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ABSTRACT 
 

Aquaculture has emerged as one of the fastest-growing global food industries in recent years, 
playing a vital role in meeting the increasing demand for animal protein. However, several 
challenges, such as disease prevalence, chemical contamination, environmental degradation and 
inefficient feed utilization, have significantly impeded the sector's ability to contribute effectively to 
global food security. To address these challenges, considerable efforts have been made to 
leverage advancements in science and technology within aquaculture. Nanotechnology has 
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emerged as a promising and effective tool to tackle these challenges across various aspects of 
aquaculture, including fish nutrition, biotechnology, genetics, reproduction, pathology and 
environmental sustainability. The utilization of emerging nano-materials, such as nano-elements 
enriched feed, has notably enhanced fish growth and has been applied in aquatic systems to 
mitigate pollutants, thereby reducing treatment costs. Furthermore, integrating genetically 
manipulated techniques with nano-biotechnology has led to significant advancements in fish 
genetics research. Innovative nanotechnology applications, such as nano-sensors, DNA nano-
vaccines and drug delivery systems, have revolutionized fish health, reproduction and immune 
system management. Additionally, nanotechnology is increasingly employed in the fish processing 
industry to ensure sterile packaging, precise flavoring and high-quality products. Moreover, bio-
nano-engineering techniques for optimal utilization of fishery wastes and the implementation of 
green nanoparticles signify a promising era in post-harvesting practices. This comprehensive 
review aims to delve into nanotechnology's diverse and good applications in aquaculture, exploring 
its potential and the challenges it presents. 
 

 

Keywords: Nanotechnology; aquaculture; healthy fat; micronutrients; farming system; human life; 
physicochemical properties. 

 

1. INTRODUCTION 
 
Aquaculture stands out as the most rapidly 
expanding sector within agriculture, boasting 
considerable growth prospects. It is a vital source 
of easily digestible protein, healthy fat, and a 
diverse array of essential micronutrients for 
nourishing worldwide populations [1]. Moreover, 
aquaculture holds significant potential for rural 
employment and livelihood improvement and 
offers substantial opportunities for generating 
income through high export earnings, thereby 
boosting national GDP. The production of farmed 
finfish and shellfish has experienced rapid 
growth; it is because of the adoption of advanced 
and intensive aquaculture techniques [2]. As 
aquaculture farming systems have expanded, 
there has been a reduced dependence on wild 
seed stock and fish supplies [3]. The intensive 
practice of aquaculture results in pond 
eutrophication, characterized by accumulating an 
excessive nutrient load [4]. The escalating 
impacts of global climate change, such as rising 
temperatures and increased levels of methane 
and CO2, pose a significant threat to aquaculture 
[1]. 
 
Nanotechnology has arisen as a hopeful solution, 
introducing fresh avenues for exploration. It 
encompasses the development and utilization of 
materials at nanoscale dimensions (1-100 nm) 
with exceptional properties, offering novel 
possibilities for application [5] as illustrated in 
Fig. 1. Nanotechnology applications have 
permeated every aspect of human life, yielding 
numerous value-added products [6]. Becoming a 
crucial interdisciplinary field, nanotechnology 
integrates principles from physics, chemistry and 

biology [7]. Furthermore, nanotechnology 
garners global public interest due to its rapid 
evolution and widespread applications across 
various fields including engineering, electronics, 
agriculture, medicine, food industry and 
environmental sectors [8]. Nano-sized materials 
possess unique physicochemical properties that 
enable them to withstand high pressure and 
temperature, facilitating their involvement in 
numerous applications [9]. The revolution of 
nanotechnology has expanded to encompass 
fish farming, contributing to their growth and 
addressing associated challenges [10,11]. 
Nanotechnology applications in fisheries 
comprise both direct and indirect approaches. 
 
Direct applications of nanotechnology primarily 
focus on enhancing various aspects of fish, 
including growth, reproduction and health. Nano-
materials play a crucial role in efficiently 
delivering nutrients, trace elements and vitamins 
as feed supplements, such as selenium (Se) 
[12–14], iron (Fe) [15,16], zinc (Zn) [17–19] and 
vitamin-C [20,21]. 
 
“Feeding fish with nanoform of these ingredients 
enhances their absorption and allows them to 
pass through the intestinal wall, thereby 
improving growth performance, reproduction, and 
innate immunity in fish” [22,23]. Utilizing various 
nano-materials for controlling fish diseases 
proves to be more effective than traditional 
antibiotics and chemicals, which often lead to 
adverse side effects like developing resistant 
bacterial strains, water pollution and 
accumulating unwanted chemical residues. 
Nano-materials exhibit antiviral properties [24], 
act as antibacterial agents [25–28], demonstrate 
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antifungal effects [29,30] and serve as anti-
parasitic agents [31,32]. Additionally, chitosan 
and polylactic-glycolic acid (PLGA) nanoparticles 
are significant in facilitating drug and hormone 
delivery and vaccination [33–35]. “Certainly, 
nanovaccination offers numerous advantages 
compared to conventional methods, ensuring 
sustained release and enhancing stability, 
bioavailability and residence time” [36–38]. 
“Moreover, a notable application of 
nanotechnology in fish farming is its utilization for 
rapid and efficient diagnosis of various fish 
pathogens” [39,40]. 
 

“In today's era, nanotechnology has flourished 
into a multi-billion-dollar industry, experiencing 
rapid growth exemplified by over a thousand 
products incorporating nanomaterials in the 
market. Over the past decade, the international 
market has introduced more than 300 nanofood 
products” [41]. “The economic influence of 
nanotechnology sectors was estimated to exceed 
$3 trillion by 2020, with approximately 6 million 
individuals employed within these industries” [8]. 
Currently, there exists an abundance of 
published literature offering a thorough 
examination of the various uses of 
nanotechnology within the field of aquaculture 
(Fig. 2.) [42]. 

 

 
 

Fig. 1. Applications of nanotechnology in aquaculture 
 

 
 

Fig. 2. Visual depiction showcasing the implementation of nanotechnology within the realm of 
fishery 
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2. ENRICHMENT IN FEED  
 
“In natural habitat, fish source their food from 
phytoplankton, zooplankton and smaller 
organisms. However, in aquaculture settings, it 
becomes necessary to add complementary 
additives in fish feed to significantly increases the 
growth and production. Fish feed typically 
necessitates a balance of protein (32%), 
carbohydrates (20–35%), fats (4–6%), fiber 
(<4%), and dietary energy (8.5–9.5%) and these 
nutritional requirements may vary depending on 
the species and developmental stage of fish” 
[43]. “Including minute concentrations of organic 
and/or inorganic substances in fish feed has 
been a common practice to enhance growth and 
immunity. Feed supplements stand out as one of 
the crucial applications of nanotechnology in fish 
farming. Nano-scale materials are readily 
absorbed in small doses, traversing the 
gastrointestinal tract and small intestine to enter 
the bloodstream. Once distributed throughout 
vital organs, these nano-materials function more 
effectively than their bulk counterparts” [22]. 
“Introducing nano-metals such as selenium (Se), 
zinc (Zn) and iron (Fe) as feed supplements can 
offer several benefits for the survival, growth, and 
overall health of fish” [23]. Additionally, organic 
polymers such as chitosan play a significant role 
in delivering micronutrients [10]. 
 
Nutritional supplements and feed formulation are 
vital in commercial aquaculture for fish growth. 
Nanoparticles can modify feed consumption by 
enhancing flavor, color, or attractants. They also 
improve the bioavailability of water-insoluble 
vitamins and carotenoids when processed with 
nanoparticles for dietary supplements [44,45]. 
“Several market-available products utilize 
advanced micro/nano-encapsulation systems to 
enhance the delivery and bioavailability of 
nutrients in aquaculture. For instance, Ubisol-
AquaTM Delivery System Technology was 
created by Zymes LLC (USA) and NovaSOL 
from AQUANOVA (Germany). Ubisol-AquaTM 
efficiently solubilizes bioactive compounds such 
as coenzyme Q10, vitamins A and B, squalene 
and fish oil (EPA/DHA). AQUANOVA's 
'solubilisate' liquid carrier solutions enable the 
transportation of active raw materials in highly 
compact capsules” [46]. “Nano/microcarriers play 
a crucial role in protecting, encapsulating, 
stabilizing and delivering valuable bioactive 
compounds essential for fish growth. Numerous 
Indian startups have ventured into manufacturing 
nanotechnology products for aquaculture 
nutrition. Notably, Filo Life Sciences, an Indian-

origin nanotech company, produces a range of 
important nutritional and nutraceutical products 
for aquaculture including ColloidAG Aqua (Nano 
silver), Fabgrow Aqua (Nano PUFA), Nanomin 
Aqua (Nano trace minerals), NannoCAL Aqua 
(Nano calcium), NanoPHOS Aqua (Nano 
phosphorus)” [47]. 
 
 

3. WATER FILTRATION AND REMEDIA-
TION 

 
Water treatment is crucial for sustainable 
aquaculture. Global water contamination, 
exacerbated by urban, industrial and agricultural 
waste discharge and the misuse of antibiotics 
and synthetic compounds in fisheries, poses a 
significant health hazard for consumption [42]. 
 
“Nano-enabled technologies are utilized for water 
purification, employing nanomaterials like 
activated carbon or alumina with additives such 
as zeolite and iron-containing compounds to 
foster aerobic and anaerobic biofilm for 
ammonia, nitrites and nitrate removal in 
aquaculture. Additionally, ultrafine nanoscale iron 
powder effectively cleans less toxic carbon 
compounds like trichloroethane, carbon 
tetrachloride, dioxins and polychlorinated 
biphenyls, advancing nano-aquaculture 
practices” [48]. 
 
“Researchers created magnetic konjac 
glucomannan (KGM) aerogels for arsenite water 
decontamination. The system exhibited a pH-
dependent capacity and green step 
characteristics” [49]. “Recently, graphene oxide 
(GO) and graphene nanosheets (GNs) have 
garnered significant global attention for their 
effectiveness in removing various contaminants 
from water” [50,51].  “Hybrid GO-TiO2 materials 
have been mainly focused on environmental and 
energy applications, including the adsorption of 
heavy metal ions and organic dyes from 
wastewater” [52,53]. TiO2 is a promising 
candidate for wastewater treatment due to its 
non-toxic nature, chemical and biological 
stability, low cost and efficient photocatalytic 
properties. Numerous studies have explored its 
photocatalytic activity for inactivating pathogenic 
organisms like bacteria, viruses and algae 
[52,54,55]. The scientific community's attention 
to water treatment and contaminant removal is 
appreciated. Elevated concentrations of these 
contaminants pose potential threats to human 
health, as they can accumulate in aquatic animal 
tissues, notably fish, which are often consumed 
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to combat cardiovascular diseases (CVDs) and 
cancer [56].  Due to their habitat and feeding 
habits, fish are highly vulnerable and extensively 
exposed to the harmful effects of pollutants                
in aquatic environments, with no means of 
escaping their impacts [57,58]. Reports indicate 
increased accumulation of heavy metals (Hg,     
Cd, and Pb) in marine animal tissues, attributed 
to both natural processes (e.g., volcanic activity) 
and human activities [59]. Likewise, research                              
has shown that F-1 toxicity leads to enzyme 
dysfunction, gastric issues and immune                
system impairment in experimental fish [60], as                  
well as habitat degradation and destruction                     
of the freshwater snail Physella acuta                       
[61]. Utilization of a 3D RGO hydrogel assessed 
for removing   Hg and F-1 from water. The 
aerogel showed high adsorption capacities of 
185 mg/g for Hg+2 and 31.3 mg/g for                          
F-1, indicating potential for environmental 
pollution management [62]. Additionally, Fig. 2 
demonstrates the suggested mechanism                     
by which various nanoparticle-based 
photocatalytic adsorbents and hydrogel biofilms 
function effectively in the practical purification of 
water, showcasing examples of fluoride                      
(F-), nitrate (NO3-), and coliforms (E. Coli) 
removal from  contaminated water [42]. 
 

3.1 Fish Harvesting 
 

Fishing lures are often painted to attract fish with 
light, but they usually only reflect light in                       
one direction. To improve effectiveness, lures      
are colored and coated with a polyimide                     
film, increasing fish-catching probability by                 
two to three times compared to uncoated lures 
[48]. 
 

3.2 Biofouling Control 
 

“Nanotechnology can enhance aquaculture and 
shrimp culture productivity by improving disease 
control, feed formulation, and biofouling 
management. By incorporating metal oxide 
nanoparticles like ZnO, CuO and SiO2 into 
coatings or paints, biofouling from unwanted 
bacteria, invertebrates (such as mussels and 
barnacles) and algae (like seaweeds and 
diatoms) can be monitored and                         
controlled effectively. This creates antifouling 
surfaces and boosts antifouling control efficiency” 
[63,64]. The antifouling technology can be 
applied in fishing and aquaculture networks, 
aquaculture tank antibacterial substances                   
and new marine product packaging                    
materials. 

3.3 Removal of Heavy Metals 
 
Ligand-based nano-coating enables efficient and 
cost-effective heavy metal removal by high 
absorption capacity and renewability. Crystal 
precise technology purifies water by bonding 
multiple metal layers to one substrate [65]. 
Nanomaterials, like metal oxide nanoparticles, 
are commonly used for efficient heavy metal 
removal from water due to their high reactivity 
and large surface area. Ongoing research aims 
to develop new synthesis methods and practical 
applications, such as composite materials or 
granular oxides, to enhance heavy metal removal 
effectiveness and understand underlying 
mechanisms such as XAS and NMM [66,67]. 
Comprehensive research investigating the 
impact of humic acid and fulvic acid on heavy 
metal removal using a range of nanomaterials 
from aqueous solutions. The study focused 
mainly on iron-based, carbon-based and 
photocatalytic nanomaterials [68]. “The study 
also examined the interaction mechanisms and 
environmental implications of humic acid and 
fulvic acid. Chitosan nanoparticles are utilized as 
adsorbents for heavy metal removal. Recent 
research focuses on removing heavy metals from 
clays like kaolinite, bentonite and montmorillonite 
using chitosan nanoparticles, with studies on 
nano chitosan-clay composites for metal ion 
removal recently reported” [69,70]. “Chitosan-
magnetite nanocomposites were also suggested 
for removing heavy metals from aqueous 
solutions” [71,72]. A schematic illustration 
highlights the process of zinc oxide nanoparticle-
mediated degradation of significant pollutants 
(Fig. 4.) [47]. 
 

3.4 Fish Reproduction 
 

Producing mono sex tilapia (Oreochromis sp.), 
fish farms aim to prevent uncontrolled spawning 
and overcrowding. This is achieved by applying 
steroid hormones, which can have unintended 
effects on fish consumers [73]. “Nanotechnology 
has been an effective drug carrier in delivering 
fadrozole (an estrogen synthesis inhibitor) to O. 
niloticus. Feeding O. niloticus with fadrozole 
overloaded on PLGA nanoparticles at 50–500 
ppm concentrations for one month resulted in 
100% male fish at both 350 and 500 ppm levels” 
[74]. “Nanotechnology plays a crucial role in 
improving reproduction in various fish species. 
Specifically, nano-chitosan has been utilized to 
deliver and release reproductive hormones” [75]. 
“A composite of chitosan-nano gold extended the 
duration of the presence of reproductive 
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hormones in salmon blood and enhanced egg 
fertilization rates” [35]. “Nanoparticles of 
eurycomanone, extracted from Eurycoma 
longifolia, were combined with chitosan 
nanoparticles and injected into Clarias magur 
fish. Within seven days, this resulted in increased 
gonado-somatic index (GSI), Ca and Se 
concentrations, reproductive capacity and 
endocrine hormone gene expression levels” [33]. 
 

3.5  Nanotechnology for Fish Quality 
Testing 

 

Quality testing is an essential post-harvesting 
technology and nanotechnology can be applied 
for quality improvement of fishes.  
 

3.5.1 Fish freshness testing  
 

“A quantum dot-based nanosensor was created 
to address fishery product freshness concerns. 
Tin oxide quantum dots (SnO2 QDs) were 
synthesized, dispersed in a colloidal solution, 
and deposited onto indium–tin–oxide (ITO) glass” 
[47]. This facilitated the development of a fish 
freshness biosensor by immobilizing xanthine 
oxidase. The sensor displayed heightened 
sensitivity, faster response time and an extensive 
linear range in electrochemical output [76]. 

4. DETERMINATION OF FORMALIN IN 
FISH SAMPLES 

 
Formalin poses a significant threat to fish food 
safety in modern times. A market survey 
conducted in Bangladesh revealed formalin 
contamination in 50% of total fish samples, with 
70% of rohu (L. rohita) affected. This 
preservative is commonly used to maintain 
freshness during transportation [77]. A report 
from the Somdet market in Kalasin Province, 
Thailand, highlighted the varying levels of 
formalin contamination across different fish 
products. White shrimp, mackerel, Shishamo 
fish, squid and other samples were found to have 
higher contamination levels [78]. A formaldehyde 
nano-biosensor was designed using 
formaldehyde dehydrogenase enzyme and 
nanomaterials like carbon nanotubes and 
chitosan. This sensor ensures precise detection 
of health hazards, with quick response times (≥5 
s), high sensitivity (1-10 ppm), and reproducibility 
[79]. A reproducible formaldehyde biosensor was 
created by coating an ionic liquid, nanoscale 
gold, and chitosan onto a glassy carbon 
electrode. This biosensor detects formalin in the 
tissues of Lutjanus malabaricus and Thunnus 
tonggol [80]. 

 

 
 

Fig. 3. The operational mechanism of nanoparticle-loaded adsorbents and hydrogel films for 
eliminating F-, NO3-, and coliforms (E. coli) from polluted water 
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Fig. 4. Nanoremediation by zinc oxide nanoparticles 
 

4.1 Fish Packaging 
 

Nanotechnology enhances fish packaging by 
delaying spoilage and extending shelf life. Nano-
materials in biodegradable packaging act as 
antimicrobial agents, remove oxygen, inhibit 
degradation and stabilize products [81–83]. 
Nano-composites derived from natural 
biopolymers (proteins, lipids, polysaccharides) 
are favored as healthy packaging alternatives to 
toxic petrochemical plastics [84]. 
 

4.2 Delivery of Vaccines 
 

Vaccines are essential in aquaculture to defend 
against pathogens and safeguard host animals 
from infections. Oral or injectable methods are 
the most reliable ways of vaccination in fisheries. 
However, traditional injection practices with 
oil/water formulations often lead to adverse 
effects and occasional fish mortality [85]. To 
address these issues, the scientific community 
has proposed nano-delivery systems as safer 
and more effective alternatives for vaccine 
delivery in fish. Various encapsulation 
techniques, including alginate particles, have 
been developed and tested for oral vaccine 
delivery to aquatic animals [86]. Alginate, derived 
from brown algae or bacterial polysaccharides, is 
a copolymer of β-D-mannuronic acid (M) and α-
L-guluronic acid (G). Its mechanical stability and 
mucoadhesive properties make it ideal for oral 
administration, enabling direct contact with 

epithelial cell walls [87,88]. For application in fish, 
alginate particles are generally produced by 
emulsification [89], one of the fastest methods for 
NP preparation and readily scalable [90] and to a 
lesser extent by other methodologies such as the 
orifice-ionic gelation and the spray method. 
Reports from different researchers presented 
alginate as an antigen adjuvant [91,92], survival 
and weight promoter of fish [93,94]. Additionally, 
alginate administration has demonstrated 
enhanced immune-stimulant responses in carp 
(Cyprinus carpio L.) and brown-marbled grouper 
(Epinephelus fuscoguttatus) [95–97]. It has also 
been shown to bolster defense against V. 
anguillarum in turbot (Scophthalmus maximus L.) 
[98] and against iridovirus and Streptococcus sp. 
in orange-spotted grouper (Epinephelus 
coioides) and brown-marbled grouper [95,97]. 
Chitosan (CS), derived from crustaceans and 
insects, is the second most abundant 
biopolymer. Its unique biological properties: 
bioadhesive, biodegradable, biocompatible and 
non-toxic—make CS-based formulations widely 
used in drug delivery, bio-nanosensors, edible 
coatings and various medical fields such as 
dentistry and surgery [99,100]. Furthermore, the 
oral administration of nano-chitosan 
encapsulated DNA or overloaded with DNA or 
recombinant DNA vaccine has been shown to 
positively enhance the immune response against 
specific fish pathogens, such as the European 
sea bass (Dicentrarchus labrax) against 
nodavirus [101], Asian sea bass (Lates 
calcarifer) against V. anguillarum [37], black 
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seabream (Acanthopagrus schlegelii) against V. 
parahemolyticus [102] and Shrimp (P. monodon) 
against the white spot syndrome virus [63]. 
Similarly, nano-PLGA was employed in oral DNA 
vaccines for Japanese flounder (Paralichthys 
olivaceus) against lymphocytic disease virus 
[103] and for rainbow trout (Oncorhynchus 
mykiss) against infectious hematopoietic 
necrosis virus [104]. Using nanotechnology in 
fish vaccination is crucial for reducing reliance on 
toxic and carcinogenic chemical adjuvants. Oral 
or immersion vaccinations are preferred over 
injections to minimize stress [38].  
 
Nanoparticles offer promising potential for 
enhancing siRNA delivery systems in molecular 
therapeutics. An assessment examined PAMAM 
nanoparticle-mediated delivery of siRNA to 
zebrafish cardiac wounds, quantitatively 
analyzing nanoparticle distribution in cardiac 
cells and monitoring their role in cellular uptake 
[105]. A schematic diagram of nanoparticle-
mediated siRNA delivery in the fish system is 
presented in Fig. 5. 
 

5. NANOTECHNOLOGY DEVICES FOR 
AQUATIC ENVIRONMENT 
MANAGEMENT 

 
Nanotechnology application in seawater             
shrimp aquaculture demonstrated that 
nanodevices reduced water exchange rates, 
improved water quality, increased shrimp survival 
rates and ultimately boosted yield [106,107]. 
Among various nanodevices, nanonet treatment 
stood out as the most effective, with a 100% 
increase in fish survival rate and significant 

reductions in water nitrite and nitrate levels,             
with nitrite dropping to just a quarter of the 
control group. Nanotechnology also raised water 
pH and substantially enhanced water efficiency               
[108]. In China, Nano-863 is a popular high-tech 
agricultural product widely utilized in                 
livestock, crop and aquaculture sectors. It 
incorporates high-temperature sintered 
nanomaterials with excellent light-absorbing 
properties into a ceramic carrier [106]. 
 

5.1 Nanotechnology as a New Tool in 
Fish Diseases 

 

Nanotechnology operates at the nanometer 
scale, with one nanometer (nm) equaling one 
billionth of a meter, according to the International 
System of Units (SI) [84,109]. New materials, 
with distinct properties derived from their small 
size, form, surface area, conductivity, or                 
surface chemistry, find extensive applications in 
textiles, electronics, engineering and medicine 
[110,111]. The term "nanomaterial" derives from 
"nano," originating from the Greek word 
for"dwarf." It typically refers to materials               
ranging from 1 to 100 nm [112]. Nanotechnology 
offers solutions to prevent and monitor diseases 
in aquaculture, enhancing its benefits. This 
includes              developing antibacterial 
surfaces, using nanosensors for pathogen 
detection and delivering veterinary products 
through fish foods [113]. Nano-trace elements 
exhibit usage levels up to 100% higher than 
conventional inorganic trace elements, primarily 
due to their direct penetration into the animal 
body [11,42,113]. 

 

 
 

Fig. 5. Nanoparticle-mediated Si RNA delivery in fish system 
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5.2 Drug Delivery for Health Management  
 
Disease outbreaks pose significant obstacles              
to the sustainability and development of 
aquaculture [11,48,117]. Nanotechnology is 
crucial in providing novel perspectives for 
disease diagnosis and health management            
in aquaculture [64]. Solid core drug              
delivery systems, involving coating solid 
nanoparticles with a fatty acid shell, are effective 
for protecting labile or thermo-sensitive drugs 
[118]. Porous nanomaterials serve as effective 
pharmaceutical delivery matrices. Mesoporous 
silica particles, for example, can be utilized for 
the controlled release of drugs [119]. 
 
Oral nano-delivery systems associated with 
nanoparticles offer several advantages, such as 
enhanced control over drug release [120], direct 
targeting of specific tissues [121], improved 
bioavailability of pharmaceuticals with low 
absorption rates [122], stabilization of drugs 
through prolonged residence time in the gut [123] 
and increased absorption capability due to higher 
dispersion rates at the molecular level [124]. 
 

5.3 Delivery of Nutrients 
 
While nutraceuticals significantly enhance growth 
and immunological parameters in fish, their 
incorporation entails higher costs compared to 
minimal dietary requirements. Thus, careful 
management is essential to avoid wastage and 
maximize their utilization [125]. Nanotechnology 
enhances the delivery of dietary supplements 
and nutraceuticals in fisheries, improving nutrient 
bioavailability and efficacy by enhancing 
solubility and protecting against harsh gut 
conditions. For instance, adding 1 mg of nano-
Selenium (Se) per kg of diet significantly boosts 
growth and antioxidant defense in common carp 
(Cyprinus carpio) compared to controls [12]. 
Supplementation of selenium (Se), zinc (Zn) and 
manganese (Mn) nanoparticles in early weaning 
diets enhanced stress resistance and bone 
mineralization in gilthead seabream (Sparus 
aurata) [126]. Solid lipid nanoparticles (SLNPs) 
containing 6-COUM demonstrated superior 
uptake compared to competitor 6-coumarin-
loaded pectin microparticles (MPs) in gilthead 
seabream (Sparus aurata L.) cell types, including 
SAF-1 cells and primary head-kidney (HK) 
cultures. This suggests SLNPs as promising 
nanocarriers for delivering biologically active 
substances in fish [127]. In rainbow trout, the 
addition of iron nanoparticles (NPs) and 
Lactobacillus casei as a probiotic to the diet led 

to notable enhancements in growth parameters 
[128]. Similarly, supplementation of the diet with 
16 mg kg-1 of MnO nanoparticles (NPs) 
significantly boosted both growth and the 
antioxidant defense system in freshwater prawn 
(Macrobrachium rosenbergii) [129]. Copper 
nanoparticles at 20 mg kg-1 notably enhanced 
growth, biochemical constituents, digestive 
enzymes, antioxidants, metabolic enzymes and 
immune response in freshwater prawn post-
larvae (Macrobrachium rosenbergii) [130] and 
red sea bream, (Pagrus major) [131]. The 
hepatoprotective and antioxidant effects of Azolla 
microphylla-based gold nanoparticles (GNPs) 
against acetaminophen (APAP)-induced toxicity 
in freshwater common carp fish (Cyprinus carpio 
L.) has been investigated [132]. GNPs notably 
improved metabolic enzyme levels, hepatotoxic 
markers, oxidative stress markers, tissue 
enzymes, hepatic ion levels, and abnormal liver 
histology. Thus, Azolla microphylla 
phytochemically synthesized GNPs were 
recommended as effective protectors against 
acetaminophen-induced hepatic damage in 
freshwater common carp fish [132]. The effects 
of different levels (0.5%, 1%, and 1.5% of the 
diet) of Aloe vera nanoparticles on Siberian 
sturgeon's growth, survival rate, and body 
composition were examined. They found that 
supplementing the diet with 1% Aloe vera 
nanoparticles significantly improved the growth 
indices of Siberian sturgeon compared to 
controls [133]. 
 

5.4 Toxicity 
 
Nano-materials' heightened reactivity and unique 
properties generate increased production of 
reactive oxygen species, leading to cellular 
dysfunction as they easily penetrate cell 
membranes and interact with intracellular 
organelles [134]. In general, when comparing the 
physiological effects of metals and nanometals, it 
is found that nanometals cause more toxic 
effects [135]. Various aquatic organisms exhibit 
diverse toxic responses to nanometals and bulk 
forms, with metal nanoparticles demonstrating 
notably higher toxicity than other nanoparticle 
types. Exposure of Medaka fish (Oryzias latipes) 
to nano-Se (3.2 mg/l) for 2 days resulted in 100% 
mortality, whereas sodium selenite at 2.0 mg/l 
caused only 10% mortality and 80% at 8.0 mg/l. 
Nano-Se accumulated six times more in fish liver 
compared to selenite [136]. Certain nano-
materials employed in water remediation, such 
as nZVI, have been documented to induce 
toxicity in microorganisms, crustaceans, fish 
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larvae, and other aquatic and soil-dwelling 
organisms [137]. Zebrafish exposed to both 
titanium dioxide nanoparticles (nano-TiO2) and 
cypermethrin experienced increased 
accumulation of cypermethrin, leading to 
neurotoxic effects and reduced fish larvae 
locomotion [138]. Additionally, nano-TiO2 
enhanced uptake of an organophosphate 
compound in zebrafish tissues, decreasing 
reproductive hormones and inhibiting 
reproduction [139,140]. 
 

6. CONCLUSION 
 
The emergence of nanotechnology presents a 
dual-edged sword, showcasing both its immense 
potential and inherent risks. The unique 
properties of nanoparticles give rise to both 
positive and negative effects. In the realm of fish 
culture, nanotechnology holds promise for 
revolutionizing various aspects, including 
enhancing growth performance, productivity, 
disease control and diagnosis, water purification, 
pollutant remediation and extending shelf life 
through improved packaging techniques. Despite 
its potential benefits, the application of 
nanotechnology in fish culture poses challenges, 
primarily concerning the potential toxicity of 
nanoparticles and their adverse effects on fish 
and non-targeted organisms, as well as their 
environmental impact. However, the concept of 
green nanotechnology offers eco-friendly 
alternatives to toxic metal nanoparticles. To 
ensure the safe and responsible application of 
nanoparticles in fish culture, it is imperative to 
address existing gaps in knowledge regarding 
the environmental fate of nanoparticles and their 
potential accumulation in the food chain. 
Comprehensive assessments are necessary to 
guarantee the safety of nanoparticle usage for 
fish, environmental sustainability and human 
consumption. 
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