means the value of the derivative normal to the boundary is prescribed, when  
𝜕𝑢

𝜕𝑛
= 𝑣(𝑥, 𝑦) 

on the boundary 𝜕Ω 

 

Definition: 

 

The differential transform method for one dimensional of a function y(x) is defined as:    

       

 𝑌(𝑘) =
1

𝑘!
[
𝑑𝑘𝑦(𝑥)

𝑑𝑥𝑘
] 𝑥 = 0,……………………………………… . (𝑎) 

 

Where y(x) is the original function and Y(k) is the transformed function. Differential inverse transform of Y(k) 

is defined as  

𝑦(𝑥) =∑𝑌(𝑘)𝑥𝑘 ≈ 𝑦𝑁(𝑥) = ∑𝑌(𝑘)𝑥𝑘 ………………………………… . (𝑏)

𝑁

𝑘=0

∞

𝑘=0

 

 

 

By substituting equation(a) and (b) we get: 

 

𝑦(𝑥) =∑
𝑥𝑘

𝑘!

𝑑𝑘𝑦(𝑥)

𝑑𝑥𝑘

∞

𝑘=0

|𝑥 = 0……………………………………… . (𝑐) 

 

Which implies that the concept of differential transforms are derived from taylor series expansion. In the 

previous definition we consider the case for x=0, but it is true for any fixed real number 𝑥 = 𝑥0 
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2 Methodology 
 

Partial differential equations are used to formulate several phenomena in real world. There are many methods to 

solve pdes, one of these method is modified two dimensional DTM. In this study, the two dimensional 

differential transform method is used to find solutions of elliptic partial differential equations.  

 

One dimensional differential transform function 𝑢(𝑥, 𝑦) can be represented as, 

 

𝑢(𝑥, 𝑦) = ∑ 𝐹(𝑚)𝑥𝑚 ∑ 𝐺(𝑛)𝑦𝑛∞
𝑛=0

∞
𝑚=0 = ∑ ∑ 𝑈(𝑚, 𝑛)𝑥𝑚𝑦𝑛∞

𝑛=0
∞
𝑚=0                                                  (1)   

          

Where 𝑈(𝑚, 𝑛) = 𝐹(𝑚)𝐺(𝑚) is called spectrum of 𝑢(𝑥, 𝑦). 𝑢(𝑥, 𝑦) = 𝑓(𝑥)𝑔(𝑦). 
 

The basic definitions and operations of two-dimensional differential transform method: 

 

Definition 1:  If a function 𝑢(𝑥, 𝑦) is analytic and differentiable with respect to time t in the domain of interest, 

 

𝑈(𝑚, 𝑛) =
1

𝑚!𝑛!
[
𝜕𝑚+𝑛𝑢(𝑥,𝑦)

𝜕𝑥𝑚𝜕𝑦𝑛
]
𝑥=𝑥0,𝑦=𝑦0

                                                                                                          (2) 

 

Where the spectrum 𝑈(𝑚, 𝑛) is the transformed function. Then the differential inverse transform of 𝑈(𝑚, 𝑛) is 

defined as follows: 

 

𝑢(𝑥, 𝑦) = ∑ ∑ 𝑈(𝑚, 𝑛)(𝑥 − 𝑥0)
𝑚(𝑦 − 𝑦0)

𝑛∞
𝑛=0

∞
𝑚=0                                                                              (3) 

 

𝑢(𝑥, 𝑦) - original function,    𝑈(𝑚, 𝑛) - transform function 
 

Combining equation (2) and (3), it can be obtained that 
 

𝑢(𝑥, 𝑦) = ∑ ∑
1

𝑚!𝑛!
[
𝜕𝑚+𝑛𝑢(𝑥,𝑦)

𝜕𝑥𝑚𝜕𝑦𝑛
]
𝑥=𝑥0,𝑦=𝑦0

(𝑥 − 𝑥0)
𝑚∞

𝑛=0
∞
𝑚=0 (𝑦 − 𝑦0)

𝑛                                                           (4) 

 

Theorem: 
 

1. If 𝑢(𝑥, 𝑦) = 𝑣(𝑥, 𝑦) ± 𝑤(𝑥, 𝑦), then 
 

𝑈(𝑚, 𝑛) = 𝑉(𝑚, 𝑛) ±𝑊(𝑚, 𝑛)  
 

2. If 𝑢(𝑥, 𝑦) = 𝑎𝑣(𝑥, 𝑦), then 
 

𝑈(𝑚, 𝑛) = 𝑎𝑉(𝑚, 𝑛) 
 

3. If 𝑢(𝑥, 𝑦) = 𝑣(𝑥, 𝑦)𝑤(𝑥, 𝑦), then 
 

𝑈(𝑚, 𝑛) = ∑ ∑ 𝑉(𝑘, 𝑛 − 𝑙)𝑊(𝑚 − 𝑘, 𝑙)𝑛
𝑙=0

𝑚
𝑘=0   

 

4. If 𝑢(𝑥, 𝑦) =
𝜕𝑟+𝑠𝑣(𝑥,𝑦)

𝜕𝑥𝑟𝜕𝑦𝑠
, then 

 

𝑈(𝑚, 𝑛) =
(𝑚+𝑟)!

𝑚!

(𝑛+𝑠)!

𝑛!
𝑉(𝑚 + 𝑟, 𝑛 + 𝑠)  

 

5. If 𝑢(𝑥, 𝑦) = 𝑒𝑎𝑣(𝑥,𝑦), then: 

 

𝑈(𝑚, 𝑛) =

{
  
 

  
 

𝑒𝑎𝑣(0,0), 𝑚 = 𝑛 = 0

𝑎 ∑∑
𝑚− 𝑘

𝑚

𝑛

𝑙=0

𝑚−1

𝑘=0

 𝑉(𝑚 − 𝑘, 𝑙)𝑈(𝑘, 𝑛 − 𝑙)       𝑚 ≥ 1

𝑎∑∑
𝑛− 𝑙

𝑛

𝑛−1

𝑙=0

𝑉(𝑘, 𝑛 − 𝑙)𝑈(𝑚 − 𝑘, 𝑛),

𝑚

𝑘=0

           𝑛 ≥ 1
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6. If 𝑢(𝑥, 𝑦) = 𝑥𝑘𝑦ℎ , then 

 

𝑈(𝑚, 𝑛) = {
𝛿(𝑚 − 𝑘, 𝑛 − ℎ), 𝑚 = 𝑘, 𝑛 = ℎ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

7. If 𝑢(𝑥, 𝑦) = 𝑥𝑘𝑒𝑎𝑦, then 

 

𝑈(𝑚, 𝑛) = 𝛿(𝑚 − 𝑘)
𝑎𝑛

𝑛!
 

 

3 Results 
 

Solutions of Laplace equation: 

 

Consider the second order Laplace equation, given as: 

 

uxx + uyy = 0,                             0 < x, y < π 

 

Dirichlet boundary condition (01) 

 

u(x, 0) = sinh x, u(x, π) = −sinh x, 

 

u(0, y) = 0, u(π, y) = sinh(π) cos y. 

 

Taking the differential transform: 

 

(m + 1)(m + 2)U(m + 2, n) + (n + 1)(n + 2)U(m, n + 2) = 0 

 

u(x, 0) = ∑ 𝑈(𝑚, 0)𝑥𝑚∞
𝑚=0 = 𝑠𝑖𝑛ℎ𝑥 =  ∑

𝑥𝑚

𝑚!

∞
𝑚=0     ; m-odd 

 

which, on comparing the both sides yield: 

 

𝑈(𝑚, 0) = {

1

𝑚!
, 𝑖𝑓 𝑚 − 𝑜𝑑𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝑢(0, 𝑦) =  ∑ 𝑈(0, 𝑛)𝑦𝑛
∞

𝑛=0
 

 

𝑈(0, 𝑛) = 0 

 

𝑈(𝑚, 𝑛) = {
(−1)𝑛/2

𝑚! 𝑛!
, 𝑖𝑓 𝑚 − 𝑜𝑑𝑑, 𝑛 − 𝑒𝑣𝑒𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑢(𝑥, 𝑦) =  ∑ ∑ 𝑈(𝑚, 𝑛)𝑥𝑚𝑦𝑛 
∞

𝑛=0

∞

𝑚=0
 

𝑢(𝑥, 𝑦) =  ∑ ∑
(−1)

𝑛
2

𝑚! 𝑛!
𝑥𝑚𝑦𝑛

∞

𝑛=0,2,4,..

∞

𝑚=1,3,5..
 

 

𝑢(𝑥, 𝑦) = 𝑠𝑖𝑛ℎ𝑥 𝑐𝑜𝑠𝑦 

 

Dirichlet boundary condition (02) 

 

u(x, 0) = 0. u(x, π) = 0, 
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u(0, y) = sin y,         u(π, y) = cosh(π) sin y. 

 

Taking the differential transform 

 

(m + 1)(m + 2)U(m + 2, n) + (n + 1)(n + 2)U(m, n + 2) = 0 

 

𝑢(𝑥, 0) =  ∑ 𝑥(𝑚, 0) = 0
∞

𝑚=0
 

𝑢(𝑚, 0) = 0 

𝑢(𝑜, 𝑦) =∑ 𝑥(𝑚, 0)𝑥𝑚 = 𝑠𝑖𝑛𝑦 =  ∑
(−1)

𝑛−1
2

𝑛!

∞

𝑛=0
𝑦𝑛

∞

𝑛=0
 

𝑈(0, 𝑛) = {
(−1)𝑛−1/2

𝑛!
, 𝑖𝑓 𝑛 − 𝑜𝑑𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑈(𝑚, 𝑛) = {
(−1)𝑛−

1
2

𝑚! 𝑛!
, 𝑖𝑓 𝑚 − 𝑒𝑣𝑒𝑛, 𝑛 − 𝑜𝑑𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑢(𝑥, 𝑦) =  ∑ ∑
(−1)𝑛−1/2

𝑛!
𝑥𝑚𝑦𝑛

∞

𝑛=1,3,5,..

∞

𝑚=0.2,4.6,..
 

𝑢(𝑥, 𝑦) =  ∑
𝑥𝑚

𝑚!

∞

𝑚=0,2,4,..
∑

(−1)𝑛−
1
2

𝑛!
𝑦𝑛

∞

𝑛=1,3,5
 

 

𝑢(𝑥, 𝑦) = 𝑐𝑜𝑠ℎ𝑥𝑠𝑖𝑛𝑦 

 

Neumann boundary condition (01) 

 

uy(x, 0) = 0,      uy(x, π) = 2 cos 2x sinh 2 π 

ux(0, y) = 0,      ux(π, y) = 0  

 

Taking the differential transform 

 

(m + 1)(m + 2)U(m + 2, n) + (n + 1)(n + 2)U(m, n + 2) = 0 

 

𝑢𝑦(𝑥, 𝜋) =  ∑ ∑ 𝑛𝜋𝑛−1𝑈(𝑚, 𝑛)𝑥𝑚
∞

𝑛=0

∞

𝑚=0
 

 

𝑢𝑦(𝑥, 𝜋) = 2𝑐𝑜𝑠2𝑥𝑠𝑖𝑛ℎ(2𝜋) 
 

𝑢𝑦(𝑥, 𝜋) = 2∑
(−1)

𝑚
2

𝑚!
(2𝑥)𝑚  ∑

(2𝜋)𝑛

𝑛!

∞

𝑛=0

∞

𝑚=0
 

 

By changing the index n , and comparison, we have 
 

𝑈(𝑚, 𝑛 + 1) =  
(−1)𝑚/22𝑚+𝑛+1

(𝑛 + 1)𝑚! 𝑛!
 

 

𝑈(𝑚, 𝑛) = {
(−1)𝑚/2𝑛𝑚+𝑛

𝑚! 𝑛!
, 𝑖𝑓 𝑚 − 𝑒𝑣𝑒𝑛, 𝑛 − 𝑜𝑑𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑢(𝑥, 𝑦) = ∑ ∑
(−1)

𝑚
2 2𝑚+𝑛

𝑚! 𝑛!

∞

𝑛=0

∞

𝑚=0
𝑥𝑚𝑦𝑛 
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𝑢(𝑥. 𝑦) =  ∑
(−1)𝑚/2(2𝑥)𝑚

𝑚!

∞

𝑚=0,2,4,…
 ∑

(2𝑦)𝑛

𝑛!

∞

𝑛=0,2,4,…
 

 

𝑢(𝑥, 𝑦) = 𝑐𝑜𝑠2𝑥𝑐𝑜𝑠ℎ2𝑦 

 

Neumann boundary condition (02) 

 

uy(x, 0) = cos x,     uy(x, π) = cosh π cos x, 

ux(0, y) = 0,           ux(π, y) = 0 

 

Taking the differential transform 

 

(m + 1)(m + 2)U(m + 2, n) + (n + 1)(n + 2)U(m, n + 2) = 0 

 

𝑢𝑦(𝑥, 0) =  ∑ 𝑈(𝑚, 1)𝑥𝑚 = 𝑐𝑜𝑠𝑥 =  ∑
(−1)

𝑚
2 𝑥𝑚

𝑚!

∞

𝑚=0

∞

𝑛=0
 

 

𝑈(𝑚, 1) = {
(−1)𝑚/2

𝑚!
, 𝑖𝑓 𝑚 − 𝑒𝑣𝑒𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

ux(0, y) =∑ 𝑈(1, 𝑛)𝑦𝑛 = 0
∞

𝑛=0
 

𝑈(1, 𝑛) = 0 

𝑈(𝑚, 𝑛) = {
(−1)𝑚/2

𝑚!𝑛!
, 𝑖𝑓 𝑚 − 𝑒𝑣𝑒𝑛, 𝑛 − 𝑜𝑑𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑢(𝑥, 𝑦) =  ∑
(−1)

𝑚
2 𝑥𝑚

𝑚!

∞

𝑚=0,2,4,…
∑

𝑦𝑛

𝑛!

∞

𝑛=1,3,5,..
 

 

𝑢(𝑥, 𝑦) = 𝑐𝑜𝑠𝑥. 𝑠𝑖𝑛ℎ𝑦 

 

Example 01(Dirichlet Boundary Condition 01): 

 

  

Approximate solution Exact Solution 
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Example 02 (Dirichlet Boundary Condition 02): 

 

  

Approximate solution Exact Solution 

 

Example 03(Neumann Boundary Condition 01): 

 

 

  
Approximate solution Exact Solution 

 

Example 04(Neumann Boundary Condition 02): 

 

 

 
 

Approximate solution Exact Solution 
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4 Conclusion 
 

In this paper, we have considered 4 cases of Laplace equation and presented solutions. We have successfully 

developed the DTM to obtain the exact solutions of Laplace equation. A computer program (MATLAB) is used 

in making the computation within some seconds provided that the program is well posed. In obtaining the 

Approximate solution, more accurate values can be obtained when using larger values of m and n. It is observed 

that it saves time and space. The results are consistent with the existing analytical solutions. It shows that it is 

effective and reasonable. 
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