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Abstract

Neural oscillations are ubiquitously observed in many brain areas. One proposed func-

tional role of these oscillations is that they serve as an internal clock, or ‘frame of refer-

ence’. Information can be encoded by the timing of neural activity relative to the phase of

such oscillations. In line with this hypothesis, there have been multiple empirical observa-

tions of such phase codes in the brain. Here we ask: What kind of neural dynamics support

phase coding of information with neural oscillations? We tackled this question by analyzing

recurrent neural networks (RNNs) that were trained on a working memory task. The net-

works were given access to an external reference oscillation and tasked to produce an

oscillation, such that the phase difference between the reference and output oscillation

maintains the identity of transient stimuli. We found that networks converged to stable

oscillatory dynamics. Reverse engineering these networks revealed that each phase-

coded memory corresponds to a separate limit cycle attractor. We characterized how the

stability of the attractor dynamics depends on both reference oscillation amplitude and fre-

quency, properties that can be experimentally observed. To understand the connectivity

structures that underlie these dynamics, we showed that trained networks can be

described as two phase-coupled oscillators. Using this insight, we condensed our trained

networks to a reduced model consisting of two functional modules: One that generates an

oscillation and one that implements a coupling function between the internal oscillation

and external reference.

In summary, by reverse engineering the dynamics and connectivity of trained RNNs, we

propose a mechanism by which neural networks can harness reference oscillations for

working memory. Specifically, we propose that a phase-coding network generates autono-

mous oscillations which it couples to an external reference oscillation in a multi-stable

fashion.
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Author summary

Many of our actions are rhythmic—walking, breathing, digesting and more. It is not sur-

prising that neural activity can have a strong oscillatory component. Indeed, such brain

waves are common, and can even be measured using EEG from the scalp. Perhaps less

obvious is the presence of such oscillations during non-rhythmic behavior—such as mem-

ory maintenance and other cognitive functions. Reports of these cognitive oscillations

have accumulated over the years, and various theories were raised regarding their origin

and utilization. In particular, oscillations have been proposed to serve as a clock signal

that can be used for temporal-, or phase-coding of information in working memory.

Here, we studied the dynamical systems underlying this kind of coding, by using trained

artificial neural networks as hypothesis generators. We trained recurrent neural networks

to perform a working memory task, while giving them access to a reference oscillation.

We were then able to reverse engineer the learned dynamics of the networks. Our analysis

revealed that phase-coded memories correspond to stable attractors in the dynamical

landscape of the model. These attractors arose from the coupling of the external reference

oscillation with oscillations generated internally by the network.

Introduction

Rhythmic neural activity is an abundant phenomenon in nervous systems. Neural oscillations

naturally underlie behavior with an observable oscillatory component, such as walking and

digesting [1, 2]. Oscillating neural activity is also widely observed in brain regions implicated

in higher cognitive functions, where there is no obvious correlate to oscillatory behavior [3].

Such rhythmic neural activity has been suggested to support short-term memory maintenance

(among other functions), by serving as an internal clock for the brain [4–9]. This makes phase
coding possible: Information can be encoded by spikes that are systematically timed with

respect to the phase of ongoing oscillations. Empirical observations of a phase code in the brain

were first described in the hippocampus of moving rats [10]. Since then, phase coding has also

been associated with the representation of discrete object categories [11–13] for short-term

maintenance of stimuli [14–18] and goals [19]. Such observations have been reported in a

wide range of brain regions, including the human medial temporal lobe as well as primate pre-

frontal and sensory cortices.

Oscillations are a dynamic phenomenon, and it is therefore a natural question to ask: How

do ongoing oscillations in the brain interact with the neural dynamics that support cognitive

functions? Specifically, we seek to characterize dynamical systems that could underlie working

memory relying on phase coding with neural oscillations. We do so by assuming that cognitive

functions can be described by a low-dimensional dynamical system, implemented through

populations of neurons (computation through dynamics) [20–26], in line with empirical

observations [27, 28].

We make use of artificial recurrent neural networks (RNNs). RNNs are universal dynam-

ical systems, in the sense that they can approximate finite time trajectories of any dynamical

system [29, 30]. We are thus able to use these networks as hypothesis generators—first train-

ing them on a cognitive task, and then reverse engineering the resulting networks [17, 20, 24,

26, 31–38].

Concretely, we provide RNNs with both a reference oscillation, and stimuli. Experimen-

tal observations show that the phase of spikes relative to ongoing oscillations contains

information about external stimuli [12, 14, 17–19]. Analogous to this, we ask the RNN to
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produce an oscillatory signal, which has to code the identity of stimuli by its phase relative

to the reference oscillation (Fig 1). Depending on the training setup, we find two different

solutions, of which one corresponds to network units coding for information by their phase

and one solution in which units code with their average firing rates (Fig 2). We show that

phase-coded memories correspond to stable limit cycles and demonstrate how empirically

observable quantities control the stability of these attractors (Fig 3). Having detailed the

dynamics, we study the connectivity of our trained RNNs (Fig 4). Finally, we show that the

system can be well approximated by two coupled oscillators. Based on these analyses, we

propose that phase-coded memories reside in stable limit cycles, resulting from the cou-

pling of an oscillation generated by the recurrent network to an external reference

oscillation.

Fig 1. Trained RNNs encode stimuli in oscillation phase. A) RNNs receive transient stimuli as input, along with a

reference oscillation. Networks are trained to produce an oscillation, such that the phase of the produced oscillation

(relative to the reference oscillation), maintains the identity of transient stimuli. B) Example output of trained

networks. Transient presentation of stimulus a, results in an in-phase output oscillation (left), regardless of the initial

phase (top or bottom). Similarly, the b stimulus results in an anti-phase oscillation, again irrespective of its initial phase

(right). C) To obtain a tractable model, we apply a low-rank constraint to the recurrent weight matrix of the RNN, i.e.,

we require that the weight matrix can be written as the outer product of two sets of vectors m(1), m(2) and n(1), n(2). D)

Low-rank connectivity leads to low dimensional dynamics. In the absence of any input, the recurrent dynamics,

described by coordinates κ1, κ2, lie in a linear subspace spanned by m(1) and m(2) (purple). E) When probing the model

with sinusoidal oscillations, we can rewrite the system as a dynamical system in a three-dimensional phase space,

where the additional axis, θ, is the phase of the input oscillation. We can visualize this phase space as a toroid such that

the horizontal circle represents θ, and the vertical cross-section is the κ1, κ2 plane.

https://doi.org/10.1371/journal.pcbi.1011852.g001
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Results

Tractable, oscillating recurrent neural networks perform a working

memory task

In order to study the dynamics of phase coding during working memory, we defined a task in

which an RNN receives transient stimuli, and has to encode their identity using the relative

phase of oscillations (Fig 1A). The network consists of N units, with activation xðtÞ 2 RN ,

recurrently connected via a connectivity matrix J 2 RN�N , and receiving external oscillatory

input uðtÞ 2 R [7, 18, 39], as well as stimuli sðtÞ 2 R2
,

t
dx
dt
¼ � xðtÞ þ J tanhðxðtÞÞ þ IðoscÞuðtÞ þ IðsÞsðtÞ þ ξðtÞ; ð1Þ

where τ represents the time constant of the units, tanh is an elementwise non-linearity, IðoscÞ 2
RN

; IðsÞ 2 RN�2
represent the input weights, and ξðtÞ 2 RN

independent noise for each unit.

Motivated by experiments observing phase coding relative to local field potential oscillations

(LFPs) [12, 14, 15, 17–19], we used filtered rat CA1 local field potentials [40, 41] as input u(t).
By using the LFP as input, we make the assumption that the neurons in our model have an

overall negligible effect on the LFP, which is valid if they are only a small subset of all contrib-

uting neurons, or because the LFP largely reflects input coming from an upstream population.

During a given trial, one of two stimuli a or b, was transiently presented to the network at a

randomized onset-time, with amplitude sa or sb, respectively, representing the working-mem-

ory to be stored (e.g. a navigational goal [19], or sequence list position [17, 18]). To define the

Fig 2. Both phase coding and rate coding can solve the working memory task. We found two qualitatively different

solutions. A) In the first solution (panels A to C), we find that single unit activity codes for stimulus information by

relative phase: We plot the rates tanh(xi) of 4 example units i, as a function of the reference oscillation phase θ. We find

that single unit activity oscillates, with the phase relative to the reference oscillation depending on stimulus identity

(colors). B) Projecting x to the κ1, κ2 plane reveals that population activity lies on overlapping cycles in this plane.

Here, the black dots denote θ = 0. C) In the full phase space M, the trajectories are non-overlapping, but the cycles are

linked. D) In the second solution (Panels D to F), we find that stimulus identity does not modulate the phase of single

units, but rather their mean activity. E) This rate-code corresponds to two cycles separated in the κ1, κ2 plane. F) These

cycles are also separated in the full phase space.

https://doi.org/10.1371/journal.pcbi.1011852.g002
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desired output, we were inspired by experimental studies showing that the relative timing of

spikes to an ongoing oscillation is informative about sensory stimuli. Similarly to these obser-

vations, we wanted RNNs to encode information about external events relative to ongoing

oscillations. To do this, the task for the network was to produce an oscillation, that is either in-

phase with respect to the reference signal, following stimulus a, or anti-phase, following stimu-

lus b. Networks were trained with backpropagation through time (S1 Fig) and successfully

learned the task (Fig 1B).

As we were interested in reverse-engineering the networks, we made two simplifications.

After training, we replaced the LFP reference signal with a pure sine wave with phase θ. During

training, we chose a constraint on the connectivity that reduces the complexity of our analysis

while still allowing for expressive networks. Specifically, we constrained the recurrent weight

matrix to be of rank two, by decomposing it as an outer product of two pairs of vectors (Fig

Fig 3. Input controls the stability of the attractors in which phase-coded memories reside. A) Poincaré maps

illustrate that the cycles of Fig 2 correspond to attractive limit cycles. Sixteen trajectories with different initial

conditions in three different snapshots (after 0, 1 and 13 cycles). Color marks the cycle they end up in. Bottom part

shows how trajectories intersect the Poincaré plane, which is shown on top. B) Linear stability analysis of the Poincaré

maps shows that stimuli of sufficient magnitude (si> criti) lead to a bifurcation, such that only one of two limit cycles

remains stable. Left: cartoon of the bistable dynamics (without stimuli) and bifurcation during stimulus presentation

illustrated as a potential well. Right: Floquet multiplier norm (a measure of stability) as a function of stimulus

amplitude. Insets show the Poincaré map after 13 iterations with the stimulus presented at amplitude si = 1. C) Stability

analysis for a range of amplitudes and frequencies of the reference oscillation (quantities that naturally vary in the

brain). The box with dashed lines indicates the 5’th and 95’th percentiles of the amplitudes and frequencies used

during training trials. The ‘islands’ correspond to regions where bistable dynamics persist. If the reference oscillation

and amplitude are within such a bistable region (e.g. the red star), there are two stable cycles, and the model can

maintain memory of a stimulus. For lower amplitudes (orange square and yellow triangle), the model only retains

bistability if the frequency is also lower (yellow triangle). The additional ‘islands’ correspond to regions with bistablem
: n phase locking, where the reference oscillation is an integer divisor of the oscillation generated by the RNN (e.g.

purple oval, bistable 1 : 2 phase locking; pink circle, bistable 1 : 4 phaselocking). Trajectories on the right correspond to

the different markers in the parameter space on the left.

https://doi.org/10.1371/journal.pcbi.1011852.g003
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1C; see S2 Fig for unconstrained networks) [26, 30, 42, 43],

J ¼
1

N
ðmð1Þnð1ÞT þmð2Þnð2ÞTÞ: ð2Þ

By constraining the weight matrix, we directly constrain the dynamics. Specifically, the projec-

tions of network activity on the two vectors m(1), m(2), which we term κ1, κ2 respectively, are

sufficient to describe the network dynamics in the absence of inputs (Fig 1D).

In the presence of sinusoidal input, the κs are not sufficient to describe the dynamics, and

we also need to know the current phase θ of the reference oscillation. These three numbers

constitute the complete phase space M for our dynamical system (Fig 1E),

M ¼ fðk1; k2; yÞ 2 R2
� S1
g:

Phase-coded memories correspond to limit cycle attractors

We reverse-engineered the dynamics of our trained networks in order to understand how they

solve the task [37]. We found that networks converge to one of two solutions, characterized by

their activity following the transient stimuli. The solution that the network ends up choosing is

dependent on both the training setup and the initialisation used (See S3 Fig for an investiga-

tion into when each solution arises).

In the first solution, individual network units code for stimuli by using their phase of oscil-

lation relative to the reference, as illustrated by rate traces of example units (Fig 2A), as well as

statistics for all units (S3 Fig). In κ space, the population activity corresponds to two cycles that

Fig 4. Phase-coding RNNs are oscillators. A) We hypothesized that the model functions as two coupled oscillators,

where one represents the external reference oscillation phase and one the RNNs’ internal oscillation phase. B) We

extracted the coupling functions from our trained RNNs. This coupling function induces bistable dynamics when it

couples two oscillators, as apparent from the superimposed stable and unstable trajectories. C) Input stimuli

transiently modify the coupling function, resulting in the bifurcation, previously observed in Fig 3B. D) To formalize

the coupled oscillator description, we created a reduced model where weights are drawn from a mixture of Gaussians.

This model consists of a population that generates oscillations, and two populations that together implement the

coupling function between internal and external oscillations. E) Simulating a reduced set of equations that describe the

idealized dynamics of RNNs with connectivity in terms of a Gaussian mixture distribution, as well as 10 finite-size

models with weights sampled from this distribution, all result in trajectories similar to our original system, validating

our reduced description.

https://doi.org/10.1371/journal.pcbi.1011852.g004

PLOS COMPUTATIONAL BIOLOGY Trained RNNs develop phase-locked limit cycles in a working memory task

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011852 February 5, 2024 6 / 23

https://doi.org/10.1371/journal.pcbi.1011852.g004
https://doi.org/10.1371/journal.pcbi.1011852


roughly lie on the same area, but have a different phase relation to the reference oscillation

(Fig 2B). In the full phase space M introduced above, this solution corresponds to the network

activity residing in one of two linked cycles (Fig 2C).

In the second solution, single units code stimulus identity by their average activation (Fig

2D). Units with activity far away from 0 saturate their (i.e. are at the flat part of their) tanh

nonlinearity, and as a consequence have little effect on the phase of the output oscillation. A

different subset of units saturates after either stimulus, leading to different units determining

the output oscillation. These units either directly transmit the input oscillation, creating an in-

phase oscillation, or flip its sign to create an anti-phase oscillation. In κ space, activity lies on

two non-overlapping cycles (Fig 2E), which are likewise completely separated in the full phase

space (Fig 2F).

Given the that the phase-coding solution matches the phenomenon we set out to investi-

gate, whereas the rate-coding solution shows similarities to previous work on fixed point

dynamics in RNNs [26, 30, 31], we focus here on the analysis of the ‘phase-coding’ solution

(Fig 2A, 2B and 2C). The rate-coding and its similarities to existing work is detailed in the Sup-

plementary (S4 Fig).

Single trials have a limited duration, and hence the cycles we observed might arise either

from a transient dynamical phenomenon or from stable attractors. These would lead to differ-

ent experimental observations of residual dynamics (trial-to-trial variability in neural popula-

tion responses) [44], and responses to perturbations [36]. To study stability of limit cycles, we

used discrete-time iterative maps, also known as Poincaré maps [45, 46]. To obtain such a

map, we start by making a cross-section Q of the phase space (Q = {(κ1, κ2, θ) : mod θ = 2π}),

such that trajectories go through Q once every cycle of the reference oscillation (Fig 3A). We

can then define an iterative map, corresponding to following a trajectory starting in Q till its

next intersection with Q. We can denote this mapping (Q0! Q2π) as

κcþ1 ¼ PðκcÞ;

where κc ¼ ½k1;c; k2;c�
T

corresponds to the c’th intersection of trajectory with Q. Practically, we

obtain the map by integrating the dynamics for one period of the input oscillation (Eq 9).

Once we find a fixed point of P, i.e. a trajectory comes back exactly where it started, we obtain

a limit cycle of the original system.

Using the Poincaré map, we found that trajectories starting from many initial conditions

quickly converged to one of two fixed points of P (Fig 3A), corresponding to the cycles

observed during the working memory task (Fig 2C). To confirm their stability, we performed

linear stability analysis by calculating the Floquet multipliers (λ), i.e., the eigenvalues of the

linearized Poincaré map. Limit cycles are stable if these have a magnitude less than one, i.e.,

|λ| < 1.

This analysis allows us to study how the two inputs direct activity to the corresponding

limit cycle. Without inputs, both cycles are stable (Fig 3B, leftmost cartoon). We can then toni-

cally provide input corresponding to a scaled version of one of the stimuli, and recalculate the

maximal Floquet multiplier for the resulting limit cycle. We found that this procedure gradu-

ally destabilizes the other limit cycle, so that eventually only the limit cycle corresponding to

the correct input remains (Fig 3B, right cartoons). Thus, for both stimuli, once a sufficient

amplitude is crossed (si> criti; Fig 3B), a bifurcation occurs and only one limit cycle remains

stable. When the transient stimulus is removed, both limit cycles are stable again, but the net-

work has already been directed to one of them.

As realistic neural oscillations exhibit drifts in both frequency and amplitude, we next

assessed the robustness of our network to variations of the reference oscillation, going
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substantially beyond the range encountered during training. This analysis also makes testable

predictions, as changes in oscillation amplitude and frequency can be experimentally observed,

and potentially controlled [47].

We calculated the norm of the maximum Floquet multiplier for varying frequencies and

amplitudes of the reference oscillation (Fig 3C), in order to determine when bifurcations

occur (i.e., maximum multiplier norm exceeding one). The resulting diagram allows us to

draw two conclusions: First, there are multiple regions with two stable oscillations, but with an

m : n phase coupling, i.e., where the internal oscillation frequency is an integer multiplier of

the reference frequency. This kind of cross-frequency phase-phase coupling is an integral part

of previously proposed theories of phase coding [7, 9] (however, interpretation of experimental

observations can be challenging [48]). Second, based on the shape and location of the bistable

regions (the ‘islands’ in Fig 3C), we predict that being able to phase-code stimuli is possible for

reference oscillations with low frequency, only if the amplitude is also low.

Low-rank RNNs as phase-coupled oscillators

Having described the dynamics, we next aimed to understand the population structure that

gives rise to these dynamics. To proceed, we observe that, following the stimulus, the internal

dynamics of the RNN quickly converge to a trajectory in the (κ1, κ2) plane, which can be

approximately described by its phase (Fig 2B � ¼ arctan
�
k2

k1

�
). Using this insight, we can

rewrite our model as two phase-coupled oscillators (Fig 4A): one that describes the external

reference oscillation phase (θ) and one that characterizes the internal RNN phase (ϕ). The

dynamics of these oscillators are then determined by the oscillation frequency ω, and a cou-

pling function g(ϕ, θ) [49]:

_y ¼ o;

_� ¼ oþ gð�; yÞ:
ð3Þ

To extract the coupling function g from our trained networks, we rewrote the model equa-

tions in polar coordinates, and approximated the radius in κ-space as constant (Fig 4B, Meth-

ods). We then simulated the oscillators of Eq 3 using this function, and observed two stable

trajectories (superimposed lines in Fig 4B), showing that the coupling function is sufficient to

induce bistable dynamics. We found that the convergent trajectories are close to those of the

RNN when projected to the same phase space (θ, ϕ). We thus verified that our approximate

description captures the dynamics of the full RNN (S5 Fig). Furthermore, the observed stimu-

lus-induced dynamics (Fig 3C) can now be explained by the effect of input on the coupling

function. In the presence of input, the coupling function only admits a single stable trajectory,

resulting from one stable and one unstable trajectory colliding and annihilating in a saddle-

node bifurcation (Fig 4C).

Finally, we wanted to know how the rank-two connectivity leads to these coupled oscilla-

tors. To this end, we approximated the weights in the connectivity vectors of the RNN using a

mixture of Gaussians [26, 30, 42]. Fitting a mixture of Gaussians to the connectivity of trained

networks [50], and sampling weights from this mixture, as in previous work [26], did not reli-

ably lead to functioning networks (S6A Fig). We were, however, able to manually design a

reduced model, with weights drawn from a mixture of Gaussians, based on the reverse-engi-

neered dynamics of trained networks, as well as the structure in their connectivity as revealed

through the clustering analysis (S6B Fig). The reduced model consisted of three mixture com-

ponents (or subpopulations; Fig 4D and S7 Fig). One component is not connected to the refer-

ence oscillation and autonomously generates its own oscillation. The other two components
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implement the required coupling function. The two coupling components differ only in their

connectivity with the input; one population saturates (i.e. is inhibited) by stimulus a, and one

by stimulus b. By adding additional coupling populations, one can obtain a model that stores

more than two stimuli, each in a separate limit cycle (S8 Fig).

The description in terms of a mixture of Gaussians enables us to derive a reduced set of

three equations, which describe the dynamics of the RNN, in the limit of infinite units

(Reduced models). We confirmed that finite-size networks are appropriately described by this

reduced description, by simulating trajectories of 10 RNNs (with N = 4096 units) sampled

from the reduced connectivity (Fig 4E). Thus, we show that a sufficient connectivity for work-

ing memory through phase-coding entails two modules: an oscillator and a coupling function

that induces bistable dynamics.

Discussion

In this study, we raised a hypothesis about a potential dynamical mechanism underlying

phase-coding with neural oscillations. Namely, that phase coding in recurrent networks can be

implemented through multi-stable coupling of two oscillations, one internal and one external

to the network. We arrived at the hypothesis by training RNNs on a working memory task,

while supplying them with oscillatory reference input. The networks had to encode transient

stimuli by producing an oscillation with a persistent phase shift with respect to the reference

input.

Through reverse engineering the dynamics of trained RNNs, we found that phase-coded

memories correspond to stable periodic attractors. These materialized in our models as linked

cycles in phase space. The presence of attractive oscillatory dynamics, as opposed to marginally

stable or transient trajectories, can be detected by analyzing residual dynamics from data [44]

or through perturbation studies [36]. We showed how LFP frequency and amplitude jointly

control the stability of the attractors. As LFP oscillation frequency and amplitude vary natu-

rally in the brain, and can potentially be steered [47], this relationship could be probed directly

from neural data.

Beyond characterizing the dynamics, we also revealed the effective underlying connectivity.

We showed that our trained RNNs are analogous to coupled oscillators and that a sufficient

connectivity for phase coding entails two modules: one generating an oscillation and one

implementing a coupling function between this oscillation and an external reference one. Two

independently generated oscillations that couple during memory are found in the medial tem-

poral lobe (i.e. theta and gamma oscillations) [3, 5, 16]. Our model would predict that coupling

functions extracted from neural data [49, 51], recorded from subjects performing working

memory tasks, should have a structure that induces multi-stability.

We used trained recurrent neural networks [20, 22, 24]. RNNs can be trained to reproduce

both neural activity and behavior [17, 23, 31, 34, 36]. The resulting networks can be under-

stood in terms of their dynamical objects, i.e. the set of attractors [37, 52], and in terms of the

trajectories [35, 53] flowing between them. In particular, recurrent models that implement dis-

crete memory, as in this study, often have a separate static attractor, or fixed point, for each

memory [30, 32, 38, 54], although oscillatory models of memory have also been proposed [17,

55–57]. Here we complement previous work by showing that stable dynamic attractors natu-

rally emerge when tasking networks to store memories in the relative phase of oscillations.

Our findings support the notion that rhythmic neural activity can play a supporting role in

cognitive phenomena. Brain waves during working memory are widely observed in neural sys-

tems of rats, primates, and birds [58]. Phase coding of information relative to theta oscillations

has been proposed to be a general coding scheme in the brain [5]. Here, we focused on the
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coding of two distinct stimuli in phase, which suffices to highlight the dynamics underlying

the coding of discrete pieces of information. Both our model and findings can also be extended

to coding for more than two items. We show that a rank-2 model with additional coupling

sub-populations can memorise 4 stimuli in S8 Fig. Phase coding has also been observed during

memory of sequences of information [17], as well as for coding of position [10]. Linking these

findings to our model requires further investigation. We note that phase precession, in the

sense of a continuous variable (e.g., position in a place field) changing the phase to which a

group of neurons locks could be explained by our model through input translating the cou-

pling function, as is tentatively shown in S9 Fig.

In summary, we used RNNs as trainable dynamical systems to form a hypothesis on how

oscillations can be harnessed for neural computation. We proposed that phase-coded memo-

ries in recurrent networks reside in stable limit cycles resulting from the coupling of internal

and external oscillations.

Models and methods

Training RNNs on a phase-coding task

Model definition. As stated in Eq 1, we used a continuous time RNN with N units [33],

t
dx
dt
¼ � xðtÞ þ J tanhðxðtÞÞ þ IðoscÞuðtÞ þ IðsbÞsbðtÞ þ IðsaÞsaðtÞ þ ξðtÞ: ð4Þ

The input weights I of Eq 1 are split into three vectors in RN
: The oscillatory reference input

u(t) with input weights I(osc) and transient stimuli sa(t) and sb(t) with weights IðsaÞ and IðsbÞ,
respectively. To obtain networks with tractable dynamics, we implemented a low-rank con-

straint according to Eq 2. Trained networks consisted of N = 512 units, with τ = 20 ms.

Task. We defined a task in which stimulus identity is to be encoded in the phase of an

oscillation. During each trial, of duration T = 0.8s, a reference oscillation u(t) with random ini-

tial phase θ was provided to the RNN. Trials started with an initial period, with duration

drawn uniformly from [0.125s, 0.25s]. After the initial period, either stimulus a, sa(t), or stimu-

lus b, sb(t), was shown, consisting of a ‘pulse’ with a constant amplitude of 1 (see Fig 1A). The

duration of stimuli was drawn uniformly from [0.125s, 0.175s]. For the remainder of the trial,

the target r̂ðtÞ was either sin(θ(t) − 0.2π), when stimulus a was shown (‘in-phase’ trial), or else

sin(θ(t) − 1.2π) when stimulus b was shown (‘anti-phase’ trial).

LFP processing. We used a publicly available data set containing LFP recordings from 3

Long-Evans rats, to obtain a reference oscillation that captures the statistics of ongoing oscilla-

tions in biological neural systems [40, 41]. Rats were chasing randomly placed drops of water

or food, and neural activity was recorded using multichannel silicon probes inserted in area

CA1 of the right dorsal hippocampus. The data contains LFP from 31 to 64 channels, recorded

over multiple sessions.

We read the data using Neo [59]. We first re-sampled the data from 1250 Hz to 500 Hz and

then high-pass filtered at 7 Hz using a FIR filter with Hamming window and 511 taps [60]. We

normalised the signal by dividing the signal channel-wise with
ffiffiffi
2
p

sLFP, where σLFP is the chan-

nel-wise standard deviation, resulting in the signals having a root mean square equal to a sine

wave with amplitude 1.

In order to obtain a unique reference signal for each training trial, we split the recordings

for each rat in chunks. In particular, we first split the data into 4 second segments, and picked

a random channel for each segment. To extract instantaneous phase of the LFP oscillation for

creating training targets, we convolved the signal with complex Morelet wavelets, consisting of

the product of a complex sinusoid with a Gaussian with standard deviation c/2πf. We picked
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frequencies f from 7 to 9 in steps of 0.2, and set c (‘cycles’) to 7. For each trial we took the phase

(angle) corresponding to the frequency with the highest power. The first second of the signal

was discarded to avoid boundary effects. We also discarded a small fraction of trials with arti-

facts, i.e. trials where the maximum absolute value of the signal was larger than 4 (after nor-

malisation). We ended up with 5708 trials from rat 1, 5669 from rat 2, and 5632 from rat 3.

Training. We approximated Eq 4 using the Euler–Maruyama method with timestep h,

giving us for a rank-two network,

xnþ1 ¼ ð1 �
h
t
Þxn

þ
h
t
ð
1

N

X2

i¼1

½mðiÞðnðiÞT tanhðxnÞÞ� þ IðoscÞun þ IðsbÞsb;n þ IðsaÞsa;nÞ

þ

ffiffiffi
h
t

r

N ð0; 2s2
noiseÞ:

We use h = 2 for training, whereas for the stability analysis and Figures, we take h = 0.5. We

defined a mean-squared error loss L between the targets r̂ðtÞ and a linear readout r(t) of the

model’s activity at time t,

rðtÞ ¼
1

N
wTxðtÞ;

L ¼
1

T � Ts

Z T

Ts

ðrðtÞ � r̂ðtÞÞ2dt;
ð5Þ

where Ts is the time of the stimulus offset and T is the time at the end of a trial. Note that,

although we only demand that a weighted sum of the activity x(t) codes for the information,

this also causes the rates tanh(x(t)) to phase-code for stimuli (Fig 2A). In principle, one could

also directly read-out the rates during training: rðtÞ ¼ 1

Nw
T tanhðxðtÞÞ. Depending on the initi-

alisation and training setup, this can either lead to a rate-coding solution (Fig 2D, 2E and 2F),

or a phase-coding solution (see S3 Fig for a more in-depth investigation).

We drew initial entries in the connectivity vectors from a zero-mean normal distribution,

with a covariance matrix that is the identity matrix, except for an initial covariance between

m(1), n(1) of .6, an initial covariance between m(2), n(2) of 0.6 and a variance for w of 16 [26].

Note that the initial covariances also have an effect on the solution the model finds (S3 Fig).

We minimised Eq 5, by optimising with stochastic gradient descent all entries in I(osc),

IðsaÞ; IðsbÞ, m(1), m(2), n(1), n(2), as well as a scalar multiplying the readout weights w. We used

the Adam optimizer in Pytorch, with default decay rates (0.9, 0.999) and learning rate 0.01

[61, 62].

Each RNN was trained with LFP data from one rat. Shown in the main text is an RNN

trained using LFPs from rat 2, whereas for the analysis of many trained models (S3 Fig), also a

third of the RNNs were trained using data from rat 1, and a third on data from rat 3. Before

each training run, we split the LFP into short segments, of which 90% were used as reference

signal for the RNN during training trials, and 10% as reference signal during validation trials.

The validation and training trials only differ in the portion of the local field potential that was

used as reference signal for the network, and in the seed used for generating the randomised

stimulus onsets and offsets. For the models shown in the main text, we trained for 50 epochs,

in batch sizes of 128, where one epoch denotes all training trials created from the LFP of one

rat. Due to the simplicity of the task, all networks we used in the main Figures converged at

this point (S1 Fig), and we did not do any model selection.
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Some of the models in the supplementary Figures (S2A, S3 and S8A Figs), were guided to a

phase-coding solution by adding a regularisation term Reg to the loss, which keeps the aver-

age firing rates close to 0:

Reg ¼
1

N

XN

i

1

T � Ts

Z T

Ts

xiðtÞdt
� �2

: ð6Þ

Analysing dynamics of oscillating low-rank RNNs

Dimensionality and dynamics of low-rank RNNs with periodic input. Here, we show

that the dynamics of a rank-2 RNN with periodic input lie on a 3 dimensional manifold. To

facilitate the analysis, we first consider the dynamics of the network in the absence of tran-

sient stimuli (sa(t) = sb(t) = 0), and no recurrent noise (σnoise = 0). Furthermore we set m(1)?

m(2), which one can always obtain by singular value decomposition of J, even if during train-

ing m(1) and m(2) became correlated. We split up I(osc) in the parts parallel and orthogonal to

the m’s,

IðoscÞ ¼ I? þmð1Þa1 þmð2Þa2:

We can then express x(t) in the orthogonal basis

xðtÞ ¼ mð1Þk1ðtÞ þmð2Þk2ðtÞ þ I?vðtÞ;

with i 2 {1, 2}:

kiðtÞ ¼
mðiÞTxðtÞ
mðiÞTmðiÞ

;

vðtÞ ¼
IT
?
xðtÞ

IT
?
I?

:

Here v(t) is the reference oscillation filtered by the model’s time constant τ. Using � to

denote convolution,

vðtÞ ¼
1

t
uðtÞ ∗ e� tt þ vð0Þe� tt:

As both u(t) and v(t) explicitly depend on time, we first obtain the non-autonomous dynam-

ical system F,

dk1

dt
;
dk2

dt
¼ Fðt; k1; k2Þ; ð7Þ

with

t
dki
dt
¼ � kiðtÞ þ

1

N
nðiÞT tanhðxðtÞÞ þ aiuðtÞ: ð8Þ

Next, we show that for periodic input this system can be considered as a three dimensional

autonomous dynamical system. We introduce the variable θ = wtmod 2π such that

dy
dt
¼ o:
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We take u(t) = sin(θ) and we can now find the closed form solution for v,

vðtÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðwtÞ2 þ 1

q sinðy � arctan ðwtÞÞ þ ce� tt:

Here, the last term on the right hand side will decay to 0. Practically, we get rid of this depen-

dence on t, by taking appropriate v(0) such that c = 0 (or by assuming the simulation has run

for a little amount of time).

Following this definition, both u and v are functions of θ, and we can consider the autono-

mous dynamical system with coordinates κ1, κ2, θ,

dk1

dt
;
dk2

dt
;
dy
dt
¼ Gðk1; k2; yÞ:

Coordinate system for phase space figures. To create the phase space figures, we applied

the following coordinate transform, where ~x; ~y; ~z denote the coordinates in the figure,

~x ¼ cosðyÞð~r � k1Þ;

~y ¼ sinðyÞð~r � k1Þ;

~z ¼ k2:

Given an initial condition for κ1, i.e. κ1(0), one can always pick an ~r such that this is an injec-

tive map for all t. This requires ~r < k1ðtÞ for all t (otherwise trajectories would cross at the cen-

ter). From Eq 8, we can see that k1ðtÞ > 1

N jn
ð1Þj

1
þ ja1j )

dk1

dt < 0, thus if we pick

~r > k1ð0Þ �
1

N jn
ð1Þj

1
þ ja1j, the requirement is satisfied.

Poincaré maps and linear stability analysis. We used Poincaré maps to study the stabil-

ity of limit cycles [45, 46]. We took a cross section Q ¼ fðk1; k2; yÞ : mod y ¼ 2pg, and cre-

ated the iterative map from Q to itself (Q0! Q2π),

κcþ1 ¼ PðκcÞ;

where κc = κ1,c, κ2,c corresponds to the c’th intersection. Limit cycles correspond to fixed

points κ* for which

κ∗ ¼ Pðκ∗Þ:

To study the stability of limit cycles we see what happens to a small perturbation η0 to κ*.
Applying a Taylor expansion around κ*, we have after one cycle,

κ∗ þ Z1 ¼ Pðκ
∗Þ þ DκPðκ

∗ÞZ0 þ h:o:t:;

where Dκ denotes the gradient operator, the partial derivatives with respect to κ. DκP(κ*) is

called the linearised Poincaré map at k*. To first order, perturbations scale proportional to the

norm of its eigenvalues λ, called the Floquet (or characteristic) multipliers. To see this we can

express η0 as a linear combination of eigenvectors e of DκP(κ*) (for some scalars v) and get the

following expression for the perturbation after c cycles,

Zc ¼
X2

i¼1

vieil
c
i :

We now show how to obtain DκP(κ*). Let ψ(t, κ0) denote the flow, a mapping from (t, κ) to

κ, obtained by integrating F(t, κ) (Eq 7) for duration t, with initial conditions κ0. The Poincaré
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map then corresponds to [63]

PðκcÞ ¼ cðT ; κcÞ

¼

Z T

0

Fð0;cðt; κcÞÞdt þ cð0; κcÞ;

ð9Þ

where the second line is obtained by applying the fundamental theorem of calculus. T denotes

one period of the reference oscillation. Defining M(t) as Dκψ(t, κc), one can obtain a varia-

tional equation for the linearized Poincaré map,

DκPðκcÞ ¼

Z T

0

DcFð0;cðt; κcÞÞDκc
cðt; κcÞdt þ I

¼ MðT Þ

with

dMðtÞ
dt
¼ DcFðt;cðt; κcÞÞMðtÞ:

Here, M(0) = I. M(t) is called the circuit or monodromy matrix. Since we can not obtain the

circuit matrix analytically we approximated MðT Þ using the Euler method with timestep h.

Coupled oscillators and population structure

Extracting the coupling function. We can rewrite the internal dynamics of the RNN in

polar coordinates with

k1 ¼ r cosð�Þ;k2 ¼ r sinð�Þ:

We extracted the coupling function g,

t
d�
dt
¼

1

r2

1

N
ðk1n

ð2Þ � k2n
ð1ÞÞ

T tanhðxÞ þ ðk1a2 � k2a1ÞuðyÞ
� �

;

gðy; �Þ ¼
d�
dt
� o:

Note that the radius of the two stable limit cycles might not be exactly constant, or equal to

each other, so for Fig 3B and 3C we took for r the mean radius over the two cycles.

Reduced models. In order to find a simplified description of the dynamics of our models

we assumed entries in the weight vectors of our network are N samples, indexed by j, from a

probability distribution p(y) [26, 30, 42, 43]. To keep the equations brief, we assume one input

v here, which can be straightforwardly extended to multiple inputs. Then we have

I?j;n
ð1Þ

j ;n
ð2Þ

j ;m
ð1Þ

j ;m
ð2Þ

j � pðyÞ;

pðyÞ ¼ pðI; nð1Þ; nð2Þ;mð1Þ;mð2ÞÞ:

We can then see Eq 8 as a sampling estimator for the recurrent input, which as N!1
approaches the expectation,

t
dki
dt

¼
N!1
� ki þ EpðyÞ½nðiÞ tanhðk1m

ð1Þ þ k2m
ð2Þ þ v1IÞ�:
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We assume p(y) is a mixture of L zero-mean Gaussians [26],

pðyÞ ¼
XL

l

wlN ð0;SlÞ:

We can then obtain a mean-field description for the dynamics (see previous studies [26, 30,

42, 43] for a derivation). Here the effective connectivity consists of the covariances of the mix-

ture components, modulated by a nonlinear ‘gain’ function (which approaches 0 when the

non-linearity saturates),

t
dki
dt
¼ � ki þ

XL

l

wlðk1s
ðlÞ
mð1ÞnðiÞ þ k2s

ðlÞ
mð2ÞnðiÞ þ vs

ðlÞ
InðiÞ ÞEpðzÞ½tanh

0
ð
ffiffiffiffiffiffiffi
D
ðlÞ

p
zÞ�;

with D
ðlÞ
¼ ðs

ðlÞ
mð1Þk1Þ

2
þ ðs

ðlÞ
mð2Þk2Þ

2
þ ðs

ðlÞ
I vÞ

2
and z ¼ N ð0; 1Þ.

Instead of numerically approximating the expectation as in previous studies [26, 30], we

substitute erf
ffiffi
p
p

2
x

� �
for tanh(x) and analytically obtain a simpler approximation.

EpðzÞ½tanh
0
ð
ffiffiffiffi
D
p

zÞ� � EpðzÞ½erf
0
ð

ffiffiffiffiffiffi
pD
p

2
zÞ�

� EpðzÞ½e�
pD
4
z2 �

�
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
p

2
D

r :

This gives us the following mean-field description for the rank-2 RNNs,

t
dki
dt

¼ � ki þ
XL

l

wlðk1s
ðlÞ
mð1ÞnðiÞ þ k2s

ðlÞ
mð2ÞnðiÞ þ vs

ðlÞ
InðiÞ Þ

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
p

2
D
ðlÞ

r ;

D
ðlÞ
¼ ðs

ðlÞ
mð1Þk1Þ

2
þ ðs

ðlÞ
mð2Þk2Þ

2
þ ðs

ðlÞ
I vÞ

2
:

ð10Þ

Connectivity for mean-field model. By writing Eq 10 in polar coordinates we can see

that the total change in phase of the model is the sum of the change in phase of its populations,

t
d�ðtÞ
dt
¼
XL

l

wl
d�ðlÞðtÞ
dt

: ð11Þ

Based on reverse engineering the dynamics and connectivity of our trained networks, we can

now choose covariances in order to design a model that approximates the coupled oscillator

equations (Eq 3). We here assume for all populations l, sðlÞmð2Þ ¼ s
ðlÞ
mð1Þ (denoted as sðlÞm ).

We first initialize a population that generates oscillations with angular velocity ω. We set

this population unconnected to the input (s
ðiÞ
I ¼ 0 for all i). When taking smð2Þnð1Þ ¼ � smð1Þnð2Þ

and smð1Þnð1Þ ¼ smð2Þnð2Þ [30, 42, 55] this populations produces oscillations, with constant
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frequency,

d�ðp1ÞðtÞ
dt

¼ s
ðp1Þ

nð1Þmð2Þ
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p

2
D
ðp1Þ

q ;

D
ðp1Þ

¼ s2ðp1Þ
m r2:

Next, we create two populations that together implement the coupling function,

gð�; yÞ / cosð2�Þ
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p

2
D

p ;

D ¼ s2
mr

2 þ s2

IðoscÞvðyÞ
2
:

ð12Þ

Based on Fig 3B, it seems reasonable to assume that the bistable dynamics stem from sin(2ϕ),

cos(2ϕ) and sin(2θ), cos(2θ) terms, which we obtained by setting snð1Þmð2Þ ¼ snð2Þmð1Þ (or

snð1Þmð1Þ ¼ � snð2Þmð2Þ), and sIðoscÞ 6¼ 0.

In order to get the stimulus-induced bifurcation observed in Figs 2C and 3C, we, addition-

ally set the following connectivity for the input to the coupling populations,

s
ðp2Þ

IðsaÞ
6¼ 0;s

ðp3Þ

IðsbÞ
6¼ 0;s

ðp2Þ

IðoscÞnð1Þ ¼ � s
ðp2Þ

IðoscÞnð2Þ ¼ � s
ðp3Þ

IðoscÞnð1Þ ¼ s
ðp3Þ

IðoscÞnð2Þ . Then the equations for the

coupling populations read,

d�ðp2ÞðtÞ
dt

¼

ffiffiffi
2
p

r
s
ðp2Þ

nð1ÞIðoscÞ sinð�þ
1

4
ÞvðyÞ þ sðp2Þ

nð1Þmð2Þ cosð2�Þ
� �

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
p

2
D
ðp2Þ

r ;

D
ðp2Þ ¼ s2ðp2Þ

m r2 þ s
2ðp2Þ

IðoscÞ vðyÞ
2
þ s

2ðp2Þ

IðsaÞ
saðtÞ

2
;

d�ðp3ÞðtÞ
dt

¼

ffiffiffi
2
p

r
s
ðp3Þ

nð2ÞIðoscÞ sinð� �
3

4
ÞvðyÞ þ sðp3Þ

nð1Þmð2Þ cosð2�Þ
� �

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
p

2
D
ðp3Þ

r ;

D
ðp3Þ ¼ s2ðp3Þ

m r2 þ s
2ðp3Þ

IðoscÞ vðyÞ
2
þ s

2ðp3Þ

IðsbÞ
sbðtÞ

2
:

When both sa and sb are zero, the sin(ϕ) terms cancel out and we retrieve the desired coupling

function (Eq 12; where the cos(2ϕ) terms dominate). When either stimulus a or b is on, popu-

lation 2 or 3 is inhibited, respectively (the non-linearities of the units in this population satu-

rate), causing the term on the right to go to zero. Then the sin(ϕ) term of the population that is

unaffected by the stimulus takes over the coupling function, mimicking what we saw in Fig 3B

and 3C. For exact values of the parameters, see S7 Fig.

Supporting information

S1 Fig. Loss curves. Loss over epochs for three models, each trained with LFP data from a sep-

arate rat. An epoch denotes one pass through all trials in the training or validation set. The val-

idation trials are defined before training and are not used for calculating gradients. However,

the training and validation error are almost identical throughout training. This is expected, as

the validation and training trials only differ in the portion of the local field potential that was

used as reference signal for the network, and in the seed used for generating the randomised

stimulus onsets and offsets.

(TIF)
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S2 Fig. Dynamics of unconstrained networks are similar to low-rank RNNs. A) We also

trained RNNs without rank constraint. For these networks initial entries in the recurrent

weight matrix J were drawn from a zero-mean Gaussian with variance
g2

N . Here, we add a regu-

larisation term to the loss, which keeps the average firing rates close to 0, to avoid a rate-coding

solution (Eq 6). We set g to 0.6 and took a learning rate of 0.001, with the training setup other-

wise as for the low-rank networks (Training). In order to find a basis similar to the one used

for plotting the dynamics of the low-rank RNN we took the following approach. First we calcu-

lated basis vectors for the activity due to recurrent dynamics: J tanh(x(t)), by performing a

Principal Component Analysis (singular vector decomposition): UΣVT ¼ J tanhðXÞ, where X

is an N � 2T matrix containing the activity of all units for one period of oscillation of each

type of trial (stimulus a and b). We took the first two columns (principal components), u1 and

u2, of U, as well as the input vector I(osc) orthogonalised with respect to these two principal

components as basis for X. This basis retains 77% of the variance of X (measured by r2). Since

now, similar to the low-rank case, we can write the projection of x(t) on IðoscÞ? as a function of θ,

we can plot trajectories with coordinates (θ, uT
1
x; uT

2
xÞ, and we obtain two stable cycles, linked

in phase-space, as in Fig 2. B) Here we train full-rank networks without regularisation, and

find dynamics lying on two non-linked cycles, similar to the rate-coding model in Fig 2. The

basis is constructed similar to A), here explaining 87% of the variance.

(TIF)

S3 Fig. Influence of the training setup on the network solution. A) Here we analysed to

what degree a model will learn a phase- versus a rate-coding solution, as a function of the

training setup and initialisation. To quantify to what degree either solution is learned, we first

computed for all units in a model the absolute difference between their (normalized) rate after

stimulus a and their rate after stimuli b, as well as the absolute phase difference between trials

with either stimulus. To get one measure of rate coding per model, we then calculated the

mean over the absolute rate differences of all units, and similarly took the mean absolute phase

differences as a measure of phase coding. We plot here in the first row these two measures for

6 models for each combination of the following conditions: ranks 1,2,3, full rank (columns);

output during training is Wx (lin-out) or W tanh(x) (tanh-out); regularisation that penalises

deviations from the mean (Eq 6) is used (reg) or not (no-reg). All of these models use the

default initialisation used in the manuscript and were trained for 100 epochs. Additionally we

plot the validation loss after training in the second row. We observe that for rank 1 only mod-

els with tanh-out learn the task, and that these models learn a purely rate-coding solution. This

is in line with our theory, as we previously showed that the phase-coding models couples its

autonomously generated oscillations. Autonomous oscillations can only be generated by mod-

els of rank 2 and higher. For rank 2 and higher we can see that regularised models with a linear

readout during training will generally learn a phase-coding solution, whereas models with a

non-linear readout and no regularisation will generally learn a rate-coding solution. B) We

repeated the experiment, but now initialised each network to start out with oscillatory dynam-

ics. We can do this by initialising the weight matrix with a pair of complex conjugate eigenval-

ues with real part larger than 1 [30, 42] (this is only possible for rank 2 and higher). We can

observe that models with oscillatory initialisation are generally more likely to learn a phase-

coding solution; in particular all rank 2 models learn a purely phase-coding solution.

(TIF)

S4 Fig. Rate-coding solution in detail. A) We here detail a simple rate-coding model that per-

forms the working memory task. Such a model consists of two populations, one responsible

for an oscillatory output in-phase with the reference oscillation, and one responsible for the
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anti-phase output oscillation. Depending on which stimulus was last seen, either population is

dominating the readout. B) We reverse engineered a trained RNN with rank-1 connectivity.

Due to the rank constraint, in the absence of any input, the trained model implements a one-

dimensional dynamical system (with variable κ). We can plot the change in κ as a function of

κ and observe the model learned to have three stable fixed points (left). We can fit a mixture of

two Gaussians to the connectivity (I = input, n, m = left, right connectivity vector, w = output)

which indicates that the model includes one population responsible for the fixed point at 0

(negative coupling between the connectivity vectors m, and n), while contributing little to the

dynamics at the other fixed points (Due the large variance of m, the units of this population

will have saturated rates when κ is away from 0). This population produces an in-phase oscilla-

tion, due to the positive covariance between input (I(osc)) and output weights (w). The other

population is responsible for the two stable fixed points away from 0 (positive coupling

between the connectivity vectors m, and n, small variance of m), and produces the anti-phase

oscillation. Note that this model is almost identical to the one described in [30] Fig 4 (but with

oscillations added on top). C) We can make the description from the previous panel more for-

mal by engineering a rate-coding model. We initialised two covariance matrices (right), creat-

ing a two population model with similar dynamics as in the previous panel (left). D) We plot

the latent dynamics (top row) and output (bottom row) given by the mean-field equation

describing the network activity in the limit of infinite units (blue, red), as well as finite size sim-

ulations (grey). For the finite size simulations, we used models (N = 4096) with weights sam-

pled from the mixture of Gaussians. We can see that in the absence of input, depending on the

initial state the model will go to either the fixed point at 0, corresponding to an in-phase oscil-

lation, or one of the two fixed points away from 0, corresponding to an anti-phase oscillation,

respectively. For the second and third column, we provided the network with stimulus a, and

b respectively, for the first .15s of the trial. Stimuli can successfully steer the network to the

right fixed point and output oscillation phase, irrespective of initial condition.

(TIF)

S5 Fig. Converged RNN dynamics match those of coupled oscillators. We simulated two

coupled oscillators with the coupling function extracted from a trained network (Fig 3B). The

two oscillators represent the RNN’s phase (ϕ) and the reference oscillation phase (θ). Starting

simulations from various initial conditions demonstrates that the coupling function induces

bistability, as all simulations converge to one of two stable cycles on the torus. Furthermore,

the convergent trajectories of the coupled oscillators are a close match to those of the full RNN

projected into the same space (ϕ, θ), indicating that the coupled oscillator description is appro-

priate for the RNN.

(TIF)

S6 Fig. Connectivity of trained models. A) In order to study the connectivity of trained mod-

els, we fitted a mixture of Gaussians with 1 to 7 mixture components to the connectivity vec-

tors of three different models [26], each trained with LFP data from a seperate rat. For this, we

used variational inference with a Gaussian prior on the mean with precision 106 and mean 0.

After each fit, we resampled the weights 30 times and computed the loss over a batch of 128 tri-

als with a pure sine wave as reference oscillation. Altough for no amount of components we

reliable were able to resample functioning models, from 3 components onwards a small frac-

tion of sampled model have a comparable loss to the original trained model (red line). B) The

covariance structure when fitting three components to weights of a trained network give us

some hints as to what is needed to get a functioning model (top: covariances, bottom: pair

plots). One component is unconnected (zero covariance) to the reference oscillation and has a

skew-symmetric structure between the singular vectors. This structure generates oscillations
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[30, 42, 55]. The other two components, each connected to one stimulus and with opposite

covariance between the input and singular vectors, together implement the coupling function.

(TIF)

S7 Fig. Connectivity of mean-field model. The designed covariance structure for the reduced

model shown in Fig 4D and 4E, which leads to dynamics similar to the trained models. It also

shares connectivity structure with trained models (S6B Fig), namely having one component

unconnected to the reference oscillation that autonomously generates oscillations, and having

the other two components, each connected to one stimulus, implement the coupling function.

(TIF)

S8 Fig. Geometry is preserved in a model coding for 4 stimuli, but more coupling popula-

tions are required. A) Our model can be straightforwardly extended to code for more than 2

stimuli. Here, we trained a network to maintain 1 of 4 stimuli at a given trial, by producing an

output oscillation at −0.2π, −0.7π, −1.4π or −1.7π radians offset with respect to the reference

LFP, for stimulus a, b, c or d, respectively. Again we find a stable limit cycle for each stimuli,

which form linked cycles in phase-space. B) We now reverse engineered this model further, in

particular we also found a reduced description of a model coding for 4 stimuli, in terms of 5

subpopulations. As before, 1 population generates oscillations, but we now have 4 coupling

populations. Each stimulus inhibits all but one coupling population, so that the remaining cou-

pling population guides the network dynamics to the limit cycle corresponding to the pre-

sented stimulus. C) The reduced model is specified by a mixture of 5 Gaussians, here we show

the covariances that can be used to generate the connectivity of a model coding for 4 stimuli.

D) Besides the connectivity with respect to the input, the recurrent dynamics (given by the

overlaps, or covariances, between the connectivity vectors m’s and n’s) also had to be adjusted

in order to allow memorising 4 stimuli instead of 2. We showed in our manuscript that rank 2

phase-coding models can described well by their coupling function, which gives the dynamics

of the model as a function of the phase of the input oscillation (θ) and the phase of its internal

oscillation (ϕ). The two limit cycles in the model described in the main text originated from

the sin(2ϕ) and cos(2ϕ) terms in the coupling function. To code for 4 stimuli, we need higher

frequency terms (e.g. cos(4ϕ)) in the coupling function. To understand how these originate

from the recurrent connectivity, we decompose the coupling function. The coupling function

generated by multiple populations is simply a summation over the coupling functions gener-

ated by the individual subpopulations. These in turn can be decomposed as the product of a

linear part stemming from the covariances between the connectivity m’s and n’s of the sub-

populations, and a non-linear part (the gain) that relates to how saturated neurons in this pop-

ulations rates are (a neuron is saturated when its activity is at the flat part of the tanh non-

linearity). Here we show that two populations that saturate at opposite phases of ϕ are enough

to create a coupling function containing higher frequency terms, leading to dynamics with

four limit cycles.

(TIF)

S9 Fig. Phase precession through translation of the coupling function. A) Phase precession

in rat hippocampus entails a place cell changing its relative phase of firing as a result of rat

moving through a place field [10]. We here show how to create a network that changes its rela-

tive phase of oscillation depending on a continuous valued stimulus input. We setup a network

with connectivity drawn from a mixture of three Gaussians, again with two components

implementing a coupling function and one component implementing an oscillator. The net-

work receives a sinusoidal reference input with phase θ as sin(θ), cos(θ) through input vectors

IðoscaÞ; IðoscbÞ respectively, as well as continuous valued stimulus input, representing place field
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position, s(t)2[0, 1) as sin sðtÞ 1

2
p

� �
; cos sðtÞ 1

2
p

� �
through input vectors IðsaÞ; IðsbÞ respectively.

The oscillator component has connectivity equal to S7 Fig, whereas for the coupling compo-

nents (p2, p3) we define the covariance matrices as follows: For the off-diagonal elements,

s
ðp2Þ

nð1ÞIðoscbÞ
¼ � s

ðp2Þ

nð2ÞIðoscaÞ
¼ s

ðp3Þ

nð2ÞIðoscaÞ
¼ s

ðp3Þ

nð1ÞIðoscbÞ
, otherwise 0. For the diagonal elements, compo-

nent two has zero variance for (is unconnected to) IðsaÞ and component three has zero variance

for IðsbÞ. This gives a coupling function of the form:

gðy; �Þ ¼ sinðy � �Þ
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bþ c sin p

2
sðtÞ

� �2
q þ cosðy � �Þ

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bþ c cos p

2
sðtÞ

� �2
q ;

for constants a, b, c that depend on the exact values of the variances and covariances of the

mixture components. For large c and small b, the coupling function will change from a sin(θ −
ϕ) to a cos(θ − ϕ) as s(t) changes from 0 to 1. We plotted here, the coupling function of a net-

work (N = 2056 units) with connectivity drawn from mixture of Gaussians as described above,

for s(t) = 0 and s(t) = 1. The coupling function translates between these two states as a conse-

quence of position input s(t). B) Different trials on which s(t) is tonically presented at different

values lead the the network locking to a unique phase difference with respect to the reference

oscillation. In phase-space, this appears as the stable cycle shifting along the surface of a torus.

(TIF)
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